Prediction of Knowledge Management for Success of Franchise Hospitality in a Post-Pandemic Economy
Abstract
:1. Introduction
2. The Review of the Professional and Academic Literature
2.1. Headquarters System
2.2. Human Resources
2.3. Corporate Imagination
2.4. Location Advantage
2.5. Innovation and Transformation
2.6. Marketing Strategy
2.7. Crisis Management
3. Research Methodology
- (1)
- What definition do you use to describe knowledge management of routine operation as franchise hospitality stakeholders?
- (2)
- What processes do you use to implement KM strategies for market performance and competitiveness?
- (3)
- What specific technology do you use to identify the influential criteria within the COVID-19 outbreak?
- (4)
- What additional comments or insights would you suggest discussing?
- (5)
- Moreover, seven major influential criteria were designed into a set of pairwise comparisons, to collect the experts’ preference opinions.
3.1. Fuzzy Preference Relations
3.2. Consistency of Fuzzy Preference Relations
3.3. Additive Transitivity Consistency of the Fuzzy Preference Relations
4. Framework to Evaluate the Influence of Criteria to Implement Knowledge Management (KM)
4.1. Evaluated Influential Criteria and Framework of the Evaluation Model
4.2. The Analytic Hierarchy Process for Evaluating the Influence of Criteria
4.2.1. Linguistic Variables
4.2.2. Consistent Fuzzy Preference Relations for Weighting the Influential Criteria
- (1)
- This study established pairwise comparison matrices for n criteria (, i = 1, 2, …, n) in the dimension of a hierarchical system. Evaluators (, k = 1, 2, …, m) provided the essential pairwise criteria for a set of n − 1 preference values as shown below.
- (2)
- The preference value was transformed into utilizing an interval scale before deriving the preserved on the basis of the reciprocal transitivity property, as shown below.
- (3)
- The evaluators’ opinions were pulled to acquire the aggregated priority weights of influential criteria. In addition, was used to indicate transformed the fuzzy preference value of evaluator k for evaluating the criteria i and j. The notation of the average integrated values of m evaluators is described below [72].
- (4)
- Normalized fuzzy preference relation matrix was aggregated to refer to the normalized fuzzy preference values of each criterion as follows:
- (5)
- The variable represents the average priority weight of influential criteria, whereas n denotes the number of influential criteria; thus, the priority of each criterion can be defined as
4.2.3. Defining the Priority Ratings for Possibility of Outcome Complying with Each Criterion
- (1)
- For each influential criterion, the evaluators selected the two possible outcomes for a set of t − 1 preference data as shown below.
- (2)
- Moreover, the preference value was transformed in the range into using an interval scale [0, 1], whereby the preservation of can be acquired utilizing the reciprocal transitivity property as follows:
- (3)
- The suggestions of evaluators were pulled to rate the synthetically transformed possible outcome. Utilizing represents the transformed fuzzy preference value of evaluator k for evaluating possible outcomes Au and Av in terms of influential criterion i. The average value integrated the assessment values of m evaluators as follows:
- (4)
- For the synthetically normalized fuzzy preference rating of possible outcomes, was used to represent the normalized rating of possible outcomes Au and Av in terms of influential criterion i.
- (5)
- As a consequence, representing the average rating of possible outcome Au with respect to influential criterion i was supplied. The appetence rating of each possible outcome could be acquired as follows
4.3. Acquiring the Priority Weight for Prediction
5. Empirical Case for Predicting Possibility of Success of KM Implementation
5.1. Weight Calculation of the Influential Criteria
- (1)
- (2)
- (3)
- Then, the linguistic terms were transferred into parallelism scores (see Table 6).
- (4)
- The elements were transformed by applying Equation (2) (listed in Table 7) into an interval [0, 1], as shown below.
- (5)
- The calculated procedures illustrated the fuzzy preference relations matrices of another 14 evaluators; moreover, the aggregated pairwise comparison matrix of the 15 evaluators was acquired by applying Equation (16), as shown in Table 10.
- (6)
- Equation (17) was applied to normalize the aggregated pairwise comparison matrix, where an example is shown below using .
5.2. The Influential Criteria Calculated to Acquire Weights for Possibilities of Outcomes
- (1)
- To assess the real situation of franchising hospitality within the pandemic period, the 15 evaluators were interviewed to evaluate which influential criterion can most easily be implemented to become successful. Table 12 lists the selections made by the 15 evaluators in terms of the preference intensity for the probability of success or failure compliant with each influential criterion.
- (2)
- (3)
- The reciprocal additive transitivity property was then proposed, leading to the opposite comparison for failure shown in Table 14.
- (4)
- The rating of possible outcomes could be synthetically acquired by applying Equation (21), as shown in Table 15. Equations (22) and (23) were then applied to synthesize and normalize the fuzzy preference rating of possible outcomes with respect to the seven influential criteria. The normalized values and priority weights are listed in Table 14. The calculations using and as examples are shown below.
5.3. Determining the Prediction Values of Priority Weight
6. Discussion
6.1. Factors
6.2. Method
7. Conclusions
8. Limitations and Future Research Suggestions
Author Contributions
Funding
Conflicts of Interest
References
- International Franchise Association. Available online: https://community.franchise.org/about-ifa (accessed on 15 September 2020).
