Power Generation Optimization of the Combined Cycle Power-Plant System Comprising Turbo Expander Generator and Trigen in Conjunction with the Reinforcement Learning Technique
Abstract
:1. Introduction
2. Description of Power Generation System
2.1. Trigeneration
2.2. TEG
3. Energy Optimization Method
3.1. Reinforced Learning
3.2. Deep Q-Network Algorithm
- Choose an action a in the current state, s.
- Perform action and receive the reward R(s, a).
- Observe the new state S(s, a).
- Update: Q’(s, a) ← R(s, a) + γmax{Q’(S(s, a), a)}
Algorithm 1: Deep Q-Network Algorithm |
1. Initialize replay memory D to capacity N |
2. Initialize action–value function Q with θ |
3. Initialize target action–value function Q with θ− = θ |
4. For episode = 1 to num episodes do |
5. For t = 1 to T do |
6. With probability ε select a random action at, otherwise select at = maxaQ(s, a; θ) |
7. Execute action at in emulator and observe reward rt and state st |
8. Store transition (st, at, rt, st+1) in D |
9. Sample random minibatch of transitions (sj, aj, rj, sj+1) from D |
10. Perform a gradient descent step on Lj(θ) with respect to the network parameters θ |
11. End For |
12. End For |
3.3. Action, Reward, and Policy
4. Case Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Third Energy Master Plan. 2019. Available online: https://www.etrans.or.kr/ebook/05/files/assets/common/downloads/Third%20Energy%20Master%20Plan.pdf (accessed on 12 October 2020).
- Xie, D.; Chen, A.; Gu, C.; Tai, J. Time-domain modeling of grid-connected CHP for its interaction with the power grid. IEEE Tran. Power Syst. 2018, 33, 6430–6440. [Google Scholar] [CrossRef]
- KOGAS Research Institute, Localization of TEG technical plan (plan) service, Technical Report, October. 2015. Available online: http://www.kogas.or.kr/portal/downloadBbsFile.do?atchmnflNo=26421 (accessed on 17 August 2016).
- Kim, H.; You, H.; Choi, K.; Han, S. A study on interconnecting to the power grid of new energy using the natural gas pressure. J. Electr. Eng. Technol. 2020, 15, 307–314. [Google Scholar] [CrossRef]
- Hong, S.; Kim, K.; You, H.; Ha, J. Research articles: Turbo expander power generation using pressure drop at valve station in natural gas transportation pipeline. J. Korean Inst. Gas 2012, 16, 1–7. [Google Scholar]
- Lin, C.; Wu, W.; Wang, B.; Shahidehpour, M.; Zhang, B. Joint commitment of generation units and heat exchange stations for combined heat and power systems. IEEE Trans. Sustain. Energy 2020, 11, 1118–1127. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W.; Wang, J.; Zhang, B.; Zheng, T. Transmission-constrained unit commitment considering combined electricity and district heating networks. IEEE Trans. Sustain. Energy 2016, 7, 480–492. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, H.; Tan, C.; Chen, X.; Rajagopal, R.; Xia, Q.; Kang, C. Economic benefits of integrating solar-powered heat pumps into a CHP system. IEEE Trans. Sustain. Energy 2018, 9, 1702–1712. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, W.; Min, Y.; Dai, Y. Integrated power and heat dispatch considering available reserve of combined heat and power units. IEEE Trans. Sustain. Energy 2019, 10, 1300–1310. [Google Scholar] [CrossRef]
- Yao, S.; Gu, W.; Zhou, S.; Lu, S.; Wu, C.; Pan, G. Hybrid timescale dispatch hierarchy for combined heat and power system considering the thermal inertia of heat sector. IEEE Access 2018, 6, 63033–63044. [Google Scholar] [CrossRef]
