Socio-Educational Impact of Augmented Reality (AR) in Sustainable Learning Ecologies: A Semantic Modeling Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objects
2.2. Research Design and Study Sample
2.3. Method
3. Results
- bigram_tf_idf <- bigrams_united % > %
- count(open questions, bigram) % > %
- bind_tf_idf(bigram, open questions, n) % > %
- arrange(desc(tf_idf))
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skobelev, P.O.; Borovik, S.Y. On the way from Industry 4.0 to Industry 5.0: From digital manufacturing to digital society. Ind. 4.0 2017, 2, 307–311. [Google Scholar]
- Housley, W.; Smith, R.J. Interactionism and digital society. Qual. Res. 2017, 17, 187–201. [Google Scholar] [CrossRef]
- Lanier, J.; Weyl, E.G. A blueprint for a better digital society. Harv. Bus. Rev. 2018, 26, 18. [Google Scholar]
- Dufva, T.; Dufva, M. Grasping the future of the digital society. Futures 2019, 107, 17–28. [Google Scholar] [CrossRef]
- Gómez-Galán, J.; Mateos, S. Versatile Spaces for the Use of the Information Technology in Education. In Advances in Systems Engineering, Signal Processing and Communications; Mastorakis, N., Ed.; WSEAS Press: New York, NY, USA, 2002; pp. 351–361. [Google Scholar]
- Thomas, H. Learning spaces, learning environments and the dis ‘placement’of learning. Br. J. Educ. Technol. 2010, 41, 502–511. [Google Scholar] [CrossRef] [Green Version]
- King, H. Learning spaces and collaborative work: Barriers or supports? High. Educ. Res. Dev. 2016, 35, 158–171. [Google Scholar] [CrossRef]
- Trentin, G. Always-on education and hybrid learning spaces. Educ. Technol. 2016, 56, 31–37. [Google Scholar]
- De Laat, M.; Dohn, N.B. Is networked learning postdigital education? Postdigital Sci. Educ. 2019, 1, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Sáez-López, J.M.; Cózar-Gutiérrez, R.; González-Calero, J.A.; Carrasco, C.J.G. Augmented reality in higher education: An evaluation program in initial teacher training. Educ. Sci. 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Das, K. The role and impact of ICT in improving the quality of education: An overview. Int. J. Innov. Stud. Sociol. Humanit. 2019, 4, 97–103. [Google Scholar]
- Rensink, C. Global competence for today and the future. Child. Educ. 2020, 96, 14–21. [Google Scholar] [CrossRef]
- Vázquez-Cano, E.; Reyes, M.; Colmenares, L.; López-Meneses, E. Competencia digital del alumnado de la Universidad Católica de Santiago de Guayaquil. Rev. Opción 2017, 83, 229–251. [Google Scholar]
- Veytia, M.G.; Gómez-Galán, J.; Cevallos, M.B. Competencias investigativas y mediación tecnológica en doctorandos de Iberoamérica. IJERI Int. J. Educ. Res. Innov. 2019, 12, 1–19. [Google Scholar]
- Delgado-Vázquez, A.; Vázquez-Cano, E.; Belando-Montoro, M.R.; López-Meneses, E. Análisis bibliométrico del impacto de la investigación educativa en diversidad funcional y competencia digital: Web of Science y Scopus. Aula Abierta 2019, 48, 147–156. [Google Scholar] [CrossRef]
- Rodríguez-García, A.M.; Raso-Sánchez, F.; Ruiz-Palmero, J.R. Competencia digital, educación superior y formación del profesorado: Un estudio de meta-análisis en la Web of Science. Pixel Bit. Rev. Medios Educ. 2019, 54, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Gisbert, M.; Lázaro, J.L. Professional development in teacher digital competence and improving school quality from the teachers’ perspective: A case study. J. New Approaches Educ. Res. 2015, 4, 115. [Google Scholar]
