Economic Costs of Sharing the Harvester in the Control of an Invasive Weed
Abstract
:1. Introduction
Teosinte as an Invasive Plant in the Ebro Valley
2. Materials and Methods
2.1. Theoretical Model
2.2. Numerical Illustration: Data and Study Area
- (1)
- No control–no cleaning (corn crop).
- (2)
- No control–cleaning (corn crop).
- (3)
- False seedbed technique–no cleaning (corn crop).
- (4)
- False seedbed technique–cleaning (corn crop).
- (5)
- Manual control–no cleaning (corn crop).
- (6)
- Manual control–cleaning (corn crop).
- (7)
- Barley–sunflower rotation.
- (8)
- Pea–sunflower rotation.
- (9)
- Alfalfa.
3. Results
3.1. Private vs. Social Optimal Control Strategies
3.2. Quantifying and Solving Externalities
3.3. Estimating the Loss Associated with the Presence of Teosinte
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Function | Specification | Parameter Values | Source |
---|---|---|---|
Weed dynamics | w * = 22 | [27] | |
α0 = 0.0704 | |||
α1 = 0.1876 | |||
Seed bank dynamics | s * = 31.8 | [27] | |
β1 = 0.0738 | |||
β2 = 98.97 | |||
Profit margin | δ0 = 11.334 if i = 1, …, 6 | [23,27] | |
δ0 = 374.12 if i = 7 | |||
δ0 = 505.36 if i = 8 | |||
δ0 = 547.76 if i = 9 | |||
δ1 = −0.5456 if i = 1, …, 6 | |||
δ1 = 0 if i = 7,8,9 | |||
Control costs | = 0 if i = 1,2 | Own from available data | |
= 546.7 if i = 3, 4 | |||
= 142.8 if i = 5,6 | |||
= 0 if i = 7, 8, 9 | |||
= 120 if i = 2, 4, 6 | |||
= 0, j ≠ k | |||
Public costs | d0 = 1900 if i = 1, …, 6 | Own from available data | |
d1 = 160 if i = 1, …, 6 | |||
d1 = 0 if i = 7, 8, 9 | |||
Total individual land restriction | Own from available data | ||
Rotation restriction | − | [27] |
εi Values When No-Cleaning (i = 1, 3, 5) and Multiplier Values | Probability of Infestation (pin) When No-Cleaning | Probability of Infestation (pin) When Cleaning | Annual Average Benefits under Infestationn (EUR/ha) | Expected Annual Average Benefits(EUR/ha) | Total Discounted Average Benefits (EUR) | Total Expected Losses with Respect to Non-Infestation (EUR) |
---|---|---|---|---|---|---|
0.1 < εi < 1 (i = 1, 3, 5) and multiplier ≥50% or 0.1 < εi < 0.9 and multiplier <50% | 1 | 0 | 1054.7 | 1374 | 164,880 | 0 |
0.99 | 0.01 | 1054.7 | 1370.80 | 164,496.84 | 383.16 | |
0.98 | 0.02 | 1054.7 | 1367.61 | 164,113.68 | 766.32 | |
0.97 | 0.03 | 1054.7 | 1364.42 | 163,730.52 | 1149.48 | |
0.96 | 0.04 | 1054.7 | 1361.22 | 163,347.36 | 1532.64 | |
0.95 | 0.05 | 1054.7 | 1358.03 | 162,964.20 | 1915.80 | |
0.94 | 0.06 | 1054.7 | 1354.84 | 162,581.04 | 2298.96 | |
0.93 | 0.07 | 1054.7 | 1351.64 | 162,197.88 | 2682.12 | |
0.92 | 0.08 | 1054.7 | 1348.45 | 161,814.72 | 3065.28 | |
0.91 | 0.09 | 1054.7 | 1345.26 | 161,431.56 | 3448.44 | |
0.9 | 0.1 | 1054.7 | 1342.07 | 161,048.40 | 3831.60 | |
0.8 | 0.2 | 1054.7 | 1310.14 | 157,216.80 | 7663.20 | |
0.7 | 0.3 | 1054.7 | 1278.21 | 153,385.20 | 11,494.80 | |
0.6 | 0.4 | 1054.7 | 1246.28 | 149,553.60 | 15,326.40 | |