- Bretas, V.P.G.; Alon, I. The impact of COVID-19 on franchising in emerging markets: An example from Brazil. Glob. Bus. Organ. Excell. 2020, 39, 6–16. [Google Scholar] [CrossRef]
- Pellegrini, M.; Ciampi, F.; Orland, B. The relationship between knowledge management and leadership: Mapping the field and providing future research avenues. J. Knowl. Manag. 2020, 24, 1–48. [Google Scholar] [CrossRef]
- Crick, J.; Crick, D. Coopetition and COVID-19: Collaborative business-to-business marketing strategies in a pandemic crisis. Ind. Mark. Manag. 2020, 88, 206–213. [Google Scholar] [CrossRef]
- Tsionas, M. COVID-19 and gradual adjustment in the tourism, hospitality, and related industries. Tour. Econ. 2020. [Google Scholar] [CrossRef]
- Wang, T.C.; Hsieh, H.C. An Analysis of Diversity Management for a Diverse Workforce in the Hospitality and Tourism Industry. Adv. Manag. Sci. 2016, 5, 32–36. [Google Scholar]
- Hadi, S.; Supard, S. Revitalization Strategy for Small and Medium Enterprises after Corona Virus Disease Pandemic (COVID-19) in Yogyakarta. J. Xi’an Univ. Archit. Technol. 2020, 4, 4068–4076. [Google Scholar]
- Fong, L.; Law, R.; Ye, B. Outlook of tourism recovery amid an epidemic: Importance of outbreak control by the government. Ann. Tour. Res. 2020, in press. [Google Scholar] [CrossRef]
- Bargeman, B.; Richards, G. A new approach to understanding tourism practices. Ann. Tour. Res. 2020, 84, 102988. [Google Scholar] [CrossRef]
- Karim, W.; Haque, A.; Anis, Z.; Ulfy, M. The Movement Control Order (MCO) for COVID-19 Crisis and its Impact on Tourism and Hospitality Sector in Malaysia. Int. Tour. Hosp. J. 2020, 3, 1–7. [Google Scholar]
- Noble, J. Competition law in times of crisis-tackling the COVID-19 challenge: A producer perspective. J. Antitrust Enforc. 2020, 8, 293–295. [Google Scholar] [CrossRef]
- Wang, T.C.; Chang, T.H. Application of consistent fuzzy preference relations in predicting the success of knowledge management implementation. Eur. J. Oper. Res. 2007, 182, 1313–1329. [Google Scholar] [CrossRef]
- Li, D.; Guo, H.; Wang, X.; Liu, Z.; Li, C.; Wang, W. Analyzing the Effectiveness of Policy Instruments on New Energy Vehicle Industry using Consistent Fuzzy Preference Relations. Int. Rev. Spat. Plan. Sustain. Dev. 2016, 4, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Aliperti, G.; Cruz, A. Promoting built-for-disaster-purpose mobile applications: An interdisciplinary literature review to increase their penetration rate among tourists. J. Hosp. Tour. Manag. 2020, 44, 193–210. [Google Scholar] [CrossRef]
- Thorgren, S.; Williams, T. Staying alive during an unfolding crisis: How SMEs ward off impending disaster. J. Bus. Ventur. Insights 2020, 14, e00187. [Google Scholar] [CrossRef]
- Tussyadiah, I. A review of research into automation in tourism: Launching the Ann. Tour. Res. Curated Collection on Artificial Intelligence and Robotics in Tourism. Ann. Tour. Res. 2020, 81, 102883. [Google Scholar] [CrossRef]
- Aldaco, R.; Heohn, D.; Laso, J.; Margallo, M.; Ruin-Salmon, J.; Cristobal, J. Food waste management during the COVID-19 outbreak: A holistic climate, economic and nutritional approach. Sci. Total Environ. 2020, 742, 140524. [Google Scholar] [CrossRef]
- Dhir, A.; Talwar, S.; Kaur, P.; Malibari, A. Food waste in hospitality and food services: A systematic literature review and framework development approach. J. Clean. Prod. 2020, 270, 122861. [Google Scholar] [CrossRef]
- Dolnicar, S.; Juvan, E.; Grün, B. Reducing the plate waste of families at hotel buffets—A quasi-experimental field study. Tour. Manag. 2020, 80, 104103. [Google Scholar] [CrossRef]
- Giones, F.; Brem, A.; Pollack, J.; Michaelis, T.; Klyver, K.; Birnckmann, J. Revising entrepreneurial action in response to exogenous shocks: Considering the COVID-19 pandemic. J. Bus. Ventur. Insights 2020, 14, e00186. [Google Scholar] [CrossRef]
- Shaw, R.; Kim, Y.K.; Hua, J. Governance, technology and citizen behavior in pandemic: Lessons fromCOVID-19 in Ease Asia. Prog. Disaster Sci. 2020, 6, 100090. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J. Effect of COVID-19 on Preference for Private Dining Facilities in Restaurants. J. Hosp. Tour. Manag. 2020, 45, 67–70. [Google Scholar] [CrossRef]
- Chou, S.F.; Horng, J.S.; Liu, C.H.; Huang, Y.C.; Zhang, S.N. The Critical criteria for innovation entrepreneurship of restaurants: Considering the interrelationship effect of human capital and competitive strategy a case study in Taiwan. J. Hosp. Tour. Manag. 2020, 42, 222–234. [Google Scholar] [CrossRef]
- Karabulut, G.; Bilginb, M.H.; Demir, E.; Doker, A.C. How pandemics affect tourism: International evidence. Ann. Tour. Res. 2020, 84, 3579530. [Google Scholar] [CrossRef]
