Environmental and Management Considerations for Adopting the Halophyte Salicornia bigelovii Torr. as a Sustainable Seawater-Irrigated Crop.
Abstract
:1. Introduction
1.1. Water Shortage Limitations for Conventional Agriculture in Arid Zones
1.2. The Cultivation of Halophytes as an Option to Reduce the Demand for Fresh Water in Agriculture
2. Materials and Methods
2.1. Study Area
2.2. Experimental Site
2.3. Water Quality
2.4. Plant Materials and Irrigation Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Water Quality
3.2. Plant Establishment and Growth
3.3. Irrigation Requirements
3.4. Environmental Regulations
3.5. Scenarios Towards Sustainability of Seawater Irrigation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Odegard, I.Y.R.; van der Voet, E. The future of food — Scenarios and the effect on natural resource use in agriculture in 2050. Ecol. Econ. 2014, 97, 51–59. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. PNAS 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [Green Version]
- Samian, M.; Mahdei, K.N.; Saadi, H.; Movahedi, R. Identifying factors affecting optimal management of agricultural water. J. Saudi Soc. Agric. Sci. 2015, 14, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Yeo, S.E.; Binkowski, F.P.; Morris, J.E. Aquaculture effluents and waste by-products—Characteristics, potential recovery, and beneficial reuse. NCRAC Technical Bull 2004, 6. Available online: https://pdfs.semanticscholar.org/ede1/91bacaa533c2b5154ad38b7f2c6a4ab05fb9.pdf (accessed on 12 September 2019).
- Patel, S. Salicornia: evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintã, R.; Hill, P.W.; Jones, D.L.; Santos, R.; Thomas, D.N.; LeVay, L. Uptake of an amino acid (alanine) and its peptide (trialanine) by the saltmarsh halophytes Salicornia europaea and Aster tripolium and its potential role in ecosystem N cycling and marine aquaculture wastewater treatment. Ecol. Eng. 2015, 75, 145–154. [Google Scholar] [CrossRef]
- Rzedowski, J. Vegetación de México. Editorial Limusa S.A. de C.V. México. 1994, p. 432. Available online: http://148.206.53.84/tesiuami/Libros/L19.pdf (accessed on 25 September 2019).
- Saravanan, V.S.; McDonald, G.T.; Mollinga, P.P. Critical review of Integrated Water Resources Management: Moving beyond polarised discourse. Nat. Res. For. 2009, 33, 76–86. [Google Scholar] [CrossRef]
- Alfarrah, N.; Walraevens, K. Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water 2018, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, C.B.; Magdich, S.; Rouina, B.B.; Boukhris, M.; Abdullah, F.B. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive. J. Environm. Manag. 2012, 113, 538–544. [Google Scholar] [CrossRef]
- Glenn, E.P.; Anday, T.; Chaturvedi, R.; Martinez-Garcia, R.; Pearlstein, S.; Soliz, D.; Nelson, S.G.; Felger, R.S. Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environ. Exp. Bot. 2013, 92, 110–121. [Google Scholar] [CrossRef]
- Shamsutdinov, N.Z.; Shamsutdinova, E.Z.; Orlovsky, N.S. Halophytes: Ecological features, global resources, and outlook for multipurpose use. Her. Russ. Acad. Sci. 2017, 87, 1–11. [Google Scholar] [CrossRef]
- Böer, B.; Gliddon, D. Mapping of coastal ecosystems and halophytes (case study of Abu Dhabi, United Arab Emirates). Mar. Freshwat. Res. 1998, 49, 297–301. [Google Scholar] [CrossRef]
- Yensen, N.P.; Glenn, E.P.; Fontes, M.R. Biogeographical distribution of salt marsh halophytes on the coasts of the Sonoran Desert. Desert Plants 1983, 5, 76–81. Available online: https://repository.arizona.edu/bitstream/handle/10150/552190/dp_05_02-076081.pdf?sequence=1&isAllowed=y (accessed on 18 January 2020).