0.5 | 0.5 | 1054.7 | 1214.35 | 145,722 | 19,158 | |
0.4 | 0.6 | 1054.7 | 1182.42 | 141,890.40 | 22,989.60 | |
0.3 | 0.7 | 1054.7 | 1150.49 | 138,058.80 | 26,821.20 | |
0.2 | 0.8 | 1054.7 | 1118.56 | 134,227.20 | 30,652.80 | |
0.1 | 0.9 | 1054.7 | 1086.63 | 130,395.60 | 34,484.40 | |
0 | 1 | 1054.7 | 1054.70 | 126,564 | 38,316 | |
0.9 < εi < 1or 0.001 < εi ≤ 0.001 with any multiplier | 1 | 0 | 1064 | 1374.00 | 164,880 | 0 |
0.99 | 0.01 | 1064 | 1370.90 | 164,508 | 372 | |
0.98 | 0.02 | 1064 | 1367.80 | 164,136 | 744 | |
0.97 | 0.03 | 1064 | 1364.70 | 163,764 | 1116 | |
0.96 | 0.04 | 1064 | 1361.60 | 163,392 | 1488 | |
0.95 | 0.05 | 1064 | 1358.50 | 163,020 | 1860 | |
0.94 | 0.06 | 1064 | 1355.40 | 162,648 | 2232 | |
0.93 | 0.07 | 1064 | 1352.30 | 162,276 | 2604 | |
0.92 | 0.08 | 1064 | 1349.20 | 161,904 | 2976 | |
0.91 | 0.09 | 1064 | 1346.10 | 161,532 | 3348 | |
0.9 | 0.1 | 1064 | 1343.00 | 161,160 | 3720 | |
0.8 | 0.2 | 1064 | 1312.00 | 157,440 | 7440 | |
0.7 | 0.3 | 1064 | 1281.00 | 153,720 | 11,160 | |
0.6 | 0.4 | 1064 | 1250.00 | 150,000 | 14,880 | |
0.5 | 0.5 | 1064 | 1219.00 | 146,280 | 18,600 | |
0.4 | 0.6 | 1064 | 1188.00 | 142,560 | 22,320 | |
0.3 | 0.7 | 1064 | 1157.00 | 138,840 | 26,040 | |
0.2 | 0.8 | 1064 | 1126.00 | 135,120 | 29,760 | |
0.1 | 0.9 | 1064 | 1095.00 | 131,400 | 33,480 | |
0 | 1 | 1064 | 1064.00 | 127,680 | 37,200 | |
1 | 0 | 1073 | 1374.00 | 164,880 | 0 | |
0.0001 < εi < 0.001 with any multiplier | 0.99 | 0.01 | 1073 | 1370.99 | 164,518.8 | 361.20 |
0.98 | 0.02 | 1073 | 1367.98 | 164,157.6 | 722.40 | |
0.97 | 0.03 | 1073 | 1364.97 | 163,796.4 | 1083.60 | |
0.96 | 0.04 | 1073 | 1361.96 | 163,435.2 | 1444.80 | |
0.95 | 0.05 | 1073 | 1358.95 | 163,074 | 1806 | |
0.94 | 0.06 | 1073 | 1355.94 | 162,712.8 | 2167.20 | |
0.93 | 0.07 | 1073 | 1352.93 | 162,351.6 | 2528.40 | |
0.92 | 0.08 | 1073 | 1349.92 | 161,990.4 | 2889.60 | |
0.91 | 0.09 | 1073 | 1346.91 | 161,629.2 | 3250.80 | |
0.9 | 0.1 | 1073 | 1343.90 | 161,268 | 3612 | |
0.8 | 0.2 | 1073 | 1313.80 | 157,656 | 7224 | |
0.7 | 0.3 | 1073 | 1283.70 | 154,044 | 10,836 | |
0.6 | 0.4 | 1073 | 1253.60 | 150,432 | 14,448 | |
0.5 | 0.5 | 1073 | 1223.50 | 146,820 | 18,060 | |
0.4 | 0.6 | 1073 | 1193.40 | 143,208 | 21,672 | |
0.3 | 0.7 | 1073 | 1163.30 | 139,596 | 25,284 | |
0.2 | 0.8 | 1073 | 1133.20 | 135,984 | 28,896 | |
0.1 | 0.9 | 1073 | 1103.10 | 132,372 | 32,508 | |
0 | 1 | 1073 | 1073 | 128,760 | 36,120 | |
εi < 0.0001 with any multiplier | 1 | 0 | 1081.78 | 1374.00 | 164,880 | 0 |
0.99 | 0.01 | 1081.78 | 1371.07 | 164,529.34 | 350.66 | |
0.98 | 0.02 | 1081.78 | 1368.15 | 164,178.67 | 701.32 | |
0.97 | 0.03 | 1081.78 | 1365.23 | 163,828.01 | 1051.99 | |
0.96 | 0.04 | 1081.78 | 1362.31 | 163,477.34 | 1402.65 | |
0.95 | 0.05 | 1081.78 | 1359.38 | 163,126.68 | 1753.32 | |
0.94 | 0.06 | 1081.78 | 1356.46 | 162,776.02 | 2103.98 | |
0.93 | 0.07 | 1081.78 | 1353.54 | 162,425.35 | 2454.64 | |
