Soil Contamination in Areas Impacted by Military Activities: A Critical Review
Abstract
:1. Introduction
Search Methodology and Results
2. Generic Limits and Legislation for Protection of Soils and Rehabilitation of Sites Contaminated by Military Activities
3. Physical Impact of Military Activities on Soil
4. Chemical Impact of Military Activities on Soil
4.1. Soil Contamination by Potentially Toxic Elements
4.2. Contamination and Transformation of Soil by Energetic Compounds
4.3. Exposure of Soil to Chemical Warfare Agents
4.4. Pollution of Soil by Other Contaminants Related to Military Activities
5. Site Characterization of Military-Impacted Zones
5.1. Profiling Potentially Toxic Elements
5.2. Profiling Energetic Compounds
6. Risk Assessment of Military-Impacted Sites
7. Conclusions
Funding
Conflicts of Interest
References
- Lima, D.; Bezerra, M.; Neves, E.; Moreira, F. Impact of ammunition and military explosives on human health and the environment. Rev. Environ. Health 2011, 26, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Poesen, J. Soil erosion in the Anthropocene: Research needs: Soil erosion in the Anthropocene. Earth Surf. Process. Landforms 2017, 43, 64–84. [Google Scholar] [CrossRef]
- Gorecki, S.; Nesslany, F.; Hube, D.; Mullot, J.; Vasseur, P.; Marchioni, E.; Camel, V.; Noël, L.; Le, B.B.; Guérin, T.; et al. Human health risks related to the consumption of foodstuffs of plant and animal origin produced on a site polluted by chemical munitions of the First World War. Sci. Total Environ. 2017, 599–600, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Pichtel, J. Distribution and Fate of Military Explosives and Propellants in Soil: A Review. Appl. Environ. Soil Sci. 2016, 2012, 617236. [Google Scholar] [CrossRef] [Green Version]
- Olson, K.; Tharp, M. How did the Passaic River, a Superfund site near Newark, New Jersey, become an Agent Orange dioxin TCDD hotspot? J. Soil Water Conserv. 2020, 75, 33A–37A. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.; Han, J.; Jung, J.W.; Bae, B.; Nam, K. Human health risk assessment of explosives and heavy metals at a military gunnery range. Environ. Geochem. Health 2007, 29, 259–269. [Google Scholar] [CrossRef]
- Gebka, K.; Beldowski, J.; Beldowska, M. The impact of military activities on the concentration of mercury in soils of military training grounds and marine sediments. Environ. Sci. Pollut. Res. 2016, 23. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.Y.; Yoon, H.S.; Jeong, T.Y.; Jeong, T.Y.; Kim, S.D. Evaluation of remediation processes for explosive-contaminated soils: Kinetics and Microtox® bioassay. J. Chem. Technol. Biotechnol. 2016, 91, 928–937. [Google Scholar] [CrossRef]
- Tomic, N.T.; Smiljanic, S.; Jovic, M.; Gligoric, M.; Povrenovic, D.; Dosic, A. Examining the Effects of the Destroying Ammunition, Mines, and Explosive Devices on the Presence of Heavy Metals in Soil of Open Detonation Pit: Part 1-Pseudo-total Concentration. Water Air Soil Pollut. 2018, 229, 301. [Google Scholar] [CrossRef]
- Tomic, N.T.; Smiljanic, S.; Jovic, M.P.; Gligoric, M.; Povrenovic, D.; Dosic, A. Examining the Effects of the Destroying Ammunition, Mines and Explosive Devices on the Presence of Heavy Metals in Soil of Open Detonation Pit; Part 2: Determination of Heavy Metal Fractions. Water Air Soil Pollut. 2018, 229, 303. [Google Scholar] [CrossRef]
- Certini, G.; Scalenghe, R.; Woods, W.I. The impact of warfare on the soil environment. Earth Sci. Rev. 2013. [Google Scholar] [CrossRef]
- Fayiga, A.O. Remediation of inorganic and organic contaminants in military ranges. Environ. Chem. 2019, 16, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Bordeleau, G.; Martel, R.; Ampleman, G.; Thiboutot, S. Environmental Impacts of Training Activities at an Air Weapons Range. J. Environ. Qual. 2008, 37, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Islam, E.; Yang, X.; He, Z.; Mahmood, Q. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J. Zhejiang Univ. Sci. B 2007, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Knechtenhofer, L.A.; Xifra, I.O.; Scheinost, A.C.; Flühler, H.; Kretzschmar, R. Fate of heavy metals in a strongly acidic shooting-range soil: Small-scale metal distribution and its relation to preferential water flow. J. Plant Nutr. Soil Sci. 2003, 166, 84–92. [Google Scholar] [CrossRef]
- Meerschman, E.; Cockx, L.; Islam, M.M.; Meeuws, F.; Van Meirvenne, M. Geostatistical Assessment of the Impact of World War I on the Spatial Occurrence of Soil Heavy Metals. Ambio 2011, 40, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Okkenhaug, G.; Gebhardt, K.-A.G.; Amstaetter, K.; Bue, H.; Herzel, H.; Mariussen, E.; Rossebo, A.A.; Cornelissen, G.; Breedveld, G.D.; Rasmussen, G.; et al. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. J. Hazard. Mater. 2016, 307, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Ottesen, R.T.; Alexander, J.; Joranger, T.; Anderson, M. Proposed Soil Guidelines; NGU Report 2007-019; Norges Geologiske Undersokelser: Trondheim, Norway, 2007.
- Rodriguez-Seijo, A.; Alfaya, C.M.; Andrade-Couce, M.; Alonso Vega, F. Copper, Chromium, Nickel, Lead and Zinc Levels and Pollution Degree in Firing Range Soils. Land Degrad. Dev. 2016, 27, 1721–1730. [Google Scholar] [CrossRef]
- van Meirvenne, M.; Meklit, T.; Verstraete, S.; De Boever, M.; Tack, F. Could shelling in the First World War have increased copper concentrations in the soil around Ypres? Eur. J. Soil Sci. 2008, 59, 372–379. [Google Scholar] [CrossRef]
- Islam, M.N.; Nguyen, X.P.; Jung, H.Y.; Park, J.H. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils. Bull. Environ. Contam. Toxicol. 2016, 96, 179–185. [Google Scholar] [CrossRef]
- Kis, I.M.; Karaica, B.; Medunic, G.; Romic, M.; Sabaric, J.; Balen, D.; Sostarko, K. Soil, bark and leaf trace metal loads related to the war legacy (The Prasnik rainforest, Croatia). Rud. Geol. Naft. Zb. 2016, 31, 13–28. [Google Scholar] [CrossRef]
- Bausinger, T.; Bonnaire, E.; Preuss, J. Exposure assessment of a burning ground for chemical ammunition on the Great War battlefields of Verdun. Sci. Total Environ. 2007, 382, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Denton, G.R.W.; Emborski, C.A.; Hachero, A.A.B.; Masga, R.S.; Starmer, J.A. Impact of WWII dumpsites on Saipan (CNMI): Heavy metal status of soils and sediments. Environ. Sci. Pollut. Res. 2016, 23, 11339–11348. [Google Scholar] [CrossRef]
- Disposicion del Diario Oficial de Galicia (DOG). Decreto 60/2009, de 26 de Febrero, Sobre Suelos Potencialmente Contaminados y Procedimiento para la Declaración de Suelos Contaminados; DOG: Galicia, Spain, 2009. [Google Scholar]
- Lafond, S.; Blais, J.F.; Martel, R.; Mercier, G. Chemical Leaching of Antimony and Other Metals from Small Arms Shooting Range Soil. Water Air Soil Pollut. 2012, 224, 1371. [Google Scholar] [CrossRef]
- Lafond, S.; Blais, J.F.; Mercier, G.; Martel, R. A Counter-Current Acid Leaching Process for the Remediation of Contaminated Soils from a Small-Arms Shooting Range. Soil Sediment Contam. 2014, 23, 194–210. [Google Scholar] [CrossRef]
- Sladkova, A.; Szakova, J.; Havelcova, M.; Najmanova, J.; Tlustos, P. The Contents of Selected Risk Elements and Organic Pollutants in Soil and Vegetation within a Former Military Area. Soil Sediment Contam. 2015, 24, 325–342. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Ahmad, M.; Vithanage, M.; Kim, K.R.; Chang, J.Y.; Lee, S.S.; Ok, Y.S. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environ. Geochem. Health 2015, 37, 931–942. [Google Scholar] [CrossRef]
- Robidoux, P.Y.; Lachance, B.L.; Didillon, F.O.; Dion, G.I.S. Development of Ecological and Human Health Preliminary Soil Quality Guidelines for Energetic Materials to Ensure Training Sustainability of Canadian Forces; Report No. 45936; National Research Council of Canada: Ottawa, ON, Canada, 2006.
- U.S. EPA. Ground Water & Drinking Water: Perchlorate; U.S. EPA: Washington, DC, USA, 2003.
- Korean Ministry of Environment (MOE). The Soil Environment Preservation Act; Decree No. 333; MOE: Sejong, Korea, 2009.