- Liu, B.; Li, J.; Zhang, S.; Gao, M.; Ma, H.; Li, G.; Gu, C. Economic dispatch of combined heat and power energy systems using electric boiler to accommodate wind power. IEEE Access 2020, 8, 41288–41297. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, L.; Min, Y.; Chen, Q.; Hu, K.; Hao, J.; Xu, F. Dispatch model of combined heat and power plant considering heat transfer process. IEEE Trans. Sustain. Energy 2017, 8, 1225–1236. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, W.; Wu, L.; Mei, S.; Shahidehpour, M.; Li, Z. Decentralized operation of interdependent power distribution network and district heating network: A market-driven approach. IEEE Trans. Smart Grid. 2019, 10, 5374–5385. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, L.; Min, Y.; Mancarella, P.; Chen, Q.; Hao, J.; Xu, F. A general model for thermal energy storage in combined heat and power dispatch considering heat transfer constraints. IEEE Trans. Sustain. Energy 2018, 9, 1518–1528. [Google Scholar] [CrossRef]
- Lin, C.; Wu, W.; Zhang, B.; Sun, Y. Decentralized solution for combined heat and power dispatch through benders decomposition. IEEE Trans. Sustain. Energy 2017, 8, 1361–1372. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, N.; Botterud, A.; Kang, C. On an equivalent representation of the dynamics in district heating networks for combined electricity-heat operation. IEEE Trans. Power Syst. 2020, 35, 560–570. [Google Scholar] [CrossRef]
- Gao, Y.; Zeng, D.; Zhang, L.; Hu, Y.; Xie, Z. Research on modeling and deep peak regulation control of a combined heat and power unit. IEEE Access 2020, 8, 91546–91557. [Google Scholar] [CrossRef]
- Li, J.; Lin, J.; Song, Y.; Xing, X.; Fu, C. Operation optimization of power to hydrogen and heat (P2HH) in ADN coordinated with the district heating network. IEEE Trans. Sustain. Energy 2019, 10, 1672–1683. [Google Scholar] [CrossRef]
- Deng, B.; Teng, Y.; Hui, Q.; Zhang, T.; Qian, X. Real-coded quantum optimization-based bi-level dispatching strategy of integrated power and heat systems. IEEE Access 2020, 8, 47888–47899. [Google Scholar] [CrossRef]
- Ivanova, P.; Sauhats, A.; Linkevics, O. District heating technologies: Is it chance for CHP plants in variable and competitive operation conditions? IEEE Trans. Ind. Appl. 2019, 55, 35–42. [Google Scholar] [CrossRef]
- Rong, A.; Luh, P.B. A dynamic regrouping based dynamic programming approach for unit commitment of the transmission-constrained multi-site combined heat and power system. IEEE Trans. Power Syst. 2018, 33, 714–722. [Google Scholar] [CrossRef]
- Xue, Y.; Li, Z.; Lin, C.; Guo, Q.; Sun, H. Coordinated dispatch of integrated electric and district heating systems using heterogeneous decomposition. IEEE Trans. Sustain. Energy 2020, 11, 1495–1507. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, L.; Min, Y.; Mancarella, P.; Chen, Q.; Hao, J.; Xu, F. Integrated dispatch model for combined heat and power plant with phase-change thermal energy storage considering heat transfer process. IEEE Trans. Sustain. Energy 2018, 9, 1234–1243. [Google Scholar] [CrossRef]
- Zhou, Y.; Shahidehpour, M.; Wei, Z.; Li, Z.; Sun, G.; Chen, S. Distributionally robust co-optimization of energy and reserve for combined distribution networks of power and district heating. IEEE Trans. Power Syst. 2020, 35, 2388–2398. [Google Scholar] [CrossRef]