- Glenn, E.P.; O’Leary, J.W.; Watson, M.C.; Thompson, T.L.; Kuehl, R.O. Salicornia bigelovii Torr.: An oilseed halophyte for seawater irrigation. Science 1991, 251, 1065–1067. [Google Scholar] [CrossRef] [PubMed]
- Zerai, D.B.; Glenn, E.P.; Chatervedi, R.; Lu, Z.; Mamood, A.N.; Nelson, S.G.; Ray, D.T. Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol. Eng. 2010, 36, 730–739. [Google Scholar] [CrossRef]
- Peinado, M.; Delgadillo, J.; Juan, L.; Aguirre, J.L. Plant associations of El Vizcaíno Biosphere Reserve, Baja California Sur, Mexico. Southwest. Nat 2005, 50, 129–149. [Google Scholar] [CrossRef]
- Glenn, E.P.; Hodges, C.N.; Lieth, H.; Pielke, R.; Pitelka, L. Climate: growing halophytes to remove carbon from the atmosphere. Environment 2009, 34, 40–43. Available online: https://pielkeclimatesci.files.wordpress.com/2009/09/r-149.pdf (accessed on 18 January 2020). [CrossRef]
- Buhmann, A.; Papenbrock, J. Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectives. Environ. Exp. Bot. 2013, 92, 122–133. [Google Scholar] [CrossRef]
- Brown, J.J.; Glenn, E.P.; Fitzsimmons, K.M.; Smith, S.E. Halophytes for the treatment of saline aquaculture effluent. Aquacult 1999, 175, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Rueda-Puente, E.O.; García-Hernández, J.L.; Preciado-Rangel, P.; Murillo-Amador, B.; Tarazón-Herrera, M.A.; Flores-Hernández, A.; Holguin-Peña, J.; Aybar, A.N.; Barrón Hoyos, J.M.; Weimers, D.; et al. Germination of Salicornia bigelovii ecotypes under stressing conditions of temperature and salinity and ameliorative effects of plant growth-promoting bacteria. J. Agron. Crop Sci. 2007, 193, 167–176. [Google Scholar] [CrossRef]
- Alsaeedi, A.H.; Elprince, A.M. Critical phosphorus levels for Salicornia growth. Agron. J. 2000, 92, 336–345. [Google Scholar] [CrossRef]
- Parida, A.K.; Kumari, A.; Panda, A.; Rangani, J.; Agarwal, P.K. Photosynthetic pigments, betalains, proteins, sugars, and minerals during Salicornia brachiata senescence. Biol. Plant. 2018, 62, 343–352. [Google Scholar] [CrossRef]
- Rueda-Puente, E.O.; Castellanos, T.; Troyo-Diéguez, E.; Díaz De León-Alvarez, J.L.; Murillo-Amador, B. Effects of a nitrogen-fixing indigenous bacterium (Klebsiella pneumoniae) on the growth and development of the halophyte Salicornia bigelovii as a new crop for saline environments. J. Agron. Crop Sci 2003, 189, 323–332. [Google Scholar] [CrossRef]
- WHSRN. Ensenada de La Paz. Western Hemisphere Shorebird Network: Manomet, MA, USA. Available online: https://whsrn.org/whsrn_sites/ensenada-de-la-paz/ (accessed on 24 October 2019).
- Ministry of Economy (Secretaría de Economía). Mexican Norm NMX-AA-034-SCFI-2015: Water analysis. - Measurement of salts and solids dissolved in natural water, wastewaters and treated wastewaters—Test Method. (Análisis de agua. – Medición de sólidos y sales disueltas en aguas naturales, residuales y residuales tratadas – Método de Prueba). Available online: https://www.gob.mx/cms/uploads/attachment/file/166146/nmx-aa-034-scfi-2015.pdf (accessed on 18 January 2020).