- Gómez-Galán, J. Aplicaciones Didácticas y Educativas de las Tecnologías RIV (Realidad Infovirtual) en Entornos Telemáticos. In Actas del XIII Congreso Internacional de Ingeniería Gráfica: Eliminando Fronteras entre lo Real y lo Virtual; Cuartero, A., Felicísimo, A.M., Ariza, F.J., Eds.; AEIA-UEX: Badajoz, Spain, 2001; pp. 29–43. [Google Scholar]
- Gómez-Galán, J. Education and Virtual Reality. Versatile Spaces for the Use of the Information Technology in Education. In Advances in Systems Engineering, Signal Processing and Communications; Mastorakis, N., Ed.; WSEAS Press: New York, NY, USA, 2002; pp. 345–350. [Google Scholar]
- Hood, K. Telling active learning pedagogies apart: From theory to practice. J. New Approaches Educ. Res. 2017, 6, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Martínez, N.; Leiva, J.J. Experiencias formativas de uso didáctico de la realidad aumentada con alumnado del grado de educación primaria en la universidad de Málaga. EDMETIC Rev. Educ. Mediát. TIC 2017, 6, 81–104. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.T.; Ball, C.; Francis, J.; Ratan, R.; Boumis, J.; Fordham, J. Augmented versus virtual reality in education: An exploratory study examining science knowledge retention when using augmented reality/virtual reality mobile applications. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 105–110. [Google Scholar] [CrossRef]
- Beck, D. Augmented and virtual reality in education: Immersive learning research. J. Educ. Comput. Res. 2019, 57, 1619–1625. [Google Scholar] [CrossRef]
- González-Zamar, M.D.; Abad-Segura, E. Implications of virtual reality in arts education: Research analysis in the context of higher education. Educ. Sci. 2020, 10, 225. [Google Scholar] [CrossRef]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Cabero, J.; Barroso, J. Los escenarios tecnológicos en Realidad Aumentada (RA): Posibilidades educativas en estudios universitarios. Aula Abierta 2018, 47, 327–336. [Google Scholar] [CrossRef]
- Johnson, L.; Becker, S.A.; Cummins, M.; Estrada, V.; Freeman, A.; Hall, C. NMC Horizon Report: 2016 Higher Education Edition; The New Media Consortium: Austin, TX, USA, 2016. [Google Scholar]
- Cabero, J.; Barroso, J.; Llorente, C.; Fernández-Martínez, M.M. Educational uses of augmented reality (AR): Experiences in educational science. Sustainability 2019, 11, 4990. [Google Scholar] [CrossRef] [Green Version]
- Billinghurst, M.; Kato, H.; Poupyrev, I. The magicbook-moving seamlessly between reality and virtuality. IEEE Comput. Graph. Appl. 2001, 21, 6–8. [Google Scholar]
- Chen, C.M.; Tsai, Y.N. Interactive augmented reality system for enhancing library instruction in elementary schools. Comput. Educ. 2012, 59, 638–652. [Google Scholar] [CrossRef]
- Dunleavy, M.; Dede, C.; Mitchell, R. Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. J. Sci. Educ. Technol. 2009, 18, 7–22. [Google Scholar] [CrossRef]
- Herbert, B.; Ens, B.; Weerasinghe, A.; Billinghurst, M.; Wigley, G. Design considerations for combining augmented reality with intelligent tutors. Comput. Graph. 2018, 77, 166–182. [Google Scholar] [CrossRef]
