Spatio-Temporal Variations of CO2 Emission from Energy Consumption in the Yangtze River Delta Region of China and Its Relationship with Nighttime Land Surface Temperature
Abstract
:1. Introduction
2. Datasets
2.1. Study Area
2.2. Data Sources and Processing
3. Methods
3.1. Spatialization of CO2 Emissions
3.2. Trend Analysis
3.3. Spatial Automocorrelation Analysis
4. Results
4.1. Accuracy Evaluation of Simulated CO2 Emissions
4.2. Temporal Characteristics
4.3. Spatial Distribution Characteristics
4.4. Spatial Trend Characteristics
5. Relationship between CO2 Emissions and Nighttime Land Surface Temperature
5.1. Comparative Analysis of Temporal and Spatial Changes
5.2. Scale Analysis within the Year
5.3. Interannual Scale Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Li, Y.; Wei, Y.H. The spatial-temporal hierarchy of regional inequality of China. Appl. Geogr. 2010, 30, 303–316. [Google Scholar] [CrossRef]
- You, J. China’s energy consumption and sustainable development: Comparative evidence from GDP and genuine savings. Renew. Sustain. Energy Rev. 2011, 15, 2984–2989. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Li, Y.; Cheng, X. An Investigation on Spatial Changing Pattern of CO2 Emission in China. Resour. Sci. 2010, 32, 211–217. [Google Scholar]
- Cheng, L.; Jian, W.; Jia, Y.; Ming, L. Research on Regional Carbon Emissions in China. Acta Geosci. Sin. 2010, 31, 727–732. [Google Scholar]
- Su, Y.; Chen, X.; Li, Y. China’s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines. Renew. Sustain. Energy Rev. 2014, 35, 231–243. [Google Scholar] [CrossRef]
- Fan, M.; Yue, T.; Chen, C.; Sun, X. Spatial Change Trends of Temperature and Precipitation in China. J. Geo Inf. Sci. 2011, 13, 526–533. [Google Scholar] [CrossRef]
- Hafner, J. Urban heat island modeling in conjunction with satellite-derived surface/soil parameters. J. Appl. Meteorol. 1999, 38, 448–465. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, S.; Wang, S. Monitoring evolving urban cluster systems using DMSP/OLS nighttime light data: A case study of the Yangtze River Delta region, China. J. Appl. Remote Sens. 2017, 11, 046029. [Google Scholar] [CrossRef]
- Chen, L.; Xun, L.; Yao, Y.; Cheng, D. Effects of population agglomeration on urban economic growth in China. Acta Geogr. Sin. 2018, 73, 1107–1120. [Google Scholar]
- Liu, X.; Ning, X.; Wang, H.; Wang, C.; Zhang, H.; Meng, J. A Rapid and Automated Urban Boundary Extraction Method Based on Nighttime Light Data in China. Remote Sens. 2019, 11, 1126. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Yang, Q.; Fang, G.; Yu, B.; Chen, Z.; Yang, C.; Wu, J. Evaluating spatiotemporal patterns of urban electricity consumption within different spatial boundaries: A case study of Chongqing, China. Energy 2019, 167, 641–653. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Ye, Y.; Wu, Q.; Kuang, Y. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries. Acta Geogr. Sin. 2013, 68, 1513–1526. [Google Scholar]
- Wang, S.; Liu, X. China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving forces. Appl. Energy 2017, 200, 204–214. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Zhou, Y.; Chen, Y.; Yang, C.; Chen, Z.; Wu, J. Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels. Appl. Energy 2019, 233, 170–181. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, Z.; Ye, X.; Wei, Y.H. Spatiotemporal dynamics of carbon intensity from energy consumption in China. J. Geogr. Sci. 2014, 24, 631–650. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Leedal, D.; Taylor, C.; Young, P. Stabilizing global mean surface temperature: A feedback control perspective. Environ. Model. Softw. 2009, 24, 665–674. [Google Scholar] [CrossRef]
- Ayeni, B.J.; Pilat, R. Crude Oil Reserve Estimation: An Application of the Autoregressive Integrated Moving Average Model. J. Pet. Sci. Eng. 1992, 8, 13–28. [Google Scholar] [CrossRef]