- Miljovern Departementet. Forskrift om Begrensning av Forurensning (Forurensnings Forskriften); FOR 2004-06-01 nr 931; Ministry of Climate and Environment (Norway): Oslo, Norway, 2004.
- Korean Ministry of Environment (MOE). The Korean Standard Test (KST) Methods for Soils; MOE: Sejong, Korea, 2010.
- Czech Ministry of Environment. Public Notice No. 13/1994, Regulating Some Details Concerning the Preservation of Agricultural Lands Available; Czech Ministry of Environment: Prague, Czech Republic, 1994.
- Canadian Council of Ministers of the Environment (CCME). Recommandations Canadiennes pour la Qualite des Sols; CCME: Winnipeg, MB, Canada, 2007.
- Ministere du Developpement Durable, de l’Environnement et des Parcs (MDDEP). Politique de Protection des Sols et de Rehabilitation des Terrains Contamines; Government of Quebec: Quebec, QC, Canada, 1999.
- Ministere du Developpement Durable, de l’Environnement et des Parcs (MDDEP). Protection des Sols et Rehabilitation des Terrains Contamines; Government of Quebec: Quebec, QC, Canada, 2011.
- Openbare Afvalstoffenmaatschappij voor het Vlaams Gewest (OVAM). Order of the Flemish Government Establishing the Flemish Regulation on Soil Remediation and Soil Protection; Public Waste Agency of Flanders: Brussels, Belgium, 2008. [Google Scholar]
- Dutch Ministry of Housing. Spatial Planning and Environment: Circular on Target Values and Intervention Values for Soil Remediation; DBO/1999226863; Dutch Ministry of Housing: Den Haag, The Netherlands, 2000.
- United States Environmental Protection Agency (U.S. EPA). Contaminated Site Clean-Up Information—Explosives. Available online: https://clu-in.org/characterization/technologies/exp.cfm (accessed on 21 October 2020).
- Umweltbundesamt. Berechnung von Prüfwerten zur Bewertung von Altlasten; Schmidt: Berlin, Germany, 1999. [Google Scholar]
- Eastler, T.E. Military Use of Underground Terrain BT. In Studies in Military Geography and Geology; Caldwell, D.R., Ehlen, J., Harmon, R.S., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 21–37. [Google Scholar] [CrossRef]
- de Matos Machado, R.; Hupy, J.P. The Conflict Landscape of Verdun, France: Conserving Cultural and Natural Heritage after WWI BT. In Collateral Values: The Natural Capital Created by Landscapes of War; Lookingbill, T.R., Smallwood, P.D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 111–132. [Google Scholar] [CrossRef]
- Olson, K.; Morton, L. Why Were the Soil Tunnels of Cu Chi and Iron Triangle in Vietnam So Resilient. Open J. Soil Sci. 2017, 7, 34–51. [Google Scholar] [CrossRef] [Green Version]
- Olson, K.; Speidel, D. Review and Analysis: Successful Use of Soil Tunnels in Medieval and Modern Warfare and Smuggling. Open J. Soil Sci. 2020, 10, 194–215. [Google Scholar] [CrossRef]
- Althoff, P.S.; Thien, S.J. Impact of M1A1 main battle tank disturbance on soil quality, invertebrates, and vegetation characteristics. J. Terramech. 2005, 42, 159–176. [Google Scholar] [CrossRef]
- Garten, C.T.; Ashwood, T.L. Modeling soil quality thresholds to ecosystem recovery at Fort Benning, GA, USA. Ecol. Eng. 2004, 23, 351–369. [Google Scholar] [CrossRef]
- Perkins, D.B.; Haws, N.W.; Jawitz, J.W.; Das, B.S.; Rao, P.S.C. Soil hydraulic properties as ecological indicators in forested watersheds impacted by mechanized military training. Ecol. Indic. 2007, 7, 589–597. [Google Scholar] [CrossRef]
- Reyes, M.R.; Raczkowski, C.W.; Reddy, G.B.; Gayle, G.A. Effect of wheel traffic compaction on runoff and soil erosion in no-till. Appl. Eng. Agric. 2005, 21, 427–433. [Google Scholar] [CrossRef]
- Wood, C.E. Soil and Warfare. In Soil and Culture; Springer: Dordrecht, The Netherlands, 2009; pp. 401–415. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerda, A.; Arcenegui, V.; Jordan, A.; Zavala, L.M. Fire effects on soil aggregation: A review. Earth Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Mcneill, J.R. Woods and Warfare in World History. Environ. Hist. 2004, 9, 388–410. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Blake, W.H.; Chafer, C.J.; Humphreys, G.S.; Wallbrink, P.J. Effects of differing wildfire severities on soil wettability and implications for hydrological response. J. Hydrol. 2006, 319, 295–311. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Sanderson, P.; Naidu, R.; Bolan, N. Ecotoxicity of chemically stabilised metal(loid)s in shooting range soils. Ecotoxicol. Environ. Saf. 2014, 100, 201–208. [Google Scholar] [CrossRef]
- Lin, Z.; Comet, B.; Qvarfort, U.; Herbert, R. The chemical and mineralogical behaviour of Pb in shooting range soils from central Sweden. Environ. Pollut. 1995, 89, 303–309. [Google Scholar] [CrossRef]
- Dinake, P.; Kelebemang, R.; Sehube, N.; Kereeditse, T.; Motswetla, O. Dynamic Risk Assessment of Lead Pollution of Shooting Range Soil by Applying the Delayed Geochemical Hazard Model—A Case Study in Botswana. Soil Sediment Contam. 2020, 29, 503–515. [Google Scholar] [CrossRef]
- Lewis, J.; Sjostrom, J.; Skyllberg, U.; Hagglund, L. Distribution, Chemical Speciation, and Mobility of Lead and Antimony Originating from Small Arms Ammunition in a Coarse-Grained Unsaturated Surface Sand. J. Environ. Qual. 2010, 39, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Busby, R.R.; Douglas, T.A.; LeMonte, J.J.; Ringelberg, D.; Indest, K. Metal accumulation capacity in indigenous Alaska vegetation growing on military training lands. Int. J. Phytoremediat. 2020, 22, 259–266. [Google Scholar] [CrossRef]
- Bannon, D.I.; Drexler, J.W.; Fent, G.M.; Casteel, S.W.; Hunter, P.J.; Brattin, W.J.; Major, M.A. Evaluation of Small Arms Range Soils for Metal Contamination and Lead Bioavailability. Environ. Sci. Technol. 2009, 43, 9071–9076. [Google Scholar] [CrossRef]
- Broomandi, P.; Dabir, B.; Bonakdarpour, B.; Rashidi, Y. Identification of dust storm origin in South -West of Iran. J. Environ. Health Sci. Eng. 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gent, D.B.; Johnson, J.L. Characterization of Firing Range Soil from Camp Edwards, MA, and the Efficacy of Acid and Alkaline Hydrolysis for the Remediation of M1 105 mm M67 Propellant; ERDC/EL TR-13-10; U.S. Army Corps of Engineers, Engineer Research and Development Center: Concord, MA, USA, 2013. [Google Scholar]
- Laporte-Saumure, M.; Martel, R.; Mercier, G. Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arms firing ranges. Environ. Technol. 2011, 32, 767–781. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Saha, U.; Ma, L. Chemical and physical characterization of lead in three shooting range soils in Florida. Chem. Speciat. Bioavailab. 2011, 23, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, P.; Naidu, R.; Bolan, N.; Bowman, M.; Mclure, S. Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Sci. Total Environ. 2012, 438, 452–462. [Google Scholar] [CrossRef]
- Tandy, S.; Meier, N.; Schulin, R. Use of soil amendments to immobilize antimony and lead in moderately contaminated shooting range soils. J. Hazard. Mater. 2017, 324, 617–625. [Google Scholar] [CrossRef]
- Thouin, H.; Le Forestier, L.; Gautret, P.; Hube, D.; Laperche, V.; Dupraz, S.; Battaglia-Brunet, F. Characterization and mobility of arsenic and heavy metals in soils polluted by the destruction of arsenic-containing shells from the Great War. Sci. Total Environ. 2016, 550, 658–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lide, D.R. Abundance of Elements in the Earth’s Crust and in the Sea, Handbook of Chemistry and Physics, 85th ed.; CRC Publishing: Boca Raton, FL, USA, 2005. [Google Scholar]
- Guney, M.; Karatas, T.; Ozkul, C.; Akyol, N.; Acar, U. Contamination by As, Hg, and Sb in a region with geogenic As anomaly and subsequent human health risk characterization. Environ. Monit. Assess. 2020, 192, 50. [Google Scholar] [CrossRef] [PubMed]