- Kiryakova, G.; Angelova, N.; Yordanova, L. The potential of augmented reality to transform education into smart education. TEM J. 2018, 7, 556. [Google Scholar]
- Radosavljevic, S.; Radosavljevic, V.; Grgurovic, B. The potential of implementing augmented reality into vocational higher education through mobile learning. Interact. Learn. Environ. 2020, 28, 404–418. [Google Scholar] [CrossRef]
- Hung, P.H.; Hwang, G.J.; Lin, Y.F.; Wu, T.H.; Su, I.H. Seamless connection between learning and assessmentapplying progressive learning tasks in mobile ecology inquiry. Educ. Technol. Soc. 2013, 16, 194–205. [Google Scholar]
- Javornik, A.; Kostopoulou, E.; Rogers, Y.; gen Schieck, A.F.; Koutsolampros, P.; Moutinho, A.; Julier, S. An experimental study on the role of augmented reality content type in an outdoor site exploration. Behav. Inf. Technol. 2019, 38, 9–27. [Google Scholar] [CrossRef]
- Wu, H.K.; Lee, S.W.; Chang, H.Y.; Liang, J.C. Current status, opportunities and challenges of augmented reality in education. Comput. Educ. 2013, 62, 41–49. [Google Scholar] [CrossRef]
- Sotiriou, S.; Bogner, F.X. Visualizing the invisible: Augmented reality as an innovative science education scheme. Adv. Sci. Lett. 2008, 1, 114–122. [Google Scholar] [CrossRef]
- Dunleavy, M.; Dede, C. Augmented Reality Teaching and Learning. In Handbook of Research on Educational Communications and Technology; Springer: New York, NY, USA, 2014; pp. 735–745. [Google Scholar]
- Ibáñez, M.B.; Delgado-Kloos, C. Augmented reality for STEM learning: A systematic review. Comput. Educ. 2018, 123, 109–123. [Google Scholar] [CrossRef]
- Lai, A.F.; Chen, C.H.; Lee, G.Y. An augmented reality-based learning approach to enhancing students’ science reading performances from the perspective of the cognitive load theory. Br. J. Educ. Technol. 2019, 50, 232–247. [Google Scholar] [CrossRef]
- Thees, M.; Kapp, S.; Strzys, M.P.; Beil, F.; Lukowicz, P.; Kuhn, J. Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Comput. Hum. Behav. 2020, 108, 106316. [Google Scholar] [CrossRef]
- Saltan, F.; Arslan, O. The use of augmented reality in formal education: A scoping review. Eurasia J. Math. Sci. Technol. Educ. 2016, 13, 503–520. [Google Scholar] [CrossRef]
- Quintero, J.; Baldiris Navarro, S.M.; Rubira, R.; Cerón, J.; Velez, G. Augmented reality in educational inclusion. A Systematic review on the last decade. Front. Psychol. 2019, 10, 1835. [Google Scholar] [CrossRef] [Green Version]
- Tzima, S.; Styliaras, G.; Bassounas, A. Augmented reality applications in education: Teachers point of view. Educ. Sci. 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Abad-Segura, E.; González-Zamar, M.D.; Luque, A.; Morales, M.B. Sustainability of educational technologies: An approach to augmented reality research. Sustainability 2020, 12, 4091. [Google Scholar] [CrossRef]
- Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Sirakaya, M.; Alsancak, D. Trends in educational augmented reality studies: A systematic review. Malays. Online J. Educ. Technol. 2018, 6, 60–74. [Google Scholar] [CrossRef]
- Arici, F.; Yildirim, P.; Caliklar, Ş.; Yilmaz, R.M. Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Comput. Educ. 2019, 142, 103647. [Google Scholar] [CrossRef]