- Jones, G.; Christidis, N.; Stott, P. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes. Atmos. Chem. Phys. 2010, 10, 799–816. [Google Scholar] [CrossRef]
- Bai, W.; Yang, G.; Zhang, X. Research on multiple statistical causal about carbon emission increases with temperature rise. J. Guizhou Coll. Financ. Econ. 2013, 5, 46–51. [Google Scholar]
- Das, D.; Srinivasan, R.; Sharfuddin, A. Fossil fuel consumaption, carbon emissions and temperature variation in India. Energy Environ. 2011, 22, 695–709. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, M.; Sun, W.; Li, W. Expansion Analysis of Yangtze River Delta Urban Agglomeration Using DMSP/OLS Nighttime Light Imagery for 1993 to 2012. ISPRS Int. J. Geo Inf. 2018, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Xie, Z.; Zeng, Y.; Shi, Y.; Wu, J. Impact of urban expansion on regional temperature change in the Yangtze River Delta. J. Geogr. Sci. 2007, 4, 387–398. [Google Scholar] [CrossRef]
- Gu, C.; Hu, L.; Zhang, X.; Wang, X. Climate change and urbanization in the Yangtze River Delta. Habitat Int. 2011, 35, 544–552. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.; Li, P.; Li, F. Analysis on the driving factors of urban expansion policy based on DMSP/OLS remote Sensing image. Acta Geod. Cartogr. Sin. 2018, 47, 42–49. [Google Scholar]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.; Ghosh, T.; Pack, D.; Erwin, E.; Zhizhin, M. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. Intercalibration of DMSP-OLS night-time light data by the invariant region method. Int. J. Remote Sens. 2013, 34, 7356–7368. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The new VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Shi, F.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ji, G.; Yue, Y.; Lai, Z.; Chen, Y.; Yang, D.; Yang, X.; Wang, Z. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets. Appl. Energy 2019, 235, 612–624. [Google Scholar] [CrossRef]
- Stow, D.; Petersen, A.; Hope, A.; Engstrom, R. Greenness trends of Arctic tundra Vegetation in the 1990s: Comparison of two NDVI datasets from NOAA AVHRR systems. Int. J. Remote Sens. 2007, 28, 4807–4822. [Google Scholar] [CrossRef]
- Holben, N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Meng, X.; Han, J.; Huang, C. An Improved Vegetation Adjusted Nighttime Light Urban Index and Its Application in Quantifying Spatiotemporal Dynamics of Carbon Emissions in China. Remote Sens. 2017, 9, 829. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Feng, X.; Fan, L.; Guan, Z.; Feng, D.; Gao, Y. Spatial analysis of carbon emissions from region energy consumption based on night light data. Sci. Surv. Mapp. 2017, 42, 140–146. [Google Scholar]
- Yang, Q.; Wang, T.; Chen, H.; Wang, Y. Characteristics of vegetation cover change in Xilin Gol League based on MODIS EVI data. Trans. Chin. Soc. Agric. Eng. 2015, 31, 191–198. [Google Scholar]
- Zhu, W.; Jia, S.; Lu, A.; Yan, T. Analyzing and modeling the coverage of vegetation in the Qaidam Basin of China: The role of spatial autocorrelation. J. Geogr. Sci. 2012, 22, 346–358. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Shi, Y.; Zhu, Q.; Li, L.; Zhang, Z. Evolution of the spatiotemporal pattern of PM2.5 concentrations in China–A case study from the Beijing-Tianjin-Hebei region. Atmos. Environ. 2018, 183, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Li, F.; Zhou, C.H. Spatial autocorrelation analysis on regional economic disparity of northeast economic region in China. Chin. J. Popul. Resour. Environ. 2009, 7, 27–31. [Google Scholar]
- Zhao, J.; Zhu, Y.; Duan, G.; Yang, K. Spatial and temporal dynamics of vegetation in Xishuangbanna from 2001 to 2015 based on MOD13Q1 data. Chin. J. Ecol. 2019, 38, 1083–1092. [Google Scholar]
Province (City) | Zhejiang | Jiangsu | Anhui | Shanghai |
---|---|---|---|---|
Coefficient (k) | 0.0189 | 0.0215 | 0.0162 | 0.0475 |
Coefficient of determination (R2) | 0.9533 | 0.9878 | 0.9775 | 0.8704 |