0.92 | 0.08 | 1081.78 | 1350.62 | 162,074.69 | 2805.31 | |
0.91 | 0.09 | 1081.78 | 1347.70 | 161,724.02 | 3155.97 | |
0.9 | 0.1 | 1081.78 | 1344.77 | 161,373.36 | 3506.64 | |
0.8 | 0.2 | 1081.78 | 1315.55 | 157,866.72 | 7013.28 | |
0.7 | 0.3 | 1081.78 | 1286.33 | 154,360.08 | 10,519.92 | |
0.6 | 0.4 | 1081.78 | 1257.11 | 150,853.44 | 14,026.56 | |
0.5 | 0.5 | 1081.78 | 1227.89 | 147,346.8 | 17,533.20 | |
0.4 | 0.6 | 1081.78 | 1198.66 | 143,840.16 | 21,039.84 | |
0.3 | 0.7 | 1081.78 | 1169.44 | 140,333.52 | 24,546.48 | |
0.2 | 0.8 | 1081.78 | 1140.22 | 136,826.88 | 28,053.12 | |
0.1 | 0.9 | 1081.78 | 1111.00 | 133,320.24 | 31,559.76 | |
0 | 1 | 1081.78 | 1081.78 | 129,813.60 | 35,066.40 |
References
- González-Andújar, J.L. Co-operative versus non-co-operative farmers’ weed control decisions in an agricultural landscape. Weed Res. 2018, 58, 327–330. [Google Scholar] [CrossRef]
- Fenichel, E.P.; Richards, T.J.; Shanafelt, D.W. The Control of Invasive Species on Private Property with Neighbor-to-neighbor Spillovers. Environ. Resour. Econ. 2013, 59, 231–255. [Google Scholar] [CrossRef] [Green Version]
- Epanchin-Niell, R.S.; Wilen, J.E. Individual and cooperative management of invasive species in human-mediated landscapes. Am. J. Agric. Econ. 2014, 97, 180–198. [Google Scholar] [CrossRef] [Green Version]
- Finnoff, D.; Shogren, J.F.; Leung, B.; Lodge, D. Take a risk: Preferring prevention over control of biological invaders. Ecol. Econ. 2007, 62, 216–222. [Google Scholar] [CrossRef]
- Perrings, C.; Dalmazzone, S.; Williamson, M. The economics of biological invasions. In Invasive Alien Species: A New Synthesis; Mooney, H.A., Mack, R.N., McNeely, J.A., Neville, L.E., Schei, P.J., Waage, J.K., Eds.; Island Press: Covelo, CA, USA, 2005; Chapter 2. [Google Scholar]
- Coase, R. The Problem of Social Cost. In Classic Papers in Natural Resource Economics; Palgrave Macmillan: London, UK, 1960; pp. 87–137. [Google Scholar]
- Liu, Y.; Sims, C. Spatial-dynamic externalities and coordination in invasive species control. Resour. Energy Econ. 2016, 44, 23–38. [Google Scholar] [CrossRef]
- Wilen, J. Economics of Spatial dynamic processes. Am. J. Agric. Econ. 2007, 89, 1134–1144. [Google Scholar] [CrossRef]
- Visintin, C.; Briscoe, N.J.; Woolley, S.N.C.; Lentini, P.E.; Tingley, R.; Wintle, B.A.; Golding, N. steps: Software for spatially and temporally explicit population simulations. Methods Ecol. Evol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Shea, K. Models for Improving the Targeting and Implementation of Biological Control of Weeds 1. Weed Technol. 2004. [Google Scholar] [CrossRef]
- An, C.; Liu, C.; Bi, S. Stability in Distribution and Optimal Control in an Impulsive Toxin Input Bioeconomic System with Stochastic Fluctuations and Time Delays. IEEE Chin. Control Decis. Conf. 2019. [CrossRef]
- Dehnen-Schmutz, K.; Perrings, C.; Williamson, M. Controlling Rhododendron ponticum in British Isles: An Economic Analysis. J. Environ. Manag. 2004. [Google Scholar] [CrossRef]