- Garzón, J.; Pavón, J.; Baldiris, S. Systematic review and meta-analysis of augmented reality in educational settings. Virtual Real. 2019, 23, 447–459. [Google Scholar] [CrossRef]
- Sırakaya, M.; Alsancak, D. Augmented reality in STEM education: A systematic review. Interact. Learn. Environ. 2020, 27, 1–14. [Google Scholar] [CrossRef]
- Sahin, D.; Yilmaz, R.M. The effect of Augmented Reality Technology on middle school students’ achievements and attitudes towards science education. Comput. Educ. 2020, 144, 103710. [Google Scholar] [CrossRef]
- Baragash, R.S.; Al-Samarraie, H.; Alzahrani, A.I.; Alfarraj, O. Augmented reality in special education: A meta-analysis of single-subject design studies. Eur. J. Spec. Needs Educ. 2020, 35, 382–397. [Google Scholar] [CrossRef]
- Crandall, P.G.; Engler, R.K.; Beck, D.E.; Killian, S.A.; O’Bryan, C.A.; Jarvis, N.; Clausen, E. Development of an augmented reality game to teach abstract concepts in food chemistry. J. Food Sci. Educ. 2015, 14, 18–23. [Google Scholar] [CrossRef]
- Wang, H.Y.; Duh, H.B.; Li, N.; Lin, T.J.; Tsai, C.C. An investigation of university students’ collaborative inquiry learning behaviors in an augmented reality simulation and a traditional simulation. J. Sci. Educ. Technol. 2014, 23, 682–691. [Google Scholar] [CrossRef]
- Hwang, G.J.; Wu, P.H.; Chen, C.C.; Tu, N.T. Effects of an augmented reality-based educational game on students’ learning achievements and attitudes in real-world observations. Interact. Learn. Environ. 2015, 24, 1895–1906. [Google Scholar] [CrossRef]
- Maas, M.J.; Hughes, J.M. Virtual, augmented and mixed reality in K–12 education: A review of the literature. Technol. Pedagog. Educ. 2020, 29, 231–249. [Google Scholar] [CrossRef]
- Ping, L.; Liu, K. Using the technology acceptance model to analyze K-12 students’ behavioral intention to use augmented reality in learning. Tex. Educ. Rev. 2020, 8, 37–51. [Google Scholar]
- Fransson, G.; Holmberg, J.; Westelius, C. The challenges of using head mounted virtual reality in K-12 schools from a teacher perspective. Educ. Inf. Technol. 2020, 25, 3383–3404. [Google Scholar] [CrossRef] [Green Version]
- Scaravetti, D.; Doroszewski, D. Augmented Reality experiment in higher education, for complex system appropriation in mechanical design. Procedia CIRP 2019, 84, 197–202. [Google Scholar] [CrossRef]
- Barroso, J.; Gutiérrez-Castillo, J.; Llorente-Cejudo, M.; Ortiz, R.V. Difficulties in the incorporation of augmented reality in university education: Visions from the experts. NAER J. New Approaches Educ. Res. 2019, 8, 126–141. [Google Scholar] [CrossRef]
- Halili, S.H. Technological advancements in education 4.0. Online J. Distance Educ. E Learn. 2019, 7, 63–69. [Google Scholar]
- Gudoniene, D.; Rutkauskiene, D. Virtual and augmented reality in education. Balt. J. Mod. Comput. 2019, 7, 293–300. [Google Scholar] [CrossRef]
- Garzón, J.; Baldiris, S.; Gutiérrez, J.; Pavón, J. How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educ. Res. Rev. 2020, 2, 100334. [Google Scholar] [CrossRef]
- Gómez-Galán, J.; Vergara, D.; Ordóñez-Olmedo, E.; Veytia, M.G. Time of use and patterns of Internet consumption in university students: A comparative study between Spanish-speaking countries. Sustainability 2020, 12, 5087. [Google Scholar] [CrossRef]