- Kloutsiniotis, P.; Mihail, D. The effects of high performance work systems in employees’ service-oriented OCB. Int. J. Hosp. Manag. 2020, 90, 102610. [Google Scholar] [CrossRef] [PubMed]
- Berhanu, K.; Raj, S. The trustworthiness of travel and tourism information sources of social media: Perspectives of international tourists visiting Ethiopia. Heliyon 2020, 6, e03439. [Google Scholar] [CrossRef] [PubMed]
- Brookes, M.; Altinay, L. Knowledge Transfer and isomorphism in Franchise Network s. Int. J. Hosp. Manag. 2017, 62, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Cumberland, D.; Githens, R. Tacit Knowledge Barriers within Franchise Organizations. In Proceedings of the AHRD 2010 Americas Conference, Louisville, KY, USA, 24–28 February 2020; pp. 1278–1302. [Google Scholar]
- Khan, N.; Khan, A.; Soomro, M.; Khan, S. Transformational leadership and civic virtue behavior: Valuing act of thriving and emotional exhaustion in the hotel industry. Asia Pac. Manag. Rev. 2020, in press. [Google Scholar] [CrossRef]
- Achary, V.; Borchert, L.; Jager, M.; Steffen, S. Kicking the can down the road: Government interventions in the European banking sector. In Proceedings of the Financial Crisis Ten Years Afterwards Conference, Mannheim, Germany, 2–3 August 2018; pp. 1–62. [Google Scholar]
- Aladag, O.; Köseoglu, M.; Kingb, B.; Mehraliyev, F. Strategy implementation research in hospitality and tourism: Current status and future potential. Int. J. Hosp. Manag. 2020, 88, 102556. [Google Scholar] [CrossRef]
- Sigala, M. Tourism and COVID-19: Impacts and implications for advancing and resetting industry and research. J. Bus. Res. 2020, 117, 312–321. [Google Scholar] [CrossRef]
- Cetin, G.; Demirciftci, T.; Bilgihan, A. Meeting Revenue Management Challenges: Knowledge, Skills and abilities. Int. J. Hosp. Manag. 2016, 57, 132–142. [Google Scholar] [CrossRef]
- Willis Towers Wastson. Global Crisis: Human Capital Road Map; Willis Towers Wastson: London, UK, 2020. [Google Scholar]
- Wohlfarth, K.; Worrell, E.; Eichhammer, W. Energy efficiency and demand response–two sides of the same coin? Energy Policy 2020, 137, 111070. [Google Scholar] [CrossRef]
- Wu, C.W. Antecedents of franchise strategy and performance. J. Bus. Res. 2020, 68, 1581–1588. [Google Scholar] [CrossRef]
- Köseoglua, M.; Altinb, M.; Chan, E.; Aladag, O. What are the key success factors for strategy formulation and implementation? Perspectives of managers in the hotel industry. Int. J. Hosp. Manag. 2020, 89, 102574. [Google Scholar] [CrossRef] [PubMed]
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, S.; Sun, S.; Wei, Y. Knowledge mapping of tourism demand forecasting research. Tour. Manag. Perspect. 2020, 35, 100715. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Goh, E.; Wen, J. The effects of misleading media reports about COVID-19 on Chinese tourists’ mental health: A perspective article. Anatolia 2020, 31, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Y.; Huang, H.L. The Knowledge Management Strategic Alignment Model (KMSAM) and Its Impact on Performance: An Empirical Examination. In Knowledge Management; IntechOpen: London, UK, 2010; pp. 25–34. [Google Scholar]
- Melao, N.; Reisb, J. Selecting talent using social networks: A mixed-methods study. Heliyon 2020, 6, e03723. [Google Scholar] [CrossRef]
- Xu, D.; Pearce, P.; Chen, T. Deconstructing tourist scams: A social-practice-theory perspective. Tour. Manag. 2020, 82, 104186. [Google Scholar] [CrossRef]
- Martin-Rios, C.; Ciobanu, T. Hospitality innovation strategies: An analysis of success factors and challenges. Tour. Manag. 2019, 70, 218–229. [Google Scholar] [CrossRef]
- Grewal, D.; Iyer, G.; Javalgi, R.; Radulovic, L. Franchise partnership and international expansion: A conceptual framework and research propositions. Entrep. Theory Pract. 2011, 35, 535–557. [Google Scholar] [CrossRef] [Green Version]
- Hao, F.; Xiao, Q.; Chon, K. COVID-19 and China’s Hotel Industry: Impacts, a Disaster Management Framework, and Post-Pandemic Agenda. Int. J. Hosp. Manag. 2020, 90, 102636. [Google Scholar] [CrossRef]
- Altinay, L. The internationalization of hospitality firms: Factors influencing a franchise decision-making process. J. Serv. Mark. 2007, 21, 398–409. [Google Scholar] [CrossRef]
- Altinay, L.; Brookes, M. Factors influencing relationship development in franchise partnerships. J. Serv. Mark. 2012, 4, 278–292. [Google Scholar] [CrossRef]
- Bartik, A.; Bertrand, M.; Cullen, Z.; Glaeser, E.; Luca, M.; Stanton, C. How Are Small Business Adjusting to COVID-19? Early Evidence from a Survey; National Bureau of Economic Research: Cambridge, MA, USA, 2020.