Year | Zhejiang | Jiangsu | Anhui | Shanghai | Yangtze River Delta |
---|---|---|---|---|---|
2003 | 8.22 | 4.58 | 3.43 | 13.22 | 7.36 |
2004 | 6.47 | 7.75 | 10.91 | 5.18 | 7.58 |
2005 | −0.12 | 5.95 | 10.03 | −2.59 | 3.32 |
2006 | −5.31 | 1.04 | 8.16 | −5.57 | −0.42 |
2007 | −8.89 | −4.75 | 3.79 | −9.81 | −4.92 |
2008 | −7.78 | −3.52 | −0.74 | −8.36 | −5.10 |
2009 | −5.78 | −3.79 | 3.83 | −8.81 | −3.64 |
2010 | −1.11 | −3.31 | −1.29 | −10.99 | −4.18 |
2011 | −1.02 | −3.86 | 0.32 | −10.20 | −3.69 |
2012 | −1.25 | −3.31 | −5.20 | −10.14 | −4.98 |
2013 | −0.65 | −0.56 | −4.51 | −12.16 | −4.47 |
2014 | 0.96 | 1.63 | −2.52 | −8.49 | −2.11 |
2015 | 1.07 | 1.48 | −2.40 | −5.64 | −1.37 |
2016 | 3.86 | 0.38 | −1.10 | −4.01 | −0.22 |
2017 | 8.18 | 4.01 | 4.44 | 0.79 | 4.36 |
Change Types | Area (km2) | Area Ratio (%) | Cumulative Percentage (%) |
---|---|---|---|
Basically unchanged | 240,519 | 70.14 | 70.14 |
weakly significant growth | 53,700 | 15.66 | 85.80 |
Significant growth | 30,108 | 8.78 | 94.58 |
Relatively significant growth | 16,597 | 4.84 | 99.43 |
Extremely significant growth | 1989 | 0.58 | 100 |
CO2 Emission Grade | Area with Low Emission | Area with Medium Emission | Area with Higher Emission | Area with High Emission |
---|---|---|---|---|
Nighttime Land Surface Temperature (°C) | 25.84 | 27.32 | 28.09 | 28.80 |
Area (km2) | 71,909 | 218,367 | 26,267 | 26,370 |
Percentage (%) | 20.97 | 63.68 | 7.66 | 7.69 |
Year | SCE and NLSTmax | SCE and NLSTmin | SCE and NLSTmean | Year | SCE and NLSTmax | SCE and NLSTmin | SCE and NLSTmean |
---|---|---|---|---|---|---|---|
2000 | 0.376 ** | 0.284 ** | 0.404 ** | 2009 | 0.085 * | 0.244 ** | 0.282 ** |
2001 | 0.327 ** | 0.284 ** | 0.389 ** | 2010 | 0.275 ** | 0.312 ** | 0.410 ** |
2002 | 0.148 ** | 0.200 ** | 0.236 ** | 2011 | 0.438 ** | 0.416 ** | 0.526 ** |
2003 | 0.232 ** | 0.305 ** | 0.416 ** | 2012 | 0.266 ** | 0.266 ** | 0.334 ** |
2004 | 0.160 ** | 0.262 ** | 0.339 ** | 2013 | 0.387 ** | 0.431 ** | 0.574 ** |
2005 | 0.436 ** | 0.255 ** | 0.374 ** | 2014 | 0.362 ** | 0.277 ** | 0.395 ** |
2006 | 0.303 ** | 0.252 ** | 0.335 ** | 2015 | 0.444 ** | 0.506 ** | 0.590 ** |
2007 | 0.369 ** | 0.341 ** | 0.410 ** | 2016 | 0.268 ** | 0.337 ** | 0.394 ** |
2008 | 0.407 ** | 0.454 ** | 0.577 ** | 2017 | 0.372 ** | 0.407 ** | 0.480 ** |
Correlation | p Value | Area (km2) | Percentage (%) | Cumulative Percentage (%) |
---|---|---|---|---|
ESPC | p < 0.01 | 11,248 | 3.28 | 3.28 |
VSPC | p < 0.05 | 30,176 | 8.80 | 12.08 |
RSPC | p < 0.10 | 31,034 | 9.05 | 21.13 |
WSPC | p > 0.10 | 232,693 | 67.85 | 88.98 |
WSNC | p > 0.10 | 37,542 | 10.95 | 99.93 |
RSNC | p < 0.10 | 137 | 0.04 | 99.97 |
VSNC | p < 0.05 | 69 | 0.02 | 99.99 |
ESNC | p < 0.01 | 14 | 0.00 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhang, S.; Yang, K.; Zhu, Y.; Ma, Y. Spatio-Temporal Variations of CO2 Emission from Energy Consumption in the Yangtze River Delta Region of China and Its Relationship with Nighttime Land Surface Temperature. Sustainability 2020, 12, 8388. https://doi.org/10.3390/su12208388
Zhao J, Zhang S, Yang K, Zhu Y, Ma Y. Spatio-Temporal Variations of CO2 Emission from Energy Consumption in the Yangtze River Delta Region of China and Its Relationship with Nighttime Land Surface Temperature. Sustainability. 2020; 12(20):8388. https://doi.org/10.3390/su12208388
Chicago/Turabian StyleZhao, Juchao, Shaohua Zhang, Kun Yang, Yanhui Zhu, and Yuling Ma. 2020. "Spatio-Temporal Variations of CO2 Emission from Energy Consumption in the Yangtze River Delta Region of China and Its Relationship with Nighttime Land Surface Temperature" Sustainability 12, no. 20: 8388. https://doi.org/10.3390/su12208388
APA StyleZhao, J., Zhang, S., Yang, K., Zhu, Y., & Ma, Y. (2020). Spatio-Temporal Variations of CO2 Emission from Energy Consumption in the Yangtze River Delta Region of China and Its Relationship with Nighttime Land Surface Temperature. Sustainability, 12(20), 8388. https://doi.org/10.3390/su12208388