- Papashane, M.; Hlalele, D. Academic literacy: A critical cognitive catalyst towards the creation of sustainable learning ecologies in higher education. Mediterr. J. Soc. Sci. 2014, 5, 661. [Google Scholar] [CrossRef]
- Serpa, S.; Ferreira, C.M.; Santos, A.I.; Teixeira, R. Participatory action research in higher education training. Int. J. Soc. Sci. Stud. 2018, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ronen, I.K. Action research as a methodology for professional development in leading an educational process. Stud. Educ. Eval. 2020, 64, 100826. [Google Scholar] [CrossRef]
- Pool-Cibrian, W.J.; Martínez-Guerrero, J.I. Autoeficacia y uso de estrategias para el aprendizaje autorregulado en estudiantes universitarios. Rev. Electrón. Investig. Educ. 2013, 15, 21–37. [Google Scholar]
- Barroso, J.; Gallego-Pérez, O.M. Producción de recursos de aprendizaje apoyados en Realidad Aumentada por parte de estudiantes de magisterio. EDMETIC Rev. Educ. Mediát. TIC 2017, 6, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Kou, F.; Du, J.; Lin, Z.; Liang, M.; Li, H.; Shi, L.; Yang, C. A semantic modeling method for social network short text based on spatial and temporal characteristics. J. Comput. Sci. 2018, 28, 281–293. [Google Scholar] [CrossRef]
- Bahgat, E.M.; Rady, S.; Gad, W.; Moawad, I.F. Efficient email classification approach based on semantic methods. Ain Shams Eng. J. 2018, 9, 3259–3269. [Google Scholar] [CrossRef]
- Kazakov, I.A.; Kustova, I.A.; Mantsivoda, A.V. Document modeling: Methodology and applications. Bull. Irkutsk State Univ. 2020, 32, 79–93. [Google Scholar] [CrossRef]
- Kumar, A.A. Semantic memory: A review of methods, models, and current challenges. Psychon. Bull. Rev. 2020, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Budan, I.A.; Graeme, H. Evaluating WordNet-based measures of semantic distance. Comput. Linguist. 2006, 32, 13–47. [Google Scholar]
- Bullinaria, J.A.; Levy, J.P. Extracting semantic representations from word cooccurrence statistics: Stop-lists, stemming and SVD. Behav. Res. Methods 2012, 44, 890–907. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Mewhort, D. Representing word meaning and order information in a composite holographic lexicon. Psychol. Rev. 2007, 114, 1–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruni, E.; Tran, N.K.; Baroni, M. Multimodal distributional semantics. J. Artif. Intell. Res. 2014, 49, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Bagheri, E.; Ensan, F.; Jovanovic, J. The state of the art in semantic relatedness: A framework for comparison. Knowl. Eng. Rev. 2017, 32, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Furió, M.C.; Seguí, J.; Vivó, R. Mobile learning vs. Traditional classroom lessons: A comparative study. J. Comput. Assist. Learn. 2015, 31, 189–201. [Google Scholar] [CrossRef]
- Bicen, H.; Bal, E. Determination of student opinions in augmented reality. World J. Educ. Technol. Curr. Issues 2016, 8, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Cabero, J.; Vázquez-Cano, J.; López-Meneses, E. Uso de la realidad aumentada como recurso didáctico en la enseñanza universitaria. Form. Univ. 2018, 11, 25–34. [Google Scholar] [CrossRef]
- Gómez-Galán, J.; López-Meneses, E.; Bernal-Bravo, C.; Vázquez-Cano, E. Virtual and Augmented Reality. In Innovation and ICTs in Education. The Diversity of the 21st Century Classroom; Gómez-Galán, J., Ed.; River Publishers: Aalborg, Denmark, 2020; pp. 191–209. [Google Scholar]