- SAS (Statistical Analysis System). SAS Institute Inc. SAS/STAT® 9.2. Cary, NC, USA. User’s Guide 2008, 74p. [Google Scholar]
- Lyra, D.A.; Ismail, S.; Bashir-Butt, K.U.R.; Brown, J.J. Evaluating the growth performance of eleven Salicornia bigelovii populations under full strength seawater irrigation using multivariate analyses. Austral. J. Crop Sci. 2016, 10, 1429–1441. [Google Scholar] [CrossRef]
- Dagustu, N.; Bayram, G.; Sincik, M.; Bayraktaroglu, M. The short breeding cycle protocol effective on diverse genotypes of sunflower (Helianthus annuus L.). Turk. J. Field Crops 2012, 17, 124–128. Available online: https://dergipark.org.tr/en/download/article-file/158675 (accessed on 18 January 2020).
- Jian-ying, Y.; Xu-rong, M.; Zhi-guo, H.; Chang-rong, Y.; Hui, J.; Feng-hua, Z.; Qin, L. Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang-Huai-Hai Plain, China. J Integr Agric. 2015, 14, 2065–2076. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. Land and Water—Databases and Software. Crop Water Information. 2019. (accessed on 18 January 2020). [Google Scholar]
- Scott, C.A.; Shah, T. Groundwater overdraft reduction through agricultural energy policy: insights from India and Mexico. Int. J. Wat. Res. Dev. 2004, 20, 149–164. [Google Scholar] [CrossRef]
- Ayers, R.D.; Westcot, D.W. Water quality for agriculture. FAO Irrigation and Drainage Paper 1994, 29. Reprinted 1989. Available online: http://www.fao.org/3/T0234E/T0234E00.htm#TOC (accessed on 14 November 2019).
- Epstein, E.; Norlyn, J.D.; Rush, D.W.; Kingsbury, R.W.; Kelley, D.B.; Cunningham, G.A.; Wrona, A.F. Saline culture of crops: A genetic approach. Science 1980, 210, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Shpigel, M.; Ben-Ezra, D.; Shauli, L.; Sagi, M.; Ventura, Y.; Samocha, T.; Lee, J.J. Constructed wetland with Salicornia as a biofilter for mariculture effluents. Aquacult 2013, 412–413, 52–63. [Google Scholar] [CrossRef]
- Watanabe, W.O.; Farnell, R.D. Experimental evaluation of the halophyte Salicornia virginica for biomitigation of dissolved nutrients in effluent from a recirculating aquaculture system for marine finfish. J. World Aquacult. Soc. 2018, 49, 735–754. [Google Scholar] [CrossRef]
- Ministry of the Environment and Natural Resources (Secretaría del Medio Ambiente y Recursos Naturales). Diario Oficial de la Federación. 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010. Protección ambiental - Especies nativas de México de flora y fauna silvestres. Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio. Lista de especies en riesgo, 30 de diciembre del 2010. Available online: https://www.gob.mx/cms/uploads/attachment/file/134778/35.-_NORMA_OFICIAL_MEXICANA_NOM-059-SEMARNAT-2010 (accessed on 18 January 2020).
- Alcocer, J.; Williams, W.D. Historical and recent changes in Lake Texcoco, a saline lake in Mexico. Int. J. Salt Lake Res. 1996, 5, 45–61. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; O’Leary, J.W. Irrigating Crops with Seawater. Scientific Amer. 1998, 279, 76–81. Available online: https://www.jstor.org/stable/10.2307/26070601 (accessed on 18 January 2020). [CrossRef]
- Don, N.C.; Minh-Hang, N.T.; Araki, H.; Yamanishi, H.; Koga, K. Salinization processes in an alluvial coastal lowland plain and effect of sea water level rise. Environm. Geol. 2006, 49, 743–751. [Google Scholar] [CrossRef]
- Oviedo, L.L. The Genesis II Project integrated sea water farm: Commercial agriculture and aquaculture. Master in City Planning Thesis, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA, USA, 1997; 110p. Available online: https://dspace.mit.edu/bitstream/handle/1721.1/69379/37776696-MIT.pdf?sequence=2 (accessed on 4 October 2019).