- Okkenhaug, G.; Amstaetter, K.; Bue, H.L.; Cornelissen, G.; Breedveld, G.; Henriksen, T.; Mulder, J. Antimony (Sb) Contaminated Shooting Range Soil: Sb Mobility and Immobilization by Soil Amendments. Environ. Sci. Technol. 2013, 47, 6431–6439. [Google Scholar] [CrossRef] [PubMed]
- Scheinost, A.; Rossberg, A.; Vantelon, D.; Xifra, I.; Kretzschmar, R.; Leuz, A.K.; Funke, H.; Annette Johnson, C. Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochim. Cosmochim. Acta 2006, 70, 3299–3312. [Google Scholar] [CrossRef]
- Spuller, C.; Weigand, H.; Marb, C. Trace metal stabilisation in a shooting range soil: Mobility and phytotoxicity. J. Hazard. Mater. 2007, 141, 378–387. [Google Scholar] [CrossRef]
- Broomandi, P.; Dabir, B.; Bonakdarpour, B.; Rashidi, Y.; Akherati, A. Simulation of mineral dust aerosols in southwestern Iran through numerical prediction models. Environ. Prog. Sustain. Energy 2018, 37, 1380–1393. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Martin, W.A.; Lee, L.S.; Schwab, P. Antimony migration trends from a small arms firing range compared to lead, copper, and zinc. Sci. Total Environ. 2013, 463, 222–228. [Google Scholar] [CrossRef]
- Thomas, V.; Guitart, R. Transition to Non-toxic Gunshot Use in Olympic Shooting: Policy Implications for IOC and UNEP in Resolving an Environmental Problem. Ambio 2013, 42. [Google Scholar] [CrossRef] [Green Version]
- Yeling, L.; Zhu, Y.; Zhao, S.; Liu, X. The weathering and transformation process of lead in China’s shooting ranges. Environ. Sci. Process. Impacts 2015, 17, 1620–1633. [Google Scholar] [CrossRef]
- Yi, X.U.; Liang, X.; Yingming, X.U.; Qin, X.; Huang, Q.; Wang, L.; Sun, Y. Remediation of Heavy Metal-Polluted Agricultural Soils Using Clay Minerals: A Review. Pedosphere 2017, 27, 193–204. [Google Scholar] [CrossRef]
- Liu, H.; Probst, A.; Liao, B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005, 339, 153–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucuker, M.A.; Guney, M.; Oral, H.V.; Copty, N.; Onay, T. Impact of deforestation on soil carbon stock and its spatial distribution in the Western Black Sea Region of Turkey. J. Environ. Manag. 2015, 147, 227–235. [Google Scholar] [CrossRef]
- Zagury, G.J.; Bello, J.A.R.; Guney, M. Valorization of a treated soil via amendments: Fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Seijo, A.; Vega, F.A.; Arenas-Lago, D. Assessment of iron-based and calcium-phosphate nanomaterials for immobilisation of potentially toxic elements in soils from a shooting range berm. J. Environ. Manag. 2020, 267, 110640. [Google Scholar] [CrossRef] [PubMed]
- Pennington, J.C.; Brannon, J.M. Environmental fate of explosives. Thermochim. Acta 2002, 384, 163–172. [Google Scholar] [CrossRef]
- Kalderis, D.; Juhasz, A.L.; Boopathy, R.; Comfort, S. Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1407–1484. [Google Scholar] [CrossRef]
- Stackleberg, K.V.; Amos, C.; Smith, T. Military Munitions-Related Compounds Fate and Effects: A Literature Review Relative to Threatened and Endangered Species; ERDC/CERL TR-05-10; U.S. Army Corps of Engineers, Engineer Research and Development Center: Winchester, MA, USA, 2005. [Google Scholar]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Qasim, M.M.; Moore, B.; Taylor, L.; Gorb, L.; Leszczynski, J.; Honea, P. Structural Characteristics and Reactivity Relationships of Nitroaromatic and Nitramine Explosives—A Review of Our Computational Chemistry and Spectroscopic Research. Int. J. Mol. Sci. 2007, 8, 1234. [Google Scholar] [CrossRef] [Green Version]
- Ampleman, G.; Thiboutot, S.; Lewis, J.; Marois, A.; Bouchard, M.; Martel, R.; Lefebvre, R.; Ranney, T.A.; Jenkins, T.F.; Pennington, J.C. Evaluation of the Impacts of Live-Fire Training at CFB Shilo (Final Report); Defence Research Establishment: Valcartier, QC, Canada, 2003.
- Clark, B.; Boopathy, R. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. J. Hazard. Mater. 2007, 143, 643–648. [Google Scholar] [CrossRef]
- Clausen, J.L.; Scott, C.; Osgerby, I. Fate of Nitroglycerin and Dinitrotoluene in Soil at Small Arms Training Ranges. Soil Sediment Contam. 2011, 20, 649–671. [Google Scholar] [CrossRef]
- Dube, R.; Ampleman, G.; Thiboutot, S.; Gagnon, A. Characterization of Potentially Explosives-Contaminated Sites at CFB-Gagetown, 14 Wing Greenwood and CFAD Bedford; Defence Research Establishment: Valcartier, QC, Canada, 1999.
- Jenkins, T.F.; Pennington, J.C.; Ranney, T.A.; Berry, T.; Miyares, P.H. Characterization of Explosives Contamination at Military Firing Ranges; ERDC TR-01-5; U.S. Army Corps of Engineers, Engineer Research and Development Center: Hanover, NH, USA, 2001. [Google Scholar]
- Jenkins, T.F.; Hewitt, A.D.; Grant, L.C. Identity and Distribution of Residues of Energetic Compounds at Army Live-Fire Training Ranges. Chemosphere 2006, 63, 1280–1290. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, T.F.; Hewitt, A.D.; Ranney, T.A.; Ramsey, C.A.; Lambert, D.; Bjella, K.L.; Perron, N. Sampling Strategies Near a Low-Order Detonation and a Target at an Artillery Impact Area; ERDC/CRREL TR-04-14; U.S. Army Corps of Engineers, Engineer Research and Development Center: Hanover, NH, USA, 2004. [Google Scholar]
- Jenkins, T.F.; Ranney, T.A.; Hewitt, A.D.; Walsh, M.; Bjella, K. Representative Sampling for Energetic Compounds at an Antitank Firing Range; ERDC/CRREL TR-04-7′; U.S. Army Corps of Engineers Engineer Research and Development Center: Hanover, NH, USA, 2004. [Google Scholar]
- Jenkins, T.F.; Walsh, M.E.; Thorne, P.G.; Miyares, P.H.; Ranney, T.A.; Grant, C.L.; Esparza, J. Site Characterization for Explosives at a Military Firing Range Impact Area; Special Report 98-9; U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory: Hanover, NH, USA, 1998. [Google Scholar]
- Juhasz, A.L.; Naidu, R. Explosives: Fate, Dynamics, and Ecological Impact in Terrestrial and Marine Environments. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2007; pp. 163–215. [Google Scholar] [CrossRef]
- Jung, J.W.; Lee, G.; Im, S.; Nam, K. Human Health Risk Assessment of a Civilian-Accessible Active Firing Range. Hum. Ecol. Risk Assess. 2013, 19, 807–818. [Google Scholar] [CrossRef]
- Pennington, J.C.; Jenkins, T.F.; Ampleman, G.; Thiboutot, S.; Brannon, J.; Clausen, J.; Hewitt, A.D.; Brochu, S.D.P.; Lewis, J.; Ranney, T.; et al. Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 4; ERDC TR-04-4; U.S. Army Corps of Engineers, Environmental Laboratory: Vicksburg, MS, USA, 2004. [Google Scholar]
- Pennington, J.C.; Jenkins, T.F.; Ampleman, G.; Thiboutot, S.; Brannon, J.M.; Lewis, J.; Delaney, J.E.; Clausen, J.H.; Hollander, M.A.; Hayes, C.A.; et al. Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 3; ERDC TR-03-2; U.S. Army Corps of Engineers, Environmental Laboratory: Vicksburg, MS, USA, 2003. [Google Scholar]
- Pennington, J.C.; Jenkins, T.F.; Ampleman, G.; Thiboutot, S.; Brannon, J.M.; Hewitt, A.D.; Lewis, J.; Brochu, S.; Diaz, E.; Walsh, M.; et al. Distribution and Fate of Energetics on DoD Test and Training Ranges: Final Report; ERDC TR-06-13; U.S. Army Corps of Engineers, Environmental Laboratory: Vicksburg, MS, USA, 2006. [Google Scholar]
- Thiboutot, S.; Ampleman, G.; Gagnon, A.; Marois, A.; Jenkins, T.F.; Walsh, M.E.; Thorne, P.G.; Ranney, T.A. Characterization of Antitank Firing Ranges at CFB Valcartier, WATC Wainwright and CFAD Dundurn; Defence Research Establishment: Valcartier, QC, Canada, 1998.
- Thiboutot, S.; Ampleman, G.; Marois, A.; Gagnon, A.; Bouchard, M.; Hewitt, A.; Jenkins, T.; Walsh, M.B.K. Environmental Condition of Surface Soils, and Biomass Prevailing in the Training Area at CFB Gagetown, New Brunswick; Defence Research Establishment: Valcartier, QC, Canada, 2003.