- Chang, K.E.; Zhang, J.; Huang, Y.S.; Liu, T.C.; Sung, Y.T. Applying augmented reality in physical education on motor skills learning. Interact. Learn. Environ. 2020, 28, 685–697. [Google Scholar] [CrossRef]
- Lu, S.J.; Liu, Y.C. Integrating augmented reality technology to enhance children’s learning in marine education. Environ. Educ. Res. 2015, 21, 525–541. [Google Scholar] [CrossRef]
- Fombona, J.; Vázquez-Cano, E. Posibilidades de utilización de la Geolocalización y Realidad Aumentada en el ámbito educativo. Educ. XX1 2017, 20, 319–342. [Google Scholar]
- Khan, T.; Johnston, K.; Ophoff, J. The impact of an augmented reality application on learning motivation of students. Adv. Hum. Comput. Interact. 2019. [Google Scholar] [CrossRef] [Green Version]
- Cabero, J.; Roig-Vila, R. The motivation of technological scenarios in augmented reality (AR): Results of different experiments. Appl. Sci. 2019, 9, 2907. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.P.; Wang, L.C.; Zou, D.; Lin, S.Y.; Xie, H.; Tsai, C.C. Effects of captions and English proficiency on learning effectiveness, motivation and attitude in augmented-reality-enhanced theme-based contextualized EFL learning. Comput. Assist. Lang. Learn. 2020, 10, 1–31. [Google Scholar] [CrossRef]
- Kamarainen, A.A.; Shari, M.; Tina, G.; Allison, B.; Diana, M.; Shane, T.; Dede, C. EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Comput. Educ. 2013, 68, 545–556. [Google Scholar] [CrossRef] [Green Version]
- López-Belmonte, J.; Pozo-Sánchez, S.; Fuentes-Cabrera, A.; Romero-Rodríguez, J.M. Eficacia del aprendizaje mediante flipped learning con realidad aumentada en la educación sanitaria escolar. J. Sport Health Res. 2020, 21, 11. [Google Scholar]
- Martín-Gutiérrez, J.; Fabiani, P.; Benesova, W.; Meneses, M.D.; Mora, C.E. Augmented reality to promote collaborative and autonomous learning in higher education. Comput. Hum. Behav. 2015, 51, 752–761. [Google Scholar] [CrossRef]
- Di Serio, A.; Ibáñez, M.B.; Delgado, C. Impact of an augmented reality system on students’ motivation for a visual art course. Comput. Educ. 2013, 68, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Cózar, R.; Moya, M.; Hernández, J.; Hernández, J. Tecnologías emergentes para la enseñanza de las Ciencias Sociales. Una experiencia con el uso de Realidad Aumentada en la formación inicial de maestros. Digit. Educ. Rev. 2015, 27, 138–153. [Google Scholar]
- Vergara, D.; Rubio, M.P.; Lorenzo, M. On the design of virtual reality learning environments in engineering. Multimodal Technol. Interact. 2017, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Videnov, K.; Stoykova, V.; Kazlacheva, Z. Application of Augmented Reality in Higher Education. ARTTE Appl. Res. Tech. Technol. Educ. 2018, 6, 1–9. [Google Scholar] [CrossRef]
- Extremera, J.; Vergara, D.; Dávila, L.P.; Rubio, M.P. Virtual and augmented reality environments to learn the fundamentals of crystallography. Crystals 2020, 10, 456. [Google Scholar] [CrossRef]
- Salar, R.; Arici, F.; Caliklar, S.; Yilmaz, R.M. A Model for augmented reality immersion experiences of university students studying in science education. J. Sci. Educ. Technol. 2020, 29, 257–271. [Google Scholar] [CrossRef]