- Long, X.; Liu, L.; Shao, T.; Shao, H.; Liu, Z. Developing and sustainably utilize the coastal mudflat areas in China. Sci. Total Envir. 2016, 569–570, 1077–1086. [Google Scholar] [CrossRef]
- Custodio, M.; Villasante, S.; Cremades, J.; Calado, R.; Lillebø, A.I. Unravelling the potential of halophytes for marine integrated multi-trophic aquaculture (IMTA)— a perspective on performance, opportunities and challenges. Aquacult. Environ. Interact. 2017, 9, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Warshay, B.; Brown, J.J.; Sgouridis, S. Life cycle assessment of integrated seawater agriculture in the Arabian (Persian) Gulf as a potential food and aviation biofuel resource. Int. J. Life Cycle Ass. 2017, 22, 1017–1032. [Google Scholar] [CrossRef]
- Erftemeijer, P.L.A.; Lewis, R.R. Planting Mangroves on intertidal Mudflats: Habitat Restoration or Habitat Conversion? Proceedings, Ecotone VIII Seminar Enhancing Coastal Ecosystems Restoration for the 21st Century 2000, 23–28. [Google Scholar]
- Rozema, J.; Flowers, T. Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Martinez, J.A.; Mora, A.; Ramos-Leal, J.A.; Morán-Ramírez, J.; Arango-Galván, C.; Mahlknecht, J. Constraining a density-dependent flow model with the transient-electromagnetic method in a coastal aquifer in Mexico to assess seawater intrusion. Hydrogeol. J. 2019. [Google Scholar] [CrossRef] [Green Version]
- Cheeseman, J.M. The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol. 2015, 206, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Van Cuong, C.; Brown, S.; To, H.H.; Hockings, M. Using Melaleuca fences as soft coastal engineering for mangrove restoration in Kien Giang, Vietnam. Ecol. Engin. 2015, 81, 256–265. [Google Scholar] [CrossRef]
- Lewis, R.R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Wichelns, D.; Osterb, J.D. Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial. Agric. Wat. Manag 2006, 86, 114–127. [Google Scholar] [CrossRef]
Period | Aquacultured Species | Water Variables | ||
---|---|---|---|---|
Common Name | Scientific Name | pH | ppt (o/oo) | |
2015–2016 | White shrimp, Yellow snapper | Litopenaeus vannamei, Lutjanus argentiventris | 7.7 | 36.3 |
2016–2017 | White shrimp, Yellow snapper | Litopenaeus vannamei, Lutjanus peru | 7.9 | 37.0 |
2017–2018 | White shrimp | Litopenaeus vannamei | 7.8 | 39.5 |
Date | Naturally Flooded Plots | Seawater Irrigated Plots | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Mean | S Dev | CV | |
cm | |||||||||||
25 Jan–25 Feb | 5.2 | 5.8 | 5.5 | 7.7 | 8.5 | 8.1 | 8.2 | 5.2 | 6.8 | 1.5 | 21.7 |
5–25 March | 6.1 | 7.4 | 6.1 | 8.9 | 9.6 | 10.2 | 10.9 | 9.3 | 8.6 | 1.8 | 21.3 |
5–25 April | 9.1 | 9.0 | 7.9 | 11.9 | 12.3 | 13.0 | 14.6 | 16.8 | 12.6 | 3.0 | 24.1 |
5–25 May | 16.8 | 14.6 | 11.1 | 14.8 | 17.3 | 17.8 | 20.8 | 22.1 | 16.9 | 3.5 | 20.9 |
5–25 June | 20.2 | 20.5 | 14.5 | 17.4 | 19.4 | 20.8 | 23.7 | 27.4 | 20.5 | 3.9 | 18.9 |
5 July–15 Aug | 19.9 | 20.7 | 17.0 | 20.6 | 21.7 | 24.1 | 25.0 | 29.9 | 22.4 | 3.9 | 17.6 |
Crop | Main Use | Water Depth | Water Vol/ha | Water Vol 65% Space Distribution |
---|---|---|---|---|
cm | m3 | m3 | ||
Salicornia | Forage/vegetable | 240 | 24,000 | 15,600 |
Alfalfa | Forage | 120 | 12,000 | 7800 |
Corn | Grain/forage | 65 | 6500 | 4225 |