- Buhler, D.D.; King, R.P.; Swinton, S.M.; Gunsolus, J.L.; Forcella, F. Field Evaluation of a Bioeconomic Model for Weed Management in Soybean (Glycine max). Weed Sci. 1997. [Google Scholar] [CrossRef]
- Renner, K.A.; Swinton, S.M.; Kells, J.J. Adaptation and Evaluation of the WEEDSIM Weed Management Model for Michigan. Weed Sci. 1999. [Google Scholar] [CrossRef]
- Colbach, N.; Biju-Duval, L.; Gardarin, A.; Granger, S.; Guyot, S.H.M.; Mézière, D.; Munier-Jolain, N.M.; Petit, S. The Role of Models for Multicriteria Evaluation and Multiobjective Design of Cropping Systems for Managing Weeds. Weed Res. 2014. [Google Scholar] [CrossRef] [Green Version]
- González-Díaz, L.; Blanco-Moreno, J.M.; González-Andújar, J.L. Spatially Explicit Bioeconomic Model for Weed Management in Cereals: Validation and Evaluation of Management Strategies. J. Appl. Ecol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Diaz, L.; Bastida, F.; Gonzalez-Andujar, J.L. A Bioeconomic Model for the Analysis of Control Strategies for Lolium rigidum and Avena sterilis ssp. Ludoviciana in Winter Wheat. Int. J. Plant Prod. 2020, 14. [Google Scholar] [CrossRef]
- Grimsrud, K.M.; Chermak, J.M.; Hansen, J.; Thacher, J.A.; Krause, K. A Two-Agent Dynamic Model with an Invasive Weed Diffusion Externality: An Application to Yellow Starthistle (Centaurea solstitialis L.) in New Mexico. J. Environ. Manag. 2008. [Google Scholar] [CrossRef]
- Cirujeda, A.; Pardo, G.; Marí, A.I.; Fuertes, S.; Aibar, J. Emergencia de teosinte en cultivos diferentes a maíz. In Proceedings of the XVI Congress of the Sociedad Española de Malherbología, Pamplona, Spain, 25–27 October 2017. [Google Scholar]
- Pardo, G.; Fuertes, S.; Marí, A.I.; Aibar, J.; Cirujeda, A. Evaluación de distintos herbicidas en el control de teosinte en cultivos diferentes al maíz. In Proceedings of the XVI Congress of the Sociedad Española de Malherbología, Pamplona, Spain, 25–27 October 2017. [Google Scholar]
- CSCV, Centro de Sanidad y Certificación Vegetal. Current Infestation Status of Teosinte in Aragón; Information Day for Farmers, Escuela Politécnica Superior de Huesca, University of Zaragoza: Zaragoza, Spain, 2018. [Google Scholar]
- Montull, J.M.; Pardo, G.; Aibar, J.; Llenes, J.M.; Marí, A.I.; Taberner, A.; Cirujeda, A. Aspectos de la dispersión y viabilidad de las semillas de teosinte (Zea mays ssp.) en el Valle del Ebro. ITEA Inf. Tecnica Econ. Agrar. 2020, 116, 227–240. [Google Scholar] [CrossRef]
- Cirujeda, A.; Pardo, G. Aparición de una Nueva mala Hierba en el Cultivo del Maíz en Aragón: El Teosinte. Caracterización Biológica y Estudio de Métodos para su Control; Working Paper; CITA: Zaragoza, Spain, 2019. [Google Scholar]
- Shirtliffe, S.J.; Entz, M.H. Chaff collection reduces seed dispersal of wild oat (Avena fatua) by a combine harvester. Weed Sci. 2005, 53, 465–470. [Google Scholar] [CrossRef]