- Fernández-Robles, B. La utilización de objetos de aprendizaje de realidad aumentada en la enseñanza universitaria de educación primaria. IJERI Int. J. Educ. Res. Innov. 2018, 9, 90–104. [Google Scholar]
- Gómez-Galán, J. Realidad Virtual en la Arqueología y el Arte: Orientaciones Didácticas y Formativas. In Arte y Sociedad: Bellas Artes y Sociedad Digital; Martínez-Coll, J.C., Ed.; Universidad de Málaga: Málaga, Spain, 2014; pp. 5–17. [Google Scholar]
- Cakir, R.; Korkmaz, O. The effectiveness of augmented reality environments on individuals with special education needs. Educ. Inf. Technol. 2019, 24, 1631–1659. [Google Scholar] [CrossRef]
- Köse, H.; Güner-Yildiz, N. Augmented reality (AR) as a learning material in special needs education. Educ. Inf. Technol. 2020, 34, 1–16. [Google Scholar] [CrossRef]
- Baragash, R.S.; Al-Samarraie, H.; Moody, L.; Zaqout, F. Augmented reality and functional skills acquisition among individuals with special needs: A meta-analysis of group design studies. J. Spec. Educ. Technol. 2020. [Google Scholar] [CrossRef]
- Kali, Y.; Sagy, O.; Benichou, M.; Atias, O. Levin-Peled Teaching expertise reconsidered: The Technology, Pedagogy, Content and Spaces (TPeCS) knowledge framework. Br. J. Educ. Technol. 2019, 50, 2162–2177. [Google Scholar] [CrossRef]
- Mishra, P.; Koehler, M.J. Technological pedagogical content knowledge: A framework for teacher knowledge. Teach. Coll. Rec. 2006, 108, 1017. [Google Scholar] [CrossRef]
- Tissenbaum, M.; Slotta, J.D. Developing a smart classroom infrastructure to support real-time student collaboration and inquiry: A 4-year design study. Instr. Sci. 2019, 47, 423–462. [Google Scholar] [CrossRef]
- Cabero, J.; Martínez, A. Las tecnologías de la información y comunicación y la formación inicial de los docentes. Modelos y competencias digitales. Profr. Rev. Curríc. Form. Profr. 2019, 23, 247–268. [Google Scholar]
- Gómez-Galán, J.; Vázquez-Cano, E.; López-Meneses, E. Experiencias innovadoras de estudiantes universitarios con software social sobre las ventajas y debilidades de las tecnologías de la información y la comunicación en ámbitos socioeducativos. Hekademos. Rev. Educ. Digit. 2018, 25, 7–15. [Google Scholar]
- Concepción, J.D.; Veytia, M.G.; Gómez-Galán, J.; López-Meneses, E. Integrating the digital paradigm in higher education: ICT training and skills of university students in a european context. Int. J. Educ. Excell. 2019, 5, 47–64. [Google Scholar] [CrossRef]
- Vázquez-Cano, E.; López Meneses, E.; Sánchez-Serrano, J.L. Analysis of social worker and educator’s areas of intervention through multimedia concept maps and online discussion forums higher Education. Electron. J. E Learn. 2015, 13, 333–346. [Google Scholar]
- Vázquez-Cano, E.; Marín-Díaz, V.; Oyarvide, W.R.V.; Meneses, E.L. Use of augmented reality to improve specific and transversal competencies in students. Int. J. Learn. Teach. Educ. Res. 2020, 19, 393–408. [Google Scholar] [CrossRef]
Node | Degree | Frequency | Betweenness | Topic | Conductivity | Locality | Diversivity |
---|---|---|---|---|---|---|---|
childhood | 59 | 108 | 0.433977 | 54 | 73.6 | 1 | 40.2 |
elderly | 43 | 43 | 0.342264 | 48 | 56.3 | 1 | 56.3 |
learning | 39 | 5 | 0.239831 | 30 | 21 | 1 | 79.7 |