Wheat | Grain | 55 | 5500 | 3575 |
Irrigations Per Day | Water Depth Per Irrigation | Water Depth Per Day | Water Depth Per Cycle | Pump Efficiency | Electricity Consumption | Electric Cost Per Cycle/ha * | |||
---|---|---|---|---|---|---|---|---|---|
Per Day | Per Month | Per Cycle | |||||||
Number | mm | % | kW h | Mex Peso | $USD | ||||
1 | 20 | 20 | 2400 | 70 | 11.3 | 337.9 | 900.9 | 764.90 | 38.30 |
2 | 15 | 30 | 3600 | 70 | 16.9 | 506.8 | 1351.4 | 1147.40 | 57.40 |
3 | 15 | 45 | 5400 | 70 | 25.3 | 760.2 | 2027.1 | 1721.10 | 86.10 |
Issue | Expected Environmental Impact | Bio-Economical Significance | |
---|---|---|---|
1. Freshwater demand | Null; the use of seawater in agriculture will mitigate the intense demand for freshwater. | Highly positive | |
2. Biodiversity | It increases. Birdlife, entomofauna and soil microorganisms are increased by oasis effect. | Positive | |
3. Land-use change | Minimum if it is coupled to aquaculture, but as monoculture may cause soil damages. | Positive when properly planned | |
4. Soil/substrate quality in irrigated plot | It deteriorates gradually but stabilizes with proper management. | Positive if managed | |
5. Surrounding soil quality | It can be salinized and degraded in physical and chemical properties in a few years. | Negative; it needs to be monitored | |
6. Harvest—marketing | The markets are small and specialized; it is a food that has yet to be promoted. | At this time, it is negative; new markets are needed | |
7. Harvest—economic profitability | Because it has been subsidized for research, its real profitability is unknown. | At this time it is negative; detailed analysis is needed |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garza-Torres, R.; Troyo-Diéguez, E.; Nieto-Garibay, A.; Lucero-Vega, G.; Magallón-Barajas, F.J.; García-Galindo, E.; Fimbres-Acedo, Y.; Murillo-Amador, B. Environmental and Management Considerations for Adopting the Halophyte Salicornia bigelovii Torr. as a Sustainable Seawater-Irrigated Crop. Sustainability 2020, 12, 707. https://doi.org/10.3390/su12020707
Garza-Torres R, Troyo-Diéguez E, Nieto-Garibay A, Lucero-Vega G, Magallón-Barajas FJ, García-Galindo E, Fimbres-Acedo Y, Murillo-Amador B. Environmental and Management Considerations for Adopting the Halophyte Salicornia bigelovii Torr. as a Sustainable Seawater-Irrigated Crop. Sustainability. 2020; 12(2):707. https://doi.org/10.3390/su12020707
Chicago/Turabian StyleGarza-Torres, Rodolfo, Enrique Troyo-Diéguez, Alejandra Nieto-Garibay, Gregorio Lucero-Vega, Francisco Javier Magallón-Barajas, Emilio García-Galindo, Yenitze Fimbres-Acedo, and Bernardo Murillo-Amador. 2020. "Environmental and Management Considerations for Adopting the Halophyte Salicornia bigelovii Torr. as a Sustainable Seawater-Irrigated Crop." Sustainability 12, no. 2: 707. https://doi.org/10.3390/su12020707
APA StyleGarza-Torres, R., Troyo-Diéguez, E., Nieto-Garibay, A., Lucero-Vega, G., Magallón-Barajas, F. J., García-Galindo, E., Fimbres-Acedo, Y., & Murillo-Amador, B. (2020). Environmental and Management Considerations for Adopting the Halophyte Salicornia bigelovii Torr. as a Sustainable Seawater-Irrigated Crop. Sustainability, 12(2), 707. https://doi.org/10.3390/su12020707