- Wang, T.C.; Hsieh, H.C. Crisis Management in Tourism Industry. Int. J. Bus. Manag. Res. 2016, 6, 97–102. [Google Scholar]
- Herrera-Viedma, E.; Herrera, F.; Chiclana, F.; Luque, M. Some issues on consistency of fuzzy preference relations. Eur. J. Oper. Res. 2004, 154, 98–109. [Google Scholar] [CrossRef]
- Herrera-Viedma, E.; Alonso, S.; Chiclana, F.; Herrera, F. A Consensus Model for Group Decision Making with Incomplete Fuzzy Preference Relations. IEEE Trans. Fuzzy Syst. 2007, 15, 863–877. [Google Scholar] [CrossRef]
- Wang, T.C.; Hsieh, H.C.; Hsu, S.C. Predicting the Success of Promoting a Decision-maker’s Judgment by InLinPreRa. In Proceedings of the International Conference on Business and Management, Shenzhen, China, 20 January 2016; pp. 1–6. [Google Scholar]
- Khan, Z. Determinants of a Successful Cross-Border Knowledge Transfer in Franchise Networks. J. Asia Bus. Stud. 2016, 10, 148–163. [Google Scholar] [CrossRef]
- Collier, R.; Pirlot, A.; Vella, J. Tax Policy and the COVID-19 Crisis; Oxford University Centre for Business Taxation: Oxford, UK, 2020. [Google Scholar]
- Cortes-Sanchez, J. A bibliometric outlook of the most cited documents in business, management and accounting in Ibero-America. Eur. Res. Manag. Bus. Econ. 2020, 26, 1–8. [Google Scholar] [CrossRef]
- Navajas-Romero, V.; Díaz-Carrión, R.; Casas-Rosalc, J. Comparing working conditions and job satisfaction in hospitality workers across Europe. Int. J. Hosp. Manag. 2020, 90, 102631. [Google Scholar]
- Rainone, K.; Grootendorst, G. Economic Impacts of COVID-19: Estimates for Hampton Roads; Hampton Roads Planning District Commission: Chesapeake, VA, USA, 2020. [Google Scholar]
- Rephann, T. COVID-19 Economic and Tax Revenue Impacts: Estimates for the Commonwealth of Virginia and Localities; Center for Economic and Policy Studies Weldon Cooper Center for Public Service University of Virginia: Virginia, VA, USA, 2020. [Google Scholar]
- Ruparel, N.; Dhir, A.; Tandon, A.; Islam, J. The influence of online professional social media in human resource management: A systematic literature review. Technol. Soc. 2020, 63, 10133. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Suh, T.; Kim, K.M. Brand resonance in franchising relationships A franchise-based presecptive. J. Bus. Res. 2016, 69, 3943–3950. [Google Scholar] [CrossRef]
- Mazurek, M. The Innovation Approach to Rish Management as a Part of Destination Competitiveness and Reputation; Faculty of Humanities, University of Zilina: Zilina, Slovakia, 2020. [Google Scholar]
- Kuhzady, S.; Çakici, C.; Olya, H.; Mohajer, B.; Han, H. Couch surfing involvement in non-profit peer-to-peer accommodations and its impact on destination image, familiarity, and behavioral intentions. J. Hosp. Tour. Manag. 2020, 44, 131–142. [Google Scholar] [CrossRef]
- Sa, M.; Choon-Yin, S.; Kim, Y. Knowledge creation process, customer orientation and firm performance: Evidence from small hotels in Malaysia. Asia Pac. Manag. Rev. 2020, 25, 65–74. [Google Scholar]
- Damnjanović, V.; Lončarić, D.; Dlačić, J. Digital marketing strategy of Accor Hotels: Shaping the future of hospitality. Tour. Hosp. Manag. 2020, 26, 233–244. [Google Scholar]
- Raudeliūnienė, J.; Davidavičienė, V.; Jakubavičis, A. Knowledge management process model. Entrep. Sustain. Issues 2018, 5, 542–554. [Google Scholar]
- Kwok, L.; Tang, Y.; Yu, B. The 7 Ps marketing mix of home-sharing services: Mining travelers’ online reviews on Airbnb. Int. J. Hosp. Manag. 2020, 90, 102616. [Google Scholar] [CrossRef]
- Collins-Kreiner, N. A review of research in to religionand tourism Launching the Ann. Tour. Res. Curated Collection on religionand tourism. Ann. Tour. Res. 2020, 82, 1–22. [Google Scholar] [CrossRef]