- Blanco-Moreno, J.M.; Chamorro, L.; Masalles, R.M.; Recasens, J.; Sans, F.X. Spatial Distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res. 2004, 44, 375–387. [Google Scholar] [CrossRef]
- Pardo, G.; Cirujeda, A.; Aibar, J.; Fernández-Cavada, S.; Rodríguez, E.; Fuertes, S.; Perdiguer, A. El Teosinte (Zea mays, ssp.); Informaciones Técnicas, 4/2014; Centro de Sanidad y Certificación Vegetal, Gobierno de Aragón: Zaragoza, Spain, 2014. [Google Scholar]
- Martínez, Y.; Cirujeda, A.; Gómez, M.I.; Marí, A.I.; Pardo, G. Bioeconomic model for optimal control of the invasive weed Zea mays subspp. (teosinte) in Spain. Agric. Syst. 2018, 165, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Taberner, A.; University of Lérida, Lérida, Spain. Personal communication, 2020.
- Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R. GAMS Tutorial by R. Rosenthal; GAMS Development Corporation: Washington, DC, USA, 2018. [Google Scholar]
- Lengwati, D.M.; Mathews, C.; Dakora, F.D. Rotation Benefits from N2-Fixing Grain Legumes to Cereals: From Increases in Seed Yield and Quality to Greater Household Cash-Income by a Following Maize Crop. Front. Sustain. Food Syst. 2020, 4, 94. [Google Scholar] [CrossRef]
- Iocola, I.; Angevin, F.; Bockstaller, C.; Catarino, R.; Curran, M.; Messéan, A.; Schader, C.; Stilmant, D.; Van Stappen, F.; Vanhove, P.; et al. An Actor-Oriented Multi-Criteria Assessment Framework to Support a Transition towards Sustainable Agricultural Systems Based on Crop Diversification. Sustainability 2020, 12, 5434. [Google Scholar] [CrossRef]
Year | Number of Infested Plots | Number of New Infested Plots | Area with Low Infestation (ha) | Area with High Infestation * (ha) | Total Infested Area (ha) |
---|---|---|---|---|---|
2014 | 44 | 44 | 27 | 358 (93%) | 385 |
2015 | 63 | 27 | 441 | 192 (30%) | 633 |
2016 | 70 | 14 | 621 | 28 (4.3%) | 649 |
2017 | 72 | 13 | 634 | 28 (4.2%) | 662 |
2018 | 73 | 40 | 419 | 375 (47.2%) | 794 |
Values of εi for No Cleaning Strategies (i = 1, 3, 5) | Reduction in Values of εi for Cleaning Strategies (i = 2, 4, 6) | Annual Average Benefit of j under Low Infestation (in EUR /ha) | Annual Average Benefit of j under High Infestation (in EUR /ha) |
---|---|---|---|
0.1 < ε < 1 | ≤50% | 1052 | 1009.8 |
0.1 ≤ ε ≤ 0.9 | >50% | 1061.3 | 1029.1 |
0.9 < ε ≤ 1 | Any value | 1052 | 1009.8 |
0.001 < ε < 0.1 | Any value | 1061.3 | 1029.1 |
0.0001 < ε ≤ 0.001 | Any value | 1070.4 | 1039.7 |
ε ≤ 0.0001 | Any value | 1079.3 | 1051.4 |
Optimal Private Strategies | Optimal Social Strategies (Rotations Only with High Infestation) | Optimal Social Strategies (with Mandatory Rotations) | ||||
---|---|---|---|---|---|---|
Farmer j | Farmer k | Farmer j | Farmer k | Farmer j | Farmer k | |
(1) Benefits, noninfestation | 1374 | 1374 | 1374 | 1374 | 920 | 920 |
(2) Benefits, low infestation (losses relative to noninfestation) | 1052 (322) | 1041.4 (332.6) | 1374 (0) | 999.5 (374.5) | 920 (0) | 693.5 (365.1) |