- Virasjoki, V.; Siddiqui, A.S.; Zakeri, B.; Salo, A. Market power with combined heat and power production in the Nordic energy system. IEEE Trans. Power Syst. 2018, 33, 5263–5275. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Li, Z.; Zheng, J.H.; Wu, Q.H.; Zhang, H. Robust scheduling of integrated electricity and heating system hedging heating network uncertainties. IEEE Trans. Smart Grid. 2020, 11, 1543–1555. [Google Scholar] [CrossRef]
- Teng, Y.; Sun, P.; Leng, O.; Chen, Z.; Zhou, G. Optimal operation strategy for combined heat and power system based on solid electric thermal storage boiler and thermal inertia. IEEE Access 2019, 7, 180761–180770. [Google Scholar] [CrossRef]
- Rigo-Mariani, R.; Zhang, C.; Romagnoli, A.; Kraft, M.; Ling, K.V.; Maciejowski, J. A combined cycle gas turbine model for heat and power dispatch subject to grid constraints. IEEE Trans. Sustain. Energy 2020, 11, 448–456. [Google Scholar] [CrossRef]
- Tan, B.; Chen, H. Stochastic multi-objective optimized dispatch of combined chilling, heating, and power microgrids based on hybrid evolutionary optimization algorithm. IEEE Access 2019, 7, 176218–176232. [Google Scholar] [CrossRef]
- Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B.; Shahidehpour, M. Robust short-term scheduling of integrated heat and power microgrids. IEEE Syst. J. 2019, 13, 3295–3303. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.; Wang, L. Hybrid energy sharing for multiple microgrids in an integrated heat–electricity energy system. IEEE Trans. Sustain. Energy 2019, 10, 1139–1151. [Google Scholar] [CrossRef]
- Koch, K.; Alt, B.; Gaderer, M. Dynamic modeling of a decarbonized district heating system with CHP plants in electricity-based mode of operation. Energies 2020, 13, 4134. [Google Scholar] [CrossRef]
- Olabi, A.; Wilberforce, T.; Sayed, E.T.; Elsaid, K.; Abdelkareem, M.A. Prospects of fuel cell combined heat and power systems. Energies 2020, 13, 4104. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Libertini, L.; Vicidomini, M. Dynamic simulation and thermoeconomic analysis of a trigeneration system in a hospital application. Energies 2020, 13, 3558. [Google Scholar] [CrossRef]
- Li, W.; Li, T.; Wang, H.; Dong, J.; Li, Y.; Cui, D.; Ge, W.; Yang, J.; Onyeka Okoye, M. Optimal dispatch model considering environmental cost based on combined heat and power with thermal energy storage and demand response. Energies 2019, 12, 817. [Google Scholar] [CrossRef] [Green Version]
- Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intel. Res. 1996, 4, 237–285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yao, R.; Huang, S.; Chen, Y.; Mei, S.; Sun, K. An online search method for representative risky fault chains based on reinforcement learning and knowledge transfer. IEEE Trans. Power Syst. 2020, 35, 1856–1867. [Google Scholar] [CrossRef]
- Nguyen, K.K.; Duong, T.Q.; Vien, N.A.; Le-Khac, N.; Nguyen, M. Non-cooperative energy efficient power allocation game in D2D communication: A multi-agent deep reinforcement learning approach. IEEE Access 2019, 7, 100480–100490. [Google Scholar] [CrossRef]
- Jang, B.; Kim, M.; Harerimana, G.; Kim, J.W. Q-Learning algorithms: A comprehensive classification and applications. IEEE Access 2019, 7, 133653–133667. [Google Scholar] [CrossRef]
- Ferreira, L.R.; Aoki, A.R.; Lambert-Torres, G. A reinforcement learning approach to solve service restoration and load management simultaneously for distribution networks. IEEE Access 2019, 7, 145978–145987. [Google Scholar] [CrossRef]
- Gan, X.; Guo, H.; Li, Z. A new multi-agent reinforcement learning method based on evolving dynamic correlation matrix. IEEE Access 2019, 7, 162127–162138. [Google Scholar] [CrossRef]