- Rittichainuwat, B.; Laws, E.; Maunchontham, R.; Rattanaphinanchai, S.; Muttamara, S.; Moutona, K. Resilience to crises of Thai MICE stakeholders: Alongitudinal study of the destination image of Thailand as a MICE destination. Tour. Manag. Perspect. 2020, 35, 100704. [Google Scholar] [CrossRef]
- Isa, R.; Abdullah, N.; Hamzah, N.; Arshad, R. The Typology of Intellectual Capital and Knowledge Management in Malaysian Hotel Industry. J. Hum. Resour. Adult Learn. 2008, 4, 103–114. [Google Scholar]
- Herrera-Viedma, E.; Francisco, C.; Herrera, F.; Alonso, S. Group Decision-Making Model with Incomplete Fuzzy Preference Relations Based on Additive Consistency. IEEE Trans. Syst. Man Cybern. 2007, 37, 176–189. [Google Scholar] [CrossRef]
- Chao, R.J.; Chen, Y.H. Evaluation of the criteria and effectiveness of distance e-learning with consistent fuzzy preference relations. J. Adv. Transp. 2009, 36, 10657–10662. [Google Scholar] [CrossRef]
- Wang, T.C.; Wang, C.N.; Nguyen, X.H. Evaluating the Influence of Criteria to Attract Foreign Direct Investment (FDI) to Develop Supporting Industries in Vietnam by Utilizing Fuzzy Preference Relations. Sustainability 2016, 8, 447. [Google Scholar] [CrossRef] [Green Version]
- Yeung, R.; Brookes, M.; Altinay, L. The hospitality franchise purchase decision-making process. Int. J. Contemp. Hosp. Manag. 2016, 28, 1009–1025. [Google Scholar] [CrossRef]
- Verma, S.; Gustafsson, A. Investigating the emerging COVID-19 research trends in the field of business and management: A bibliometric analysis approach. J. Bus. Res. 2020, 118, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Teo, S.; Bentley, T.; Nguyen, D. Psychosocial work environment, work engagement, and employee commitment: Amoderated, mediation model. Int. J. Hosp. Manag. 2020, 88, 102415. [Google Scholar] [CrossRef]
- Tiago, F.; Gil, A.; Stemberger, S.; Borges-Tiago, T. Digital sustainablility communication in tourism. J. Innov. Knowl. 2020, 12, 5324. [Google Scholar]
- Laguna, L.; Fiszman, S.; Puerta, P.; Chaya, C.; Tárrega, A. The impact of COVID-19 lockdown on food priorities. Results from a preliminary study using social media and an online survey with Spanish consumers. Food Qual. Prefer. 2020, 86, 104028. [Google Scholar] [CrossRef]
- Tajeddini, K.; Martin, E.; Ali, A. Enhancing hospitality business performance: The role of entrepreneurial orientation and networking ties in a dynamic environment. Int. J. Hosp. Manag. 2020, 90, 102605. [Google Scholar] [CrossRef]
- Ayup-Gonzalez, J.; Calderon-Monge, E.; Carrilero-Castillo, A. The effects of management and environmental factors on franchise continuity. Econ. Res. Ekon. Istraž. 2019, 32, 4059–4074. [Google Scholar] [CrossRef] [Green Version]
- Salinga, K.; Doa, M. Leveraging People Analytics for an Adaptive Complex Talent Management System. Procedia Comput. Sci. 2020, 168, 105–111. [Google Scholar] [CrossRef]
- Sundqvist, J.; Walter, U.; Hörnell, A. Meal identity as practice-Towards an understanding of business travellers’ meal practices. Int. J. Gastron. Food Sci. 2020, 22, 100237. [Google Scholar] [CrossRef] [PubMed]
- Higgins-Desbiolles, F. Socialising tourism for social and ecological justice after COVID-19. Tour. Geogr. 2020, 22, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Zenker, S.; Kock, F. The coronavirus pandemic-A critical discussion of a tourism research agenda. Tour. Manag. 2020, 81, 104164. [Google Scholar] [CrossRef]
- Zhang, K.; Hou, Y.; Li, G. Threat of infectious disease during an outbreak: Influence on tourists’ emotional responses to disadvantaged price inequality. Ann. Tour. Res. 2020, 84, 102993. [Google Scholar] [CrossRef] [PubMed]