(3) Public costs, Low infestation | 37.6 | 49.5 | 0 * | 0 * | 0 | 12.9 |
(4) Total benefits, Low infestation (4) = (2) − (3) | 1014.4 | 991.9 | 1374 | 999.5 | 920 | 680.6 |
(5) Benefits, high infestation (losses relative to noninfestation) | 1009.8 (364.2) | 1006.3 (367.7) | 1374 (0) | 999.5 (374.5) | 920 (0) | 623.4 (374.5) |
(6) Public costs, high infestation | 21.1 | 37.6 | 0 * | 0 * | 0 | 0 |
(7) Total benefits, high infestation (7) = (5) − (6) | 988.7 | 968.7 | 1374 | 999.5 | 920 | 623.4 |
Probability of Infestation (pin) | Expected Annual Average Benefits (EUR/ha) | Total Expected Discounted Average Benefits (EUR) | Total Expected Losses with Respect to Noninfestation (EUR) |
---|---|---|---|
0 | 1374 | 164,880 | 0 |
0.1 | 1341.8 | 161,016 | 3864 |
0.2 | 1309.6 | 157,152 | 7728 |
0.3 | 1277.4 | 153,288 | 11,592 |
0.4 | 1245.2 | 149,424 | 15,456 |
0.48 | 1219.4 | 146,333 | 18,547 |
0.49 | 1216.2 | 145,946 | 18,934 |
0.5 | 1213 | 145,560 | 19,320 |
0.6 | 1180.8 | 141,696 | 23,184 |
0.7 | 1148.6 | 137,832 | 27,048 |
0.8 | 1116.4 | 133,968 | 30,912 |
0.9 | 1084.2 | 130,104 | 34,776 |
1 | 1052 | 126,240 | 38,640 |
Total Discounted Benefit/Cost (in EUR 103) | |||
---|---|---|---|
Privately Optimal | Socially Optimal (Current Situation) | Socially Optimal (with Mandatory Rotations) | |
(1) Benefits, non-infestation | 64,365 | 64,365 | 43,098.4 |
(2) Benefits, low-infestation area | 32,772.8 | 31,454.2 | 21,824.445 |
(3) Public costs, low-infestation area | 1557.7 | 0 | 405.9 |
(4) Total benefit, low-infestation area (4) = (2) − (3) | 31,215.1 | 31,454.2 | 21,418.4 |
(5) Benefits, high-infestation area | 15,471.8 | 15,367.3 | 9584.7 |
(6) Public costs, high-infestation area | 593.3 | 0 | 0 |
(7) Total benefit, high-infestation area (7) = (5) − (6) | 14,878.5 | 15,367.3 | 9584.7 |
(8) Losses relative to non-infestation (8) = (1) − (4) − (7) | 18,271.4 | 17,543.4 | 12,095.1 |
(9) Annual average losses relative to non-infestation (9) = (8)/5 | 3654.2 | 3508.6 | 2419 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo, G.; Gómez, M.I.; Cirujeda, A.; Martínez, Y. Economic Costs of Sharing the Harvester in the Control of an Invasive Weed. Sustainability 2020, 12, 9046. https://doi.org/10.3390/su12219046
Pardo G, Gómez MI, Cirujeda A, Martínez Y. Economic Costs of Sharing the Harvester in the Control of an Invasive Weed. Sustainability. 2020; 12(21):9046. https://doi.org/10.3390/su12219046
Chicago/Turabian StylePardo, Gabriel, Miguel I. Gómez, Alicia Cirujeda, and Yolanda Martínez. 2020. "Economic Costs of Sharing the Harvester in the Control of an Invasive Weed" Sustainability 12, no. 21: 9046. https://doi.org/10.3390/su12219046
APA StylePardo, G., Gómez, M. I., Cirujeda, A., & Martínez, Y. (2020). Economic Costs of Sharing the Harvester in the Control of an Invasive Weed. Sustainability, 12(21), 9046. https://doi.org/10.3390/su12219046