- Park, Y.J.; Lee, Y.J.; Kim, S.B. Cooperative multi-agent reinforcement learning with approximate model learning. IEEE Access 2020, 8, 125389–125400. [Google Scholar] [CrossRef]
- Silva, F.L.D.; Nishida, C.E.H.; Roijers, D.M.; Costa, A.H.R. Coordination of electric vehicle charging through multiagent reinforcement learning. IEEE Trans. Smart Grid. 2020, 11, 2347–2356. [Google Scholar] [CrossRef]
- Wang, W.; Yu, N.; Gao, Y.; Shi, J. Safe off-policy deep reinforcement learning algorithm for Volt-VAR control in power distribution systems. IEEE Trans. Smart Grid. 2020, 11, 3008–3018. [Google Scholar] [CrossRef]
- Xu, H.; Domínguez-García, A.D.; Sauer, P.W. Optimal tap setting of voltage regulation transformers using batch reinforcement learning. IEEE Trans. Power Syst. 2020, 35, 1990–2001. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Jia, Y.; Xu, Y.; Xu, Z.; Chai, S.; Lai, C.S. A multi-agent reinforcement learning-based data-driven method for home energy management. IEEE Trans. Smart Grid. 2020, 11, 3201–3211. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Xu, Y. Data-driven load frequency control for stochastic power systems: A deep reinforcement learning method with continuous action search. IEEE Trans. Power Syst. 2019, 34, 1653–1656. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, Y. Real-time optimal power flow: A Lagrangian based deep reinforcement learning approach. IEEE Trans. Power Syst. 2020, 35, 3270–3273. [Google Scholar] [CrossRef]
- Bregar, K.; Mohorčič, M. Improving indoor localization using convolutional neural networks on computationally restricted devices. IEEE Access 2018, 6, 17429–17441. [Google Scholar] [CrossRef]
Item | Type | Unit | Spec |
---|---|---|---|
Performance | Chilling Capacity | kcal/h | 48,160 |
kW | 56 | ||
Heating Capacity | kcal/h | 57,620 | |
kW | 67 | ||
Power Output | kW | 30 | |
Power Consumption | Chilling | kW | 1.1 |
Heating | kW | 1.02 | |
Operating Current | Chilling | A | 6.1 |
Heating | A | 5.8 | |
Fuel Consumption | Gas Type | N-13 | |
Chilling | kW | 69 | |
Heating | kW | 69 | |
Operating Temperature | Chilling | −10–50 °C | |
Heating | −20–20 °C |
Label | TEG | TEG + Trigen | TEG + Trigen with RL |
---|---|---|---|
ηout (%) | 79% | 85% | 88% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.T.; Song, G.S.; Han, S. Power Generation Optimization of the Combined Cycle Power-Plant System Comprising Turbo Expander Generator and Trigen in Conjunction with the Reinforcement Learning Technique. Sustainability 2020, 12, 8379. https://doi.org/10.3390/su12208379
Kim HT, Song GS, Han S. Power Generation Optimization of the Combined Cycle Power-Plant System Comprising Turbo Expander Generator and Trigen in Conjunction with the Reinforcement Learning Technique. Sustainability. 2020; 12(20):8379. https://doi.org/10.3390/su12208379
Chicago/Turabian StyleKim, Hyoung Tae, Gen Soo Song, and Sangwook Han. 2020. "Power Generation Optimization of the Combined Cycle Power-Plant System Comprising Turbo Expander Generator and Trigen in Conjunction with the Reinforcement Learning Technique" Sustainability 12, no. 20: 8379. https://doi.org/10.3390/su12208379
APA StyleKim, H. T., Song, G. S., & Han, S. (2020). Power Generation Optimization of the Combined Cycle Power-Plant System Comprising Turbo Expander Generator and Trigen in Conjunction with the Reinforcement Learning Technique. Sustainability, 12(20), 8379. https://doi.org/10.3390/su12208379