Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
2.1. System Description
2.2. LCA Goal and Scope
2.3. Life Cycle Inventory
2.3.1. Ground-Mounted Photovoltaic Farm
2.3.2. Residential Roof-Mounted Photovoltaics
2.4. Life Cycle Impact Assessment
3. Results
3.1. Life Cycle Environmental Impacts Comparison
3.2. Life Cycle Impact Per Stage
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Assembly, U.G. Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development; United Nations Statistics Division: New York, NY, USA, 2017. [Google Scholar]
- Global energy mix from 1990 to 2035—F Énergies.pdf. Available online: https://www.planete-energies.com/en/medias/infographics/global-energy-mix-1990-2035 (accessed on 15 September 2020).
- Renewables Provided Record 35% of EU Power in 2019 as Coal Collapsed-Report—Recharge.pdf. Available online: https://www.rechargenews.com/transition/renewables-provided-record-35-of-eu-power-in-2019-as-coal-collapsed-report/2-1-750790 (accessed on 15 June 2020).
- Agora Energiewende and Sandbag. The European Power Sector in 2019: Up-to-Date Analysis on the Electricity Transition. Available online: https://www.agora-energiewende.de/fileadmin2/Projekte/2019/Jahresauswertung_EU_2019/172_A-EW_EU-Annual-Report-2019_Web.pdf (accessed on 12 September 2020).
- EurObserv’ER Consortium. The State of Renewable Energies in Europe. 2018. Available online: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccx/2019/The_State_of_RES_in_Europe-2018-GB.pdf (accessed on 12 September 2020).
- Agora Energiewende. European Energy Transition 2030: The Big Picture. Ten Priorities for the next European Commission to meet the EU’s 2030 targets and accelerate towards 2050. 2019. Available online: https://www.agora-energiewende.de/fileadmin2/Projekte/2019/EU_Big_Picture/153_EU-Big-Pic_WEB.pdf (accessed on 12 September 2020).
- European Commission. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee of the Regions. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 12 September 2020).
- International Energy Agency Electricity Information. Available online: https://webstore.iea.org/electricity-information-2018 (accessed on 26 November 2018).
- Statista Installed Power Capacity Shares by Source Greece. 2020. Available online: https://www.statista.com/statistics/1153677/installed-power-capacity-share-by-source-greece/ (accessed on 12 September 2020).
- ADMIE IPTO Ariadne-Interconnection. Available online: http://www.ariadne-interconnection.gr/en/home-en/ (accessed on 15 September 2020).
- ADMIE IPTO Interconnection of Crete with the Peloponnese. Available online: https://www.admie.gr/en/erga/erga-diasyndeseis/diasyndesi-tis-kritis-me-tin-peloponniso (accessed on 15 September 2020).
- Boulaxis, N.G.; Manolkidis, S.; Latta, M.