- Thiboutot, S.; Ampleman, G.; Marois, A.; Gagnon, A.; Bouchard, M.; Hewitt, A.; Jenkins, T.; Walsh, M.B.K. Environmental Condition of Surface Soils, CFB Gagetown Training Area: Delineation of the Presence of Munitions-Related Residues (Phase III, Final Report); Defence Research Establishment: Valcartier, QC, Canada, 2004.
- Walsh, M.E.; Collins, C.M.; Racine, C.H.; Jenkins, T.F.G.; Ranney, T.A. Sampling for Explosives Residues at Fort Greely, Alaska: Reconnaissance Visit July 2000; ERDC/CRREL TR-01-05; U.S. Army Corps of Engineers, Engineer Research and Development Center: Hanover, NH, USA, 2001. [Google Scholar]
- Walsh, M.E.; Ramsey, C.A.; Collins, C.M.; Hewitt, A.D.; Walsh, M.R.; Bjella, K.L.; Lambert, D.J.; Perron, N.M. Collection Methods and Laboratory Processing of Samples from Donnelly Training Area Firing Points, Alaska, 2003; ERDC/CRREL TR-05-6; U.S. Army Corps of Engineers, Engineer Research and Development Center: Hanover, NH, USA, 2005. [Google Scholar]
- Walsh, M.R.; Thiboutot, S.; Walsh, M.E.; Ampleman, G.; Martel, R.; Poulin, I.; Taylor, S. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges; ERDC/CRREL TR-11-13; U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 2011. [Google Scholar]
- Hewitt, A.D.; Jenkins, T.F.; Ramsey, C.A.; Bjella, K.L.; Ranney, T.A.; Perron, N.M. Estimating Energetic Residue Loading on Military Artillery Ranges: Large Decision Units; ERDC/CRREL TR-05-7; U.S. Army Corps of Engineers, Engineer Research and Development Center: Hanover, NH, USA, 2005. [Google Scholar]
- Brannon, J.M.; Pennington, J.C. Environmental Fate and Transport Process Descriptors for Explosives; ERDC/EL TR-02-10; U.S. Army Corps of Engineers, Engineer Research and Development Center: Vicksburg, MS, USA, 2002. [Google Scholar]
- Dontsova, K.M.; Pennington, J.C.; Hayes, C.; Simunek, J.; Williford, C.W. Dissolution and transport of 2,4-DNT and 2,6-DNT from M1 propellant in soil. Chemosphere 2009, 77, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.C.; Brannon, J.M.; Delfino, J.J. Effects of Component Interactions on the Aqueous Solubilities and Dissolution Rates of the Explosive Formulations Octol, Composition B, and LX-14. J. Chem. Eng. Data 2002, 47, 542–549. [Google Scholar] [CrossRef]
- Thorn, K.A.; Pennington, J.C.; Kennedy, K.R.; Cox, L.G.; Hayes, C.A. N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost. Environ. Sci. Technol. 2008, 42, 2542–2550. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Morley, M.C.; Speitel, G.E.; Clausen, J.A.Y. Fate and Transport of High Explosives in a Sandy Soil: Adsorption and Desorption. Soil Sediment Contam. 2004, 13, 361–379. [Google Scholar] [CrossRef]
- Uchimiya, M. Reductive transformation of 2,4-dinitrotoluene: Roles of iron and natural organic matter. Aquat. Geochem. 2010, 16, 547–562. [Google Scholar] [CrossRef]
- Pennington, J.C.; Patrick, W.H. Adsorption and desorption of 2,4,6-trinitrotoluene by soils. Environ. Qual. 1990, 19, 559–567. [Google Scholar] [CrossRef]
- McGrath, D.; Zhang, C.; Carton, O.T. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environ. Pollut. 2004, 127, 239–248. [Google Scholar] [CrossRef]
- Spiegel, K.; Headley, J.V.; Peru, K.M.; Haidar, N.; Gurprasard, N.P. Residues of Explosives in Groundwater Leached from Soils at a Military Site in Eastern Germany. Commun. Soil Sci. Plant Anal. 2005, 36, 133–153. [Google Scholar] [CrossRef]
- Xue, S.K.; Iskandar, I.K.; Selim, H.M. Adsorption-desorption of 2, 4, 6-trinitrotoluene and hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine in soils. Soil Sci. 1995, 160, 317–327. [Google Scholar] [CrossRef]
- Pennington, J.C.; Gunnison, D.W.H. Natural Attenuation of Explosives in Soil and Water Systems at Department of Defence Sites; SERDP-99-1; U.S. Army Corps of Engineers, Waterways Experiment Station: Vicksburg, MS, USA, 1999. [Google Scholar]
- Ainsworth, C.C.; Harvey, S.D.; Scezsody, J.E.; Simmons, M.; Cullinan, V. Relationship between the Leachability Characteristics of Unique Energetic Compounds and Soil Properties; U.S. Army Biomedical Research and Development Laboratory: Frederick, MD, USA, 1993. [Google Scholar]
- Haderlein, S.B.; Weissmahr, K.W.; Schwarzenbach, R.P. Specific Adsorption of Nitroaromatic Explosives and Pesticides to Clay Minerals. Environ. Sci. Technol. 1996, 30, 612–622. [Google Scholar] [CrossRef]
- Price, J.M.; Brannon, S.L.Y. Transformation of RDX and HMX under Controlled Eh/pH Conditions, Technical Report; IRRP-98-2; U.S. Army Corps of Engineers, Waterways Experiment Station: Vicksburg, MS, USA, 1998. [Google Scholar]
- Monteil-Rivera, F.; Groom, C.; Hawari, J. Sorption and Degradation of Octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine in Soil. Environ. Sci. Technol. 2003, 37, 3878–3884. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Chauhan, S.; D’Cruz, R.; Faruqi, S.; Singh, K.K.; Varma, S.; Singh, M.; Karthik, V. Chemical warfare agents. Environ. Toxicol. Pharmacol. 2008, 26, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Shenoi, R. Chemical warfare agents. Clin. Pediatr. Emerg. Med. 2002, 3, 239–247. [Google Scholar] [CrossRef]
- Schwenk, M. Chemical warfare agents. Classes and targets. Toxicol. Lett. 2018, 293, 253–263. [Google Scholar] [CrossRef]
- Kim, K.; Tsay, O.G.; Atwood, D.A. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2011, 111, 5345–5403. [Google Scholar] [CrossRef]
- Albright, R.D. 5—Chemical Warfare Material. In Cleanup of Chemical and Explosive Munitions; Albright, R.D., Ed.; William Andrew Publishing: Norwich, NY, USA, 2008. [Google Scholar] [CrossRef]
- Kinetz, C.E. Chromatography and mass spectrometry of chemical warfare agents, toxin and related compounds: State of the art and future prospects. Chromatogr. A 1998, 814, 1–23. [Google Scholar] [CrossRef]
- Khordagui, H. Potential fate of blistering chemical warfare agents on Kuwait’s arid soil and related research needs. J. Arid Environ. 1996, 32, 93–102. [Google Scholar] [CrossRef]
- Ashmore, M.H.; Nathanail, C.P. A critical evaluation of the implications for risk based land management of the environmental chemistry of Sulphur Mustard. Environ. Int. 2008, 34, 1192–1203. [Google Scholar] [CrossRef]
- Kuhlmeier, P.D. Fate of chemical releases into the environment. Clin. Occup. Environ. Med. 2002, 2, 313–326. [Google Scholar] [CrossRef]
- Ganesan, K.; Malhotra, R.C.; Sekhar, K. Reaction of elemental sulfur in ethylenediamine with sulfur mustard. J. Sulfur Chem. 2005, 26, 353–357. [Google Scholar] [CrossRef]
- McDonough, H.J. Performance Impacts of Nerve Agents and Their Pharmacological Countermeasures. Mil. Psychol. 2002, 14, 93–119. [Google Scholar] [CrossRef]