adaptability | 25 | 17 | 0.185106 | 24 | 56.7 | 0 | 50.1 |
additions | 23 | 4 | 0.135080 | 20 | 27 | 0 | 87.7 |
care | 12 | 11 | 0.858935 | 15 | 49.1 | 0 | 53.6 |
community | 11 | 11 | 0.670722 | 15 | 64.3 | 0 | 64.3 |
age | 6 | 1 | 0.300050 | 13 | 0.1 | 72 | 0.5 |
functional | 6 | 5 | 0.200200 | 14 | 0.3 | 18 | 0.4 |
Node | Degree | Frequency | Betweenness | Topic | Conductivity | Locality | Diversivity |
---|---|---|---|---|---|---|---|
fun | 79 | 65 | 0.492835 | 33 | 62.4 | 1 | 75.8 |
dynamic | 52 | 26 | 0.376977 | 31 | 24.1 | 1 | 29.6 |
facilitate | 51 | 24 | 0.310478 | 29 | 21.7 | 2 | 46 |
interactive | 34 | 16 | 0.395849 | 14 | 39.9 | 1 | 59.9 |
entertainment | 20 | 14 | 0.338341 | 13 | 19.2 | 1 | 27.4 |
enjoyable | 16 | 16 | 0.258135 | 17 | 36.3 | 0 | 96.9 |
concentration | 12 | 14 | 0.215849 | 19 | 13.2 | 1 | 39.6 |
attention | 34 | 12 | 0.376713 | 20 | 22.6 | 2 | 63.9 |
motivation | 31 | 16 | 0.201821 | 24 | 1.7 | 7 | 3 |
language | 8 | 13 | 0.108888 | 19 | 11.1 | 1 | 29.6 |
mathematics | 9 | 12 | 0.106349 | 18 | 7.1 | 1 | 21.2 |
science | 7 | 11 | 0.100574 | 18 | 0.8 | 9 | 1.9 |
Node | Degree | Frequency | Betweenness | Topic | Conductivity | Locality | Diversivity |
---|---|---|---|---|---|---|---|
device | 39 | 29 | 0.226398 | 23 | 32.4 | 1 | 43.6 |
training | 36 | 29 | 0.203747 | 22 | 28.8 | 1 | 35.8 |
cost | 29 | 16 | 0.291345 | 14 | 31.5 | 1 | 57.1 |
economic | 28 | 12 | 0.197746 | 12 | 9.9 | 2 | 14.8 |
price | 17 | 5 | 0.110589 | 11 | 15.1 | 0 | 21.2 |
time | 23 | 11 | 0.140140 | 11 | 17.5 | 1 | 36.5 |
sociability | 22 | 8 | 0.129294 | 9 | 24.4 | 0 | 36.6 |
Augmented Reality | Bigram | n | tf | tf_idf |
---|---|---|---|---|
Areas of Intervention | childhood-learning | 54 | 0.11975571 | 0.04339323 |
elderly-care | 50 | 0.11775572 | 0.02939291 | |
adaptability-community | 56 | 0.12775117 | 0.03131370 | |
Benefits | dynamic-fun | 59 | 0.92612331 | 0.03039671 |
motivation-attention | 56 | 0.92975599 | 0.04339375 | |
interactive-subjects | 53 | 0.12056901 | 0.02935673 | |
Limitations | digital-divide | 53 | 0.92330731 | 0.02077341 |
training-time | 55 | 0.12773363 | 0.02367512 | |
sociability-reduction | 58 | 0.92765379 | 0.03739712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Galán, J.; Vázquez-Cano, E.; Luque de la Rosa, A.; López-Meneses, E. Socio-Educational Impact of Augmented Reality (AR) in Sustainable Learning Ecologies: A Semantic Modeling Approach. Sustainability 2020, 12, 9116. https://doi.org/10.3390/su12219116
Gómez-Galán J, Vázquez-Cano E, Luque de la Rosa A, López-Meneses E. Socio-Educational Impact of Augmented Reality (AR) in Sustainable Learning Ecologies: A Semantic Modeling Approach. Sustainability. 2020; 12(21):9116. https://doi.org/10.3390/su12219116
Chicago/Turabian StyleGómez-Galán, José, Esteban Vázquez-Cano, Antonio Luque de la Rosa, and Eloy López-Meneses. 2020. "Socio-Educational Impact of Augmented Reality (AR) in Sustainable Learning Ecologies: A Semantic Modeling Approach" Sustainability 12, no. 21: 9116. https://doi.org/10.3390/su12219116
APA StyleGómez-Galán, J., Vázquez-Cano, E., Luque de la Rosa, A., & López-Meneses, E. (2020). Socio-Educational Impact of Augmented Reality (AR) in Sustainable Learning Ecologies: A Semantic Modeling Approach. Sustainability, 12(21), 9116. https://doi.org/10.3390/su12219116