- Choia, S.H.; Ling, Y.E.; Tabari, S. Solodining in Chinese restaurants: Amixed-method study in Macao. Int. J. Hosp. Manag. 2020, 90, 102628. [Google Scholar] [CrossRef] [PubMed]
- Gössling, S.; Scott, D.; Hall, C. Pandemics, tourism and global change: A rapid assessment of COVID-19. J. Sustain. Tour. 2020, 48, 39–51. [Google Scholar]
- Sándorová, Z.; Repáňová, T.; Palenčíková, Z.; Beták, N. Design thinking-Are volutionary new approach in tourism education? J. Hosp. Leis. Sport Tour. Educ. 2020, 26, 100238. [Google Scholar]
- Sharma, P.; Leung, T.; Kingshott, R.; Davcik, N.; Cardinali, S. Managing uncertainty during a global pandemic: An international business perspective. J. Bus. Res. 2020, 116, 188–192. [Google Scholar] [CrossRef]
- García-Milon, A.; Juaneda-Ayensa, E.; Olarte-Pascual, C.; Pelegrín-Borondo, J. Towards the smart tourism destination: Key factors in information source use on the tourist shopping journey. Tour. Manag. Perspect. 2020, 36, 100730. [Google Scholar] [CrossRef]
- Guzmán, V.; Muschard, B.; Gerolamo, M.; Kohl, H.; Rozenfeld, H. Characteristics and Skills of Leadership in the Context of Industry. Sci. Direct Procedia Manuf. 2020, 43, 543–550. [Google Scholar] [CrossRef]
- Purcell, L.; Charles, A. An Invited Commentary on “World Health Organization declares global emergency: A review of the 2019 novel Coronavirus (COVID-19)”: Emergency or newreality? Int. J. Surg. 2020, 76. [Google Scholar] [CrossRef] [PubMed]
Criteria | Literature Review | Reference |
---|---|---|
Headquarters System |
| [25] [26,27] [28] [29] |
Human Resources |
| [30,31] [32] [23,33] [34] |
Corporate Imagination |
| [35,36] [37] [23] |
Location Advantage |
| [39,40] [41] |
Innovation and Transformation |
| [38] [32,42,43] [44] |
Marketing Strategy |
| [45,46] [23,47,48] |
Crisis Management |
| [32,49] [10] [34] [32] [8] |
Definition | Intensity of Importance |
---|---|
Equally important (EQ) | 1 |
Weakly more important (WK) | 3 |
Strongly more important (ST) | 5 |
Very strongly more important (VS) | 7 |
Absolutely more important (AB) | 9 |
Intermediate values used to represent compromise | 2, 4, 6, 8 |
Definition | Intensity of Importance |
---|---|
Fair (F) | 1 |
High (H) | 3 |
Very high (VH) | 5 |
Intermediate values used to represent compromise | 2, 4 |
C1 | WK | EQ | LSLV | WK | VT | AB | AV | AB | VS | AB | AV | LAB | LVS | AB | WK | C2 |
C2 | ST | LVLA | LST | WK | LVS | LVS | VS | VS | LAB | EQ | LSLV | LAB | LVLA | AB | EQ | C3 |
C3 | VT | WE | EQ | LWLS | VS | LAB | LWK | LAB | LVS | ST | LAB | AB | AV | AB | AB | C4 |
C4 | WK | ST | VT | WK | LVS | VS | VS | VS | VS | SW | LST | LST | VS | AV | AB | C5 |
C5 | LSLV | LSLV | LVS | EQ | LVS | LVS | LSLV | EQ | AV | LST | LVLA | LVS | VS | AV | VS | C6 |
C6 | EQ | LSLV | LSLV | LWK | EQ | LVLA | LVS | LVLA | LAB | WK | LVLA | LVS | LVLA | AV | AB | C7 |
1.0000 | WK | - | - | - | - | - | |
- | 1.0000 | ST | - | - | - | - | |
- | - | 1.0000 | VT | - | - | - | |
- | - | - | 1.0000 | WK | - | - | |
- | - | - | - | 1.0000 | LSLV | - | |
- | - | - | - | - | 1.0000 | EQ | |
- | - | - | - | - | - | 1.0000 |
1.0000 | 3 | - | - | - | - | - | |
- | 1.0000 | 5 | - | - | - | - | |
- | - | 1.0000 | 6 | - | - | - | |
- | - | - | 1.0000 | 3 | - | - | |
- | - | - | - | 1.0000 | 1/6 | - | |
- | - | - | - | - | 1.0000 | 1 | |
- | - | - | - | - | - | 1.0000 |
1.0000 | 3.0000 | - | - | - | - | - | |
- | 1.0000 | 5.0000 | - | - | - | - | |
- | - | 1.0000 | 6.0000 | - | - | - | |
- | - | - | 1.0000 | 3.0000 | - | - | |
- | - | - | - | 1.0000 | 0.1667 | - | |
- | - | - | - | - | 1.0000 | 1.0000 | |
- | - | - | - | - | - | 1.0000 |
0.5000 | 0.7500 | 1.1162 | 1.5240 | 1.7740 | 1.3662 | 1.3662 | |
0.2500 | 0.5000 | 0.8662 | 1.2740 | 1.5240 | 1.1162 | 1.1162 | |