- Borron, S.W.; Baud, F.J.; Megarbane, B.; Bismuth, C. Hydroxocobalamin for severe acute cyanide poisoning by ingestion or inhalation. Am. J. Emerg. Med. 2007, 25, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Love, A.H.; Vance, A.L.; Reynolds, J.G.; Davisson, M.L. Investigating the affinities and persistence of VX nerve agent in environmental matrices. Chemosphere 2004, 57, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Groenewold, G.S.; Appelhans, A.D.; Gresham, G.L.; Olson, J.E.; Jeffery, M.; Weibel, M. Characterization of VX on concrete using ion trap secondary ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Kaaijk, J.; Frijlink, C. Degradation of S-2-di-isopropylaminoethyl O-ethyl methylphosphonothioate in soil. Sulphur-containing products. Pestic. Sci. 1977, 8, 510–514. [Google Scholar] [CrossRef]
- Munro, N.B.; Ambrose, K.R.; Watson, A.P. Toxicity of the organophosphate chemical warfare agents GA, GB, and VX: Implications for public protection. Environ. Health Perspect. 1994, 102, 18–38. [Google Scholar] [CrossRef]
- Watson, A.P.; Griffin, G.D. Toxicity of vesicant agents scheduled for destruction by the Chemical Stockpile Disposal Program. Environ. Health Perspect. 1992, 98, 259–280. [Google Scholar] [CrossRef]
- Hussain, T.; Gondal, M.A. Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy. Environ. Monit. Assess. 2008, 136, 391–399. [Google Scholar] [CrossRef]
- Martin, W.A.; Felt, D.R.; Larson, S.L.; Fabian, G.; Nestler, C. Open Burn/Open Detonation (OBOD) Area Management Using Lime for Explosives Transformation and Metals Immobilization; ERDC/EL TR-12-4; U.S. Army Corps of Engineers, Engineer Research and Development Center: Vicksburg, MS, USA, 2012. [Google Scholar]
- Petre, R.; Rotariu, T.; Zecheru, T.; Petrea, N.; Bajenaru, S. Environmental Long Term Impact on a Romanian Military Testing Range. Cent. Eur. J. Energ. Mater. 2016, 13, 3–19. [Google Scholar] [CrossRef]
- Saulius, V.; Greiciute, K. Investigation of soil pollution with heavy metals in Lithuanian military grounds. J. Environ. Eng. Landsc. Manag. 2004, 12, 132–137. [Google Scholar] [CrossRef]
- Briggs, C. Science and environmental risk: The case of perchlorate contamination in California. Environ. Polit. 2006, 15, 532–549. [Google Scholar] [CrossRef]
- Jergovic, M.; Miskulin, M.; Puntaric, D.; Gmajnic, R.; Milas, J.; Sipos, L. Cross-sectional Biomonitoring of Metals in Adult Populations in Post-war Eastern Croatia. Differences between Areas of Moderate and Heavy Combat. Croat. Med. J. 2010, 51, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Idzelis, L.R.; Greiciute, K.; Paliulis, D. Investigation and evaluation of surface water pollution with heavy metals and oil products in Kairiai Military Ground territory. J. Environ. Eng. Landsc. Manag. J Environ. Eng. Landsc. Manag. 2006, 14, 183–190. [Google Scholar] [CrossRef]
- Sanderson, W.; Leonard, S.; Ott, D.; Fuortes, L.; Field, R.W. Beryllium Surface Levels in a Military Ammunition Plant. J. Occup. Environ. Hyg. 2008, 5, 475–481. [Google Scholar] [CrossRef]
- Olson, K.; Morton, L. Long-Term Fate of Agent Orange and Dioxin TCDD Contaminated Soils and Sediments in Vietnam Hotspots. Open J. Soil Sci. 2019, 9, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Zhao, X. Ecological and Human Health Risks of Heavy Metals in Shooting Range Soils: A Meta Assessment from China. Toxics 2020, 8, 32. [Google Scholar] [CrossRef]
- Dvorak, P.; Roy, K.; Andreji, J.; Liskova, Z.D.; Mraz, J. Vulnerability assessment of wild fish population to heavy metals in military training area: Synthesis of a framework with example from Czech Republic. Ecol. Indic. 2020, 105920. [Google Scholar] [CrossRef]
- Guney, M.; Welfringer, B.; de Repentigny, C.; Zagury, G. Children’s Exposure to Mercury-Contaminated Soils: Exposure Assessment and Risk Characterization. Arch. Environ. Contam. Toxicol. 2013, 65. [Google Scholar] [CrossRef]
- Guney, M.; Zagury, G.J. Bioaccessibility and other key parameters in assessing oral exposure to PAH-contaminated soils and dust: A critical review. Hum. Ecol. Risk Assess. 2016, 22, 1396–1417. [Google Scholar] [CrossRef]
- Jirau-Colon, H.; Cosme, A.; Marcial-Vega, V.; Jimenez-Velez, B. Toxic Metals Depuration Profiles from a Population Adjacent to a Military Target Range (Vieques) and Main Island Puerto Rico. Int. J. Environ. Res. Public Health 2020, 17, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, F.; Husain, T. Risk-based monitored natural attenuation—A case study. J. Hazard. Mater. 2001, 85, 243–272. [Google Scholar] [CrossRef]
- MacDonald, J.A. Evaluating natural attenuation for groundwater cleanup. Environ. Sci. Technol. 2000, 34, 346A–353A. [Google Scholar] [CrossRef]
- Manduca, P.; Baraquni, N.A.; Parodi, S. Long Term Risks to Neonatal Health from Exposure to War—9 Years Long Survey of Reproductive Health and Contamination by Weapon-Delivered Heavy Metals in Gaza, Palestine. Int. J. Environ. Res. Public Health 2020, 17, 2538. [Google Scholar] [CrossRef] [Green Version]
- Savabieasfahani, M.; Ahamadani, F.B.; Damghani, A.M. Living near an active U.S. military base in Iraq is associated with significantly higher hair thorium and increased likelihood of congenital anomalies in infants and children. Environ. Pollut. 2020, 256, 113070. [Google Scholar] [CrossRef]
- U.S. EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part A). Interim Final; EPA/540/1-89/002; U.S. EPA: Washington, DC, USA, 1989.
- American Petroleum Institute (API). API’s Decision Support System for Exposure and Risk Assessment Version 2.0; API: Washington, DC, USA, 1999. [Google Scholar]
- Jang, J.Y.; Jo, S.N.; Kim, S.; Yoon, M.J.; Cheong, H.K.; Kim, S. Korean Exposure Factors Handbook; Korea Ministry of Environment: Seoul, Korea, 2007.
- Department of Environment, Transport and the Regions (DETR). Contaminated Land: Implementation of Part IIA of the Environmental Protection Act 1990; DETR: London, UK, 2000.
- Department of Environment, Food and Rural Affairs (DEFRA). Contaminated Land Exposure Assessment Model (CLEA): Technical Basis and Algorithms; DEFRA: Bristol, UK, 2002.
- Department of Environment, Food and Rural Affairs (DEFRA). Assessment of Risks to Human Health from Land Contamination: An Overview of the Development of Soil Guideline Values and Related Research, CLR7; DEFRA: Bristol, UK, 2002.
- Hough, R.L.; Breward, N.; Young, S.D.; Crout, N.M.J.; Tye, A.M.; Moir, A.M.; Thornton, I. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ. Health Perspect. 2004, 112, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Reeder, J.R.; Schoonen, M.; Lanzirotti, A. Metal Speciation and its Role in Bioaccessibility and Bioavailability. Rev. Mineral. Geochem. 2005, 64, 59–113. [Google Scholar] [CrossRef]
Studies | Country | Ag | As | Be | Cd | Co | Cr | Cu | Hg | Ni | Pb | Sb | V | Zn | Comments |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[9] | Bosnia and Herzegovina | - * | - | - | 1 | - | - | 65 | - | 40 | 80 | - | - | 150 | Maximum allowed values for silty loam soil |
[24] | U.S. | 4 | - | - | 0.36 | - | 26 | 28 | 0.1 a | 38 | 11 | - | - | 46 | U.S.EPA eco-screening levels for most sensitive receptors |
[24] | Spain | 78 | - | - | 14 | - | 1100 b | 630 | 4.7 c | 760 | 400 | - | - | 1000 | Soil screening level for unrestricted land use on shallow soils overlying usable groundwater resources |
[22] | Croatia d | - | - | - | 0–0.5 | - | 0–40 | 0–60 | 0–0.5 | 0–30 | 0–50 | - | - | 0–60 | Maximum allowed concentrations for silty loamy soils (for agricultural use) |
Croatia e | - | - | - | 0.5–1 | - | 40–80 | 60–90 | 0.5–1 | 30–50 | 50–100 | - | - | 60–150 | ||
Croatia f | - | - | - | 1–2 | - | 80–120 | 90–120 | 1–1.5 | 50–75 | 100–150 | - | - | 150–200 | ||
[17,21] | Korea | - | - | - | 4 | - | - | 150 | - | - | 200 | 40 g | - | 300 | Korean regulation for agricultural soils [32] |
[17,18] | Norway | - | - | - | - | - | - | - | - | - | 60 | 40 | - | - | Background levels [33] |
[19] | Spain | - | - | - | - | - | 80 | 45 | - | 65 | 55 | - | - | 100 | Background levels |
Spain | - | - | - | - | - | 100 | 100 | - | 100 | 100 | - | - | 500 | Generic reference level for urban and recreational soils [25] | |
[16,29] | Korea | - | - | - | - | - | - | 2000 | - | - | 700 | 5 | - | - | Korean regulation for shooting range soils [34] |
[28] | Czech Republic | - | 30 | 7 | 1 | 50 | 200 | 100 | - | - | 140 | - | - | 200 | Maximum permissible limits [35] |
[26,27] | Canada | - | - | - | - | - | - | 100 h | - | - | 500 h | - | - | 500 h | Threshold values for commercial or industrial use & for residential use [36,37,38] |
- | - | - | - | - | - | 63 i | - | - | 140 i | 20 i | - | - | |||
Canada | - | - | - | - | - | - | 500 h | - | - | 1000 h | - | - | 1500 h | ||
- | - | - | - | - | - | 91 i | - | - | 600 i | 40 i | - | - | |||
[16,20] | Belgium | - | 16 | - | - | - | - | 20 | 0.1 | 16 | 31 | - | - | 77 | Background values for standard agricultural soils defined as containing 10% clay and 2% organic matter [39] |
[23] | France | - | 125 | - | - | - | 1000 | - | - | 350 | 1000 | - | - | - | - |
France | - | 55 | - | - | 240 | 380 | 190 | - | 210 | 530 | - | - | 720 | Soil intervention values [40] | |
[15] | Switzerland | - | - | - | - | - | - | 9.4 | - | - | - | - | - | - | Background levels |
Resource | Country | HMX | RDX | TNT | 4ADNT | NG | 2,4-DNT | 2,6-DNT | 1,3-DNB | 2,4,6-TNT | Comment |
---|---|---|---|---|---|---|---|---|---|---|---|
[41] | U.S. | 51,000 | 26 | 95 | - * | 200 | 2000 | 1000 | - | - | Risk-based concentrations in soil (industrial) by U.S.EPA Region 3 [41] |
U.S. | 3900 | 5.8 | 21 | - | 46 | 160 | 78 | - | - | Risk-based concentrations in soil (residential) by U.S.EPA Region 3 [41] | |
[13] | Canada | 32 | 4.7 | 3.7 | - | 65 | 11 | 8.5 | - | - | Preliminary soil quality guideline for the environment [30] |
Canada | 4100 | 250 | 41 | - | 2500 | 0.14 | 0.14 | - | - | Preliminary soil quality guideline for human health [30] | |
Canada | 13 | 7.6 | 31 | - | 2.4 | 130 | 130 | - | - | Preliminary soil quality guideline to protect aquatic life in case of groundwater discharge [30] | |
[23] | France | - | - | - | 100 | - | 100 | - | 75 | 8 | German soil investigation values proposed for parks recreational areas [42] |
Reference | Site | Activity | Soil pH | Ag | As | Ba | Cd | Co | Cr | Cu | Hg | Mn | Ni | Pb | Sb | Ti | V | Zn | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[9] | Bosnia Herzegovina | MBA | 9.2–9.9 | - | - | - | 0.8–6.1 | - | - | 23.6–443 | - | - | 40.4–73.6 | 27.7–40.9 | - | - | - | 91.7–238 | - |
[69] | Switzerland | MBA | 6.1–8.2 | - | - | - | - | - | - | 63–66 | - | 480–860 | 55–61 | 500–620 | 17–21 | - | - | 100–110 | - |
[21] | Korea | MBA | 6–6.8 | - | - | - | 7.45–8.11 | - | - | 318–562 | - | - | - * | 3918–18,609 | 26–108 | - | - | 104–123 | - |
[17] | Norway | MBA | 4.8–6.5 | - | - | - | - | - | - | 41–88 | - | - | - | 356–1112 | 40–123 | - | - | - | - |
[19] | Spain | MBA | 3.72–6.75 | - | - | - | - | - | 40–79 | 19–98 | - | - | 11–33 | 55–6309 | - | - | - | 34–264 | - |
[29] | Korea | MBA | 8 | - | - | - | - | - | - | 1168 | - | - | - | 17,468 | 164 | - | - | - | - |
[28] | Czech Republic | MBA | 5.6–7.7 | - | 5.33 | - | 0.235 | 3.81 | 18.4 | 6.91 | - | - | 10.7 | 15.5 | 3.33 | - | - | 34.3 | - |
[27] | Canada | MBA | - | - | - | - | - | - | - | 245 | - | - | - | 3368 | 73 | - | - | 177 | - |
[65] | U.S. | MBA | 4.9 | - | 2.47–2.67 | - | - | - | 36.27–38.4 | 65.67–118.77 | - | 91.57–107.33 | 33.777–57.33 | 17.85–19.30 | 0.08–0.12 | - | - | 54.8–58.27 | - |
[26] | Canada | MBA | 5.9–8.1 | - | - | - | - | - | - | 1760 | - | - | - | 43,300 | 780 | - | - | 355 | - |
[68] | Australia | MBA | 5.3–6.4 | - | 0.25–9.55 | - | - | - | - | 0.43–1250 | - | - | 0.48–8.97 | 1.18–10,403 | 1–252 | - | - | 0.99–179 | - |
[67] | U.S. | MBA | 6.11–6.72 | - | - | - | - | - | - | - | - | - | - | 10,068–70,350 | - | - | - | - | - |
[66] | Canada | MBA | - | - | - | - | - | - | - | 1830–7720 | - | - | - | 14,400–27,100 | 150–570 | - | - | 260–1080 | - |
[63] | U.S. | MBA | 4.4–8.19 | - | 2.8–27.9 | - | - | - | - | 223–2936 | - | 83–930 | 3–33 | 4549–24,484 | 7–91 | - | - | 102–284 | - |
[13] | Canada | MBA | - | - | 0.8–10 | 24.2–75 | 0.1–15.2 | - | 4–24.1 | 2.5–154 | - | - | 3–21 | 5–53.8 | - | - | 6.9–35.5 | 11.9–120 | - |
[6] | Korea | MBA | - | - | - | - | 0.0735–0.22 | - | - | 3.12- 83 | - | - | - | 3.48–16.9 | - | - | - | - | - |
[15] | Switzerland | MBA | 3.2–3.6 | - | - | - | - | - | - | 32–552.3 | - | - | 21.3–114.7 | 429–80,935 | 6.2–4022.4 | - | - | 60.3–128.3 | - |
[64] | Iran (Iran-Iraq War, 1980–1988) | WIA | 8 | - | 3.9 | 93 | - | 13 | 156 | 40 | 2.25 | 443 | 110 | 36 | 8 | 3000 | 63 | 4420 | 100 |
[24] | Spain (WWII, 1939–1945) | WIA | - | 1.4–42 | - | - | 15–23 | - | 60–115 | 1403–11,860 | 0.142–0.624 | 960–2492 | 19–96 | 1555–2000 | - | - | - | 2805–9019 | - |
[7] | Poland (WWI, 1914–1918; WWII, 1939–1945) | WIA | 5.3–5.9 | - | - | - | - | - | - | - | 0.4162 | - | - | - | - | - | - | - | - |
[22] | Croatia, (War of Independence, 1991–1995) | WIA | 4.8–7.2 | - | - | - | 0.13 | - | 32 | 13 | 0.07 | 506 | 19 | 17 | - | - | - | 53 | - |
[70] | France (WWI, 1914–1918) | WIA | 5.3–5.9 | - | 1937–72,820 | - | - | - | - | 1451–9113 | - | - | - | 968–5777 | - | - | - | 10,660–90,190 | - |
[16] | Belgium, (WWI, 1914–1918) | WIA | - | - | - | - | - | - | - | 23.3 | - | - | - | 47.6 | - | - | - | - | - |