−0.1162 | 0.1338 | 0.5000 | 0.9077 | 1.1577 | 0.7500 | 0.7500 | |
−0.5240 | −0.2740 | 0.0923 | 0.5000 | 0.7500 | 0.3423 | 0.3423 | |
−0.7740 | −0.5240 | −0.1577 | 0.2500 | 0.5000 | 0.0923 | 0.0923 | |
−0.3662 | −0.1162 | 0.2500 | 0.6577 | 0.9077 | 0.5000 | 0.5000 | |
−0.3662 | −0.1162 | 0.2500 | 0.6577 | 0.9077 | 0.5000 | 0.5000 |
0.5000 | 0.5981 | 0.7419 | 0.9019 | 1.0000 | 0.8400 | 0.8400 | |
0.4019 | 0.5000 | 0.6437 | 0.8038 | 0.9019 | 0.7419 | 0.7419 | |
0.2581 | 0.3563 | 0.5000 | 0.6600 | 0.7581 | 0.5981 | 0.5981 | |
0.0981 | 0.1962 | 0.3400 | 0.5000 | 0.5981 | 0.4381 | 0.4381 | |
0.0000 | 0.0981 | 0.2419 | 0.4019 | 0.5000 | 0.3400 | 0.3400 | |
0.1600 | 0.2581 | 0.4019 | 0.5619 | 0.6600 | 0.5000 | 0.5000 | |
0.1600 | 0.2581 | 0.4019 | 0.5619 | 0.6600 | 0.5000 | 0.5000 |
E | |||||||
---|---|---|---|---|---|---|---|
0.5000 | 0.6050 | 0.5729 | 0.5655 | 0.6723 | 0.6066 | 0.5040 | |
0.3950 | 0.5000 | 0.4678 | 0.4604 | 0.5673 | 0.5015 | 0.3990 | |
0.4271 | 0.5322 | 0.5000 | 0.4926 | 0.5995 | 0.5337 | 0.4311 | |
0.4345 | 0.5396 | 0.5074 | 0.5000 | 0.6069 | 0.5411 | 0.4386 | |
0.3277 | 0.4327 | 0.4005 | 0.3931 | 0.5000 | 0.4342 | 0.3317 | |
0.3934 | 0.4985 | 0.4663 | 0.4589 | 0.5658 | 0.5000 | 0.3974 | |
0.4960 | 0.6010 | 0.5689 | 0.5614 | 0.6683 | 0.6026 | 0.5000 | |
Total | 2.9737 | 3.7089 | 3.4838 | 3.4319 | 4.1801 | 3.7197 | 3.0019 |
E | Total | Weight | Ranking | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1681 | 0.1631 | 0.1644 | 0.1648 | 0.1608 | 0.1631 | 0.1679 | 1.1523 | 0.1658 | 1 | |
0.1328 | 0.1348 | 0.1261 | 0.1342 | 0.1357 | 0.1348 | 0.1329 | 0.9314 | 0.1340 | 5 | |
0.1436 | 0.1435 | 0.1348 | 0.1435 | 0.1434 | 0.1435 | 0.1436 | 0.9960 | 0.1433 | 4 | |
0.1461 | 0.1455 | 0.1368 | 0.1457 | 0.1452 | 0.1455 | 0.1461 | 1.0109 | 0.1455 | 3 | |
0.1102 | 0.1167 | 0.1080 | 0.1145 | 0.1196 | 0.1167 | 0.1105 | 0.7962 | 0.1146 | 7 | |
0.1323 | 0.1344 | 0.1257 | 0.1337 | 0.1353 | 0.1344 | 0.1324 | 0.9283 | 0.1336 | 6 | |
0.1668 | 0.1620 | 0.1534 | 0.1636 | 0.1599 | 0.1620 | 0.1666 | 1.1342 | 0.1632 | 2 | |
Total | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 6.9493 | 1.0000 |
F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | |||
C1 | S | HF | H | VHG | VHG | H | VHG | H | VHG | VHG | H | VHG | VH | VHG | VHG | F | C1 |
C2 | S | F | H | VHG | H | H | VHG | LHF | LVHG | H | F | H | VHG | VH | VHG | F | C2 |
C3 | S | VHG | HF | F | F | VHG | HF | LHF | VH | VHG | VHG | HF | VH | VHG | VH | H | C3 |
C4 | S | HF | H | VHG | VHG | VH | VHG | VHG | VH | VHG | F | VH | H | H | LHF | F | C4 |
C5 | S | H | VHG | F | F | LHF | F | LHF | LHF | VHG | HF | HF | VHG | H | LH | H | C5 |
C6 | S | HF | VHG | VHG | HF | HF | HF | F | LH | HF | H | H | VH | VHG | VH | F | C6 |
C7 | S | H | H | H | H | VHG | VHG | F | VHG | VHG | H | H | VHG | VH | VHG | F | C7 |
Total | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | Average | |||
C1 | S | 0.7153 | 0.8413 | 0.9307 | 0.9307 | 0.8413 | 0.9307 | 0.8413 | 0.9307 | 0.9307 | 0.8413 | 0.9307 | 1.0000 | 0.9307 | 0.9307 | 0.5000 | 13.0260 | 0.8684 |
C2 | S | 0.5000 | 0.8413 | 0.9307 | 0.8413 | 0.8413 | 0.9307 | 0.2847 | 0.0693 | 0.8413 | 0.5000 | 0.8413 | 0.9307 | 1.0000 | 0.9307 | 0.5000 | 10.7832 | 0.7189 |
C3 | S | 0.9307 | 0.7153 | 0.5000 | 0.5000 | 0.9307 | 0.7153 | 0.2847 | 1.0000 | 0.9307 | 0.9307 | 0.7153 | 1.0000 | 0.9307 | 1.0000 | 0.8413 | 11.9254 | 0.7950 |
C4 | S | 0.7153 | 0.8413 | 0.9307 | 0.9307 | 1.0000 | 0.9307 | 0.9307 | 1.0000 | 0.9307 | 0.5000 | 1.0000 | 0.8413 | 0.8413 | 0.2847 | 0.5000 | 12.1773 | 0.8118 |
C5 | S | 0.8413 | 0.9307 | 0.5000 | 0.5000 | 0.2847 | 0.5000 | 0.2847 | 0.2847 | 0.9307 | 0.7153 | 0.7153 | 0.9307 | 0.8413 | 0.1587 | 0.8413 | 9.2593 | 0.6173 |