[20] | Belgium (WWI, 1914–1918) | WIA | - | - | - | - | - | - | - | 26.9 | - | - | - | - | - | - | - | - | - |
[23] | France (WWI, 1914–1918) | WIA | 4.4–5.8 | - | 59–136,770 | - | - | 5–7 | 22–39 | 20–15,755 | - | 99–840 | 8–17 | 766–26,398 | - | - | - | 399–133,237 | - |
Energetic Compound | CAS Number | MW (g) | Melting Point (°C) | Boiling Point (°C) | Vapor Pressure (mm Hg) | Henry’s Law Constant (atm m3 mol−1) | Water Solubility (mg L−1) | Temperature at Solubility Reported (°C) | Log P |
---|---|---|---|---|---|---|---|---|---|
1,3-Dinitrobenzene (1,3-DNB) | 99-65-0 | 168.11 | 89–90 | 302.8 | 2.00 × 10−4 | 4.90 × 10−8 | 533 | 25 | 1.49 |
2,4-Dinitrophenol | 51-28-5 | 184.11 | 112–114 | sublimes | 3.90 × 10−4 | 8.60 × 10−8 | 2790 | 20 | 1.67 |
2,3-Dinitrotoluene | 602-01-7 | 182.14 | 59–61 | - * | 4.00 × 10−4 | 9.30 × 10−8 | - | - | 2.2 |
2,4-Dinitrotoluene | 121-14-2 | 182.14 | 71 | 300 | 1.47 × 10−4 | 1.30 × 10−7 | 270 | 22 | 1.98 |
2,5-Dinitrotoluene | 619-15-8 | 182.14 | 52.5 | - | 4.00 × 10−4 | 9.30 × 10−8 | - | - | 2.2 |
2,6-Dinitrotoluene | 606-20-2 | 182.14 | 66 | 285 | 5.67 × 10−4 | 9.26 × 10−8 | 180 | 20 | 2.1 |
3,4-Dinitrotoluene | 610-39-9 | 182.14 | 58.3 | - | 4.00 × 10−4 | 9.30 × 10−8 | 100 | 25 | 2.08 |
3,5-Dinitrotoluene | 618-85-9 | 182.14 | 93 | - | 1.90 × 10−3 | 9.30 × 10−8 | - | - | 2.28 |
2-Nitrophenol | 88-75-5 | 139.11 | 44–45 | 216 | 0.113 | 1.30 × 10−5 | 2100 | 20 | 1.79 |
3-Nitrophenol | 554-84-7 | 139.11 | 97 | 194 | 0.1 | 2.00 × 10−9 | 13,550 | 25 | 2 |
4-Nitrophenol | 100-02-7 | 139.11 | 113–114 | 279 | 9.79 × 10−5 | 1.30 × 10−8 | 16,000 | 25 | 1.91 |
1,3,5-Trinitrobenzene (1,3,5-TNB) | 99-35-4 | 213.11 | 122.5 | 315 | 3.20 × 10−6 | 3.08 × 10−9 | 340 | 20 | 1.1 |
2,4,6-Trinitrophenol | 88-89-1 | 229.1 | 122–123 °C | 300, explodes | 7.50 × 10−7 | 1.70 × 10−8 | 12.7 | 25 | 1.44 |
2,4,6-Trinitrotoluene (TNT) | 118-96-7 | 227.13 | 80.1 | 240, explodes | 1.99 × 10−4 | 4.57 × 10−7 | 130 | 20 | 1.6 |
Ammonium perchlorate | 14797-73-0 | 117.49 | decomposes | decomposes | negligible | negligible | 2.49 × 105 | 20 | negligible |
Cyclotrimethyl- enetrinitramine (RDX) | 121-82-4 | 222.26 | 205–206 | decomposes | 4.10 × 10−9 | 6.30 × 10−8 | 59.8 | 25 | 0.87 |
High Melting Point Explosive (HMX) | 2691-41-0 | 296.20 | 276–286 | - | 3.33 × 10−14 | 2.60 × 10−15 | 6.63 | 20 | 0.26:0.06 |
Nitrobenzene | 98-95-3 | 123.11 | 5.7 | 210.8 | 0.245 | 2.40 × 10−5 | 1800 | 25 | 1.85 |
Nitroglycerin (NG) | 55-63-0 | 227.09 | 2.8; 13.5 | 218, explodes | 2.00 × 10−4 | 4.30 × 10−8 | 1800 | 25 | 1.62 |
Pentaerythritol Tetranitrate (PETN) | 78-11-5 | 316.15 | 140 | 180 | 1.04 × 10−10 | 1.20 × 10−11 | 43 | 25 | 1.61 |
Terephthalic Acid | 100-21-0 | 166.13 | 140.6 | 288 | 9.20 × 10−6 | 3.88 × 10−3 | 15 | 20 | 2 |
Trinitrophenyl-methylnitramine (Tetryl) | 479-45-8 | 287.15 | 130–132 | 187, explodes | 4.00 × 10−10 | 1.00 × 10−11 | 75 | 20 | 2.4 |
Study | Country | Activity | HMX | RDX | TNT | TNB | 4ADNT | 2ADNT | NG | 2,4-DNT | 2,6-DNT | 1,3,5-TNB | Aminos | Tetryl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[8] | Korea | MBA * | ND | 51.2 | 53.1 | ND | ND | ND | ND | ND | ND | ND | ND | ND |
[101] | Korea | MBA | 0.087 | 0.806 | 0.169 | ND | ND | 0.038 | ND | ND | ND | ND | ND | ND |
[93] | U.S. | MBA * | ND | ND | ND | ND | ND | ND | ˂0.02–69.64 | ˂0.014–1.51 | ˂0.18 | ND | ND | ND |
22.9–30.5 cm | ND | ND | ND | ND | ND | ND | 0.06–3.35 | ˂0.014–0.11 | ˂0.18 | ND | ND | ND | ||
45.7–60.9 cm | ND | ND | ND | ND | ND | ND | ˂0.02–0.69 | ˂0.014–˂0.14 | ˂0.18 | ND | ND | ND | ||
76.2–91.4 cm | ND | ND | ND | ND | ND | ND | ˂0.02–0.67 | ˂0.014 | ˂0.18 | ND | ND | ND | ||
[13] | Canada | MBA * | 20–1470 | 1.4–6000 | 40–500,000 | ND | ND | ND | 4–500 | 25–760 | 6.52–270 | 4810 | 5.7–4420 | 3390 |
MBA * (crater soil) | ND | ND | 79,000 | ND | ND | ND | ND | ND | ND | 350 | ND | ND | ||
[96] | U.S. | MBA * (demolition ranges) | 0.04–4.63 | 0.06–28.61 | 0.05–234.05 | ND | ND | ND | 0.21–10.74 | 0.08–0.8 | ND | ND | ND | ND |
[92] | U.S. | MBA * | 600–900 | 800–1900 | 4000–10,000 | ND | ND | ND | ND | ND | ND | ND | ND | ND |
[6] | Korea | MBA | 0.0165- 0.470 | 0.00203–13.4 | 0.00306–0.058 | ND | ND | ND | ND | ND | ND | ND | ND | ND |
[96] | U.S., Canada | MBA * | ˂0.01–745 | ˂0.01–5.1 | ˂0.01–73 | ˂0.01–0.15 | ˂0.01–0.01 | ˂0.01 | 2.5–3.58 | 0.91 | ˂0.01 | ND | ND | ND |
[111] | U.S. | MBA * | 0.003–94 | ˂0.001–825 | 0.005–537 | 0.001–4 | ˂0.01–0.05 | ˂0.01–0.11 | 12 | 0.11 | ˂0.01 | ND | ND | ND |
[109] | U.S. | MBA * | ND | ND | ND | ND | ND | ND | ˂0.01 | 0.66–9.1 | 0.35 | ND | ND | ND |
[97] | U.S. | MBA * | 489–874 | 0.5–1 | 2–6 | ND | 0.4–0.8 | 0.5–0.7 | 35–34 | ND | ND | ND | ND | ND |
[98] | U.S. | MBA * | 0.46–5.6 | 2.1–6.5 | 0.62–5.6 | ˂0.01–0.01 | 0.23–0.51 | 0.31–0.61 | ND | ND | ND | ND | ND | ND |
[102] | U.S., Canada | MBA * | 0.53–9.1 | 5.6–51 | 0.78–36 | ˂0.01–0.28 | ˂0.01–0.40 | ˂0.01–0.03 | 0.35 | 0.04 | ˂0.01 | ND | ND | ND |
[107] | Canada | MBA * | ˂0.01 | ˂0.01 | ˂0.01 | ˂0.01 | ˂0.01 | ˂0.01 | ND | ND | ND | ND | ND | ND |
[91] | Canada | MBA * | 0.05–0.19 | 0.45–0.71 | ˂0.01–0.06 | ˂0.01 | ˂0.01–0.02 | ˂0.01–0.02 | ND | ND | ND | ND | ND | ND |
[103] | U.S. | MBA * | 0.02- 302 | ˂0.003–1130 | ˂0.001–2520 | ˂0.01–148 | ˂0.002–12 | ˂0.01–18 | ˂0.001 | 0.97 | ˂0.001 | ND | ND | ND |
[106] | U.S. | MBA * | ˂0.01 | ˂0.01 | ˂0.01–42,200 | ˂0.01 | ˂0.01 | ˂0.01 | ND | ND | ND | ND | ND | ND |
[112] | U.S. | MBA * | ˂0.03–23 | ˂0.003–54 | ˂0.001–9440 | ˂0.003–50 | 0.01–0.05 | 0.007–0.12 | 1.85–26 | ˂0.01–3.2 | ˂0.02–4.6 | ND | ND | ND |
[95] | U.S. | MBA * | 1.0–1.8 | 4.4–7.5 | 1.5–15,100 | 0.05–15 | 0.15–110 | 0.13–102 | ˂0.01 | 4.0–84 | ˂0.01 | ND | ND | ND |
[108] | U.S. | MBA * | 40 | 340 | 130 | 0.2 | 1 | 0.8 | ND | 0.04 | ND | ND | ND | ND |
[94] | Canada | MBA * | 0.02 | 0.12 | 0.12 | ˂0.01 | ˂0.01 | ˂0.01 | ND | ND | ND | ND | ND | ND |
[99] | U.S. | MBA * | 307 | 0.25 | 0.20 | ND | 0.69 | 0.55 | NA | ND | ND | ND | ND | ND |
[105] | U.S. | MBA * | 399–987 | 0.1–5.3 | 3–126 | ND | ND | ND | 7.8 | ND | ND | ND | ND | ND |
Name Chemical Formula | CAS Number | Molar Mass (g mol−1) | Appearance/Odor | Density (g mL−1) | Melting Point (°C) | Boiling Point (°C) | Solubility | Vapor Pressure (mm Hg) | Log P |
---|---|---|---|---|---|---|---|---|---|
2-Chlorovinyldichloroarsine C2H2AsCl3 | 541-25-3 | 207.32 | Colorless liquid when pure; impurities lead to colors ranging from violet to brown, faint odor of geranium | 1.89 | −18 | 190 | Greater than 10% in ethanol; greater than 10% in ethyl ether, and in water, 500 mg L−1. | 0.58 (25 °C) | - * |
2-Diethoxyphosphorylsulfanyl-N,N-diethylethanamine C10H24NO3PS | 78-53-5 | 269.34 | Colorless liquid | - | 110 deg C at 0.2 mm Hg | 110 °C (230 °F; 383 K) at 0.2 mm Hg | Highly soluble in water and most organic solvents | 0.01 (80 °C) | - |
2-(Dimethylamino)ethyl 2,2-diphenyl-2-prop-2-ynoxyacetate C21H23NO3 | 6581-06-2 | 337.40 | Vapors colorless, odorless | - | 164 to 165 | 322 | 200 mg L−1 at 25 °C (water), soluble in DMSO, propylene glycol, and other solvents | 2.38 × 10−10 (25 °C) | - |
2-[Ethoxy(methyl)phosphoryl]sulfanyl-N,N-diethylethanamine C9H22NO2PS | 21770-86-5 | 239.32 | - | - | - | - | - | - | - |
2-[Fluoro(methyl)phosphoryl] oxypropane C4H10FO2P | 107-44-8 | 140.09 | Clear colorless liquid, brownish if impure, Odorless in pure form. Impure sarin can smell like mustard or burned rubber. | 1.0887 (25 °C) | −56 | 158 | Miscible in water | 2.86 (25 °C) | 0.30 |
3-[Fluoro(methyl)phosphoryl] oxy-2,2 dimethylbutane C7H16FO2P | 96-64-0 | 182.18 | When pure, colorless liquid with odor resembling rotten fruit. With impurities, amber or dark brown, with odor of camphor oil. | 1.022 | −42 | 198 | Moderate in water | 0.40 (25 °C) | - |
(6aR,9R)-N,N-diethyl-7-methyl-6,6a,8,9-tetrahydro-4H-indolo[4,3-fg]quinoline-9-carboxamide C20H25N3O | 50-37-3 | 323.44 | Colorless, odorless | - | 80 to 85 | - | 67.02 mg L−1 at 25 °C (water) | 2.04 × 10−8 (25 °C) | 2.95 |
Arsine AsH3 | 7784-42-1 | 77.95 | Colorless gas, disagreeable garlic odor | 4.93, gas | −111.2 | −62.5 | 0.07 g 100 mL−1 at 25 °C (water) | 11,000 (25 °C) | - |
Bis(2-chloroethyl) sulfide C4H8Cl2S | 69020-37-7 | 159.07 | Colorless if pure. Normally ranges from pale yellow to dark brown. Slight garlic or horseradish type odor | 1.27, liquid | 14.4 | 218 decompose at 217 | Soluble in THF, alcohol, lipids, benzene. | 0.11 (25 °C) | - |
Carbononitridic chloride CNCl | 506-77-4 | 61.47 | Colorless gas, acrid | 0.003 | −6.55 | 13 | Soluble in ethanol, water, ether | 1.23 × 10+3 (25 °C) | - |
Carbonyl dichloride COCl2, also CCl2O | 75-44-5 | 98.92 | Colorless gas, suffocating odor like musty hay | 4.248 (15 °C), gas) | −118 | 8.3 | Soluble in toluene, benzene, acetic acid but insoluble in water. | 1.216 (20°C) | - |
Chlorine Cl2 | 7782-50-5 | 70.90 | Pale yellow-green gas, pungent, irritating | 3.2 at STP | −101.5 | −34.04 | 6300 mg L−1 at 25 °C (water) | 5.83 × 10+3 (25 °C) | - |
Dichloro(ethyl)arsane C2H5AsCl2 | 598-14-1 | 174.89 | Colorless mobile liquid, biting irritant odor | 1.742 (14 °C) | -65 | −156 | Soluble in benzene, alcohol, ether, and water. | 2.29 (21.5 °C) | - |
Dichloro(methyl)arsane CH3AsCl2 | 593-89-5 | 160.86 | Colorless liquid, pungent odor | 1.836 | −55 | 133 | Reacts in water | 760 (163 °C) | - |
Dichloro(phenyl)arsane C6H5AsCl2 | 696-28-6 | 222.93 | Colorless gas or liquid | 1.65 (20 °C) | −20 | 252 to 255 | Reacts in water, and soluble in benzene, ether, acetone. | 0.033 (25 °C) | 3.06 |
[Dimethylamino(ethoxy)phosphoryl] formonitrile C5H11N2O2P | 77-81-6 | 162.13 | Colorless to brown liquid, in small concentrations it smells of fruit but in large concentrations it smells of fish | 1.0887 (25 °C) | −50 | 247.5 | 9.8 g 100 mL−1 at 25 °C (water) | 0.07 (25 °C) | - |
[Fluoro(methyl) phosphoryl] oxycyclohexane C7H14FO2P | 329-99-7 | 180.16 | Colorless liquid | 1.1278 | −30 | 239 | Almost insoluble in water | - | - |
Formonitrile HCN | 74-90-8 | 27.03 | Colorless liquid or gas, oil of bitter almond | 0.6876 | −13.29 | 26 | Miscible in water, and ethanol | 742 (25 °C) | - |
Mechlorethamine C5H11Cl2N | 51-75-2 | 156.05 | Colorless liquid, fishy ammoniacal odor | 1.118 (25 °C) | −60 | 87 at 18 mm Hg | Miscible with carbon disulfide, dimethyl formamide, carbon tetrachloride, and many oils and organic solvents And very slightly soluble in water. | 0.17 (25 °C) | 0.91 |
N-[2-[ethoxy(methyl)phosphoryl]sulfanylethyl]-N-propan-2-ylpropan-2-amine C11H26NO2PS | 50782-69-9 | 267.37 | Amber-colored liquid, odorless | 1.0083 | −51 | 300 | 30 g L−1 at 25 °C (water), Dissolves well in organic solvents | 8.78 × 10−4 (25 °C) | 2.047 |
Trichlormethine C6H12Cl3N | 555-77-1 | 204.52 | Colorless liquid, fishy ammoniacal odor | 1.24 | −4 to −3.7 | 143 | 160 mg L−1 at 25 °C (water), miscible with carbon disulfide, dimethyl formamide, carbon tetrachloride, and many other oils and organic solvents | 0.011 (25 °C) | 1.306 |
Trichloromethyl carbonochloridate C2Cl4O2 | 503-38-8 | 197.82 | Liquid at room temperature, odor similar to Phosgene | 1.65 | −57 | 128 | Insoluble in water | 9.75 at (20 °C) | 1.49 |
Trichloro(nitro)methane CCl3NO2 | 76-06-2 | 164.38 | Colorless liquid, irritating odor | 1.692 | −69 | 112 | 0.2% in water | 18 (20 °C) | - |
Constituent | Breakdown Products |
---|---|
Ions | Sulfate, Chloride, Nitrate |
Anions | Arsenate, Arsenite |
Acids | Hydrochloric acid, Sulfuric acid, Nitric acid |
Mustard gas | Thiodiglycol sulfone, 1,4-Oxathiane, 1,4-Dithiane, Thiodiglycol sulfoxide, ThiodiglycoL |
Nerve agent (VX) | bis (2-Diisopropylaminoethyl) disulfide, bis (2-Diisopropylaminoethyl) sulfide, Diisopropylaminoethanol, Diisopropyl ethyl mercaptoamine, Ethanol, Methylphosphonic acid, S-(2-diisopropylaminoethyl) methylphosphonothioate, Ethyl methylphosphonic acid, Ethyl methylphosphonothioic acid |
Tabun (GA) | Dimethylphosphoramidate, Dimethylamine, Ethyl N,N-dimethylamido phosphoric acid, Dimethylphosphoramide cyanidate, Ethylphosphoral cyanidate, Phosphorocyanidate, Hydrogen cyanide |
Sarin (GB) | Isopropyl alcohol, Hydrogen fluoride, Methylphosphonic acid, Isopropyl methylphosphonic acid |
Soman (GD) | Pinacolyl alcohol, Methylphosphonic acid, Pinacolyl methylphosphonic acid |
Lewisite | Chlorovinylarsonous acid, Chlorovinylarsonic acid |
Other agent breakdown products | Benzothiozole, p–Chlorophenylmethylsulfoxide, p–Chlorophenylmethylsulfide, p–Chlorophenylmethylsulfone, Dimethyldisulfide, DMMP (Dimethyl methylphosphonate), DIMP (Diisopropyl methylphosphonate) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broomandi, P.; Guney, M.; Kim, J.R.; Karaca, F. Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability 2020, 12, 9002. https://doi.org/10.3390/su12219002
Broomandi P, Guney M, Kim JR, Karaca F. Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability. 2020; 12(21):9002. https://doi.org/10.3390/su12219002
Chicago/Turabian StyleBroomandi, Parya, Mert Guney, Jong Ryeol Kim, and Ferhat Karaca. 2020. "Soil Contamination in Areas Impacted by Military Activities: A Critical Review" Sustainability 12, no. 21: 9002. https://doi.org/10.3390/su12219002
APA StyleBroomandi, P., Guney, M., Kim, J. R., & Karaca, F. (2020). Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability, 12(21), 9002. https://doi.org/10.3390/su12219002