C6 | S | 0.7153 | 0.9307 | 0.9307 | 0.7153 | 0.7153 | 0.7153 | 0.5000 | 0.1587 | 0.7153 | 0.8413 | 0.8413 | 1.0000 | 0.9307 | 1.0000 | 0.5000 | 11.2100 | 0.7473 |
C7 | S | 0.8413 | 0.8413 | 0.8413 | 0.8413 | 0.9307 | 0.9307 | 0.5000 | 0.9307 | 0.9307 | 0.8413 | 0.8413 | 0.9307 | 1.0000 | 0.9307 | 0.5000 | 12.6319 | 0.8421 |
Total | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | S | S | S | S | S | S | S | S | S | S | S | S | S | S | Average | |||
C1 | F | 0.2847 | 0.1587 | 0.0693 | 0.0693 | 0.1587 | 0.0693 | 0.1587 | 0.0693 | 0.0693 | 0.1587 | 0.0693 | 0.0000 | 0.0693 | 0.0693 | 0.5000 | 1.9740 | 0.1316 |
C2 | F | 0.5000 | 0.1587 | 0.0693 | 0.1587 | 0.1587 | 0.0693 | 0.7153 | 0.9307 | 0.1587 | 0.5000 | 0.1587 | 0.0693 | 0.0000 | 0.0693 | 0.5000 | 4.2168 | 0.2811 |
C3 | F | 0.0693 | 0.2847 | 0.5000 | 0.5000 | 0.0693 | 0.2847 | 0.7153 | 0.0000 | 0.0693 | 0.0693 | 0.2847 | 0.0000 | 0.0693 | 0.0000 | 0.1587 | 3.0746 | 0.2050 |
C4 | F | 0.2847 | 0.1587 | 0.0693 | 0.0693 | 0.0000 | 0.0693 | 0.0693 | 0.0000 | 0.0693 | 0.5000 | 0.0000 | 0.1587 | 0.1587 | 0.7153 | 0.5000 | 2.8227 | 0.1882 |
C5 | F | 0.1587 | 0.0693 | 0.5000 | 0.5000 | 0.7153 | 0.5000 | 0.7153 | 0.7153 | 0.0693 | 0.2847 | 0.2847 | 0.0693 | 0.1587 | 0.8413 | 0.1587 | 5.7407 | 0.3827 |
C6 | F | 0.2847 | 0.0693 | 0.0693 | 0.2847 | 0.2847 | 0.2847 | 0.5000 | 0.8413 | 0.2847 | 0.1587 | 0.1587 | 0.0000 | 0.0693 | 0.0000 | 0.5000 | 3.7900 | 0.2527 |
C7 | F | 0.1587 | 0.1587 | 0.1587 | 0.1587 | 0.0693 | 0.0693 | 0.5000 | 0.0693 | 0.0693 | 0.1587 | 0.1587 | 0.0693 | 0.0000 | 0.0693 | 0.5000 | 2.3681 | 0.1579 |
Success | Failure | Total | Average | ||
---|---|---|---|---|---|
Success | 0.7916 | 0.6346 | 1.4262 | 0.7131 | |
Failure | 0.2084 | 0.3654 | 0.5738 | 0.2869 | |
Success | 0.6401 | 0.5898 | 1.2299 | 0.6149 | |
Failure | 0.3599 | 0.4102 | 0.7701 | 0.3851 | |
Success | 0.7092 | 0.6139 | 1.3232 | 0.6616 | |
Failure | 0.2908 | 0.3861 | 0.6768 | 0.3384 | |
Success | 0.7266 | 0.6188 | 1.3454 | 0.6727 | |
Failure | 0.2734 | 0.3812 | 0.6546 | 0.3273 | |
Success | 0.5664 | 0.5525 | 1.1189 | 0.5595 | |
Failure | 0.4336 | 0.4475 | 0.8811 | 0.4405 | |
Success | 0.6643 | 0.5991 | 1.2635 | 0.6317 | |
Failure | 0.3357 | 0.4009 | 0.7365 | 0.3683 | |
Success | 0.7600 | 0.6275 | 1.3875 | 0.6937 | |
Failure | 0.2400 | 0.3725 | 0.6125 | 0.3063 |
Prediction Probability | ||||||||
---|---|---|---|---|---|---|---|---|
Rank | 1 | 5 | 4 | 3 | 7 | 6 | 2 | |
Priority Weight | 0.1658 | 0.1340 | 0.1433 | 0.1455 | 0.1146 | 0.1336 | 0.1632 | 1.0000 |
Success | 0.7131 | 0.6149 | 0.6616 | 0.6727 | 0.5595 | 0.6317 | 0.6937 | 0.6551 |
Failure | 0.2869 | 0.3851 | 0.3384 | 0.3273 | 0.4405 | 0.3683 | 0.3063 | 0.3449 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, H.-C.; Nguyen, X.-H.; Wang, T.-C.; Lee, J.-Y. Prediction of Knowledge Management for Success of Franchise Hospitality in a Post-Pandemic Economy. Sustainability 2020, 12, 8755. https://doi.org/10.3390/su12208755
Hsieh H-C, Nguyen X-H, Wang T-C, Lee J-Y. Prediction of Knowledge Management for Success of Franchise Hospitality in a Post-Pandemic Economy. Sustainability. 2020; 12(20):8755. https://doi.org/10.3390/su12208755
Chicago/Turabian StyleHsieh, Hsiu-Chin, Xuan-Huynh Nguyen, Tien-Chin Wang, and Jen-Yao Lee. 2020. "Prediction of Knowledge Management for Success of Franchise Hospitality in a Post-Pandemic Economy" Sustainability 12, no. 20: 8755. https://doi.org/10.3390/su12208755
APA StyleHsieh, H. -C., Nguyen, X. -H., Wang, T. -C., & Lee, J. -Y. (2020). Prediction of Knowledge Management for Success of Franchise Hospitality in a Post-Pandemic Economy. Sustainability, 12(20), 8755. https://doi.org/10.3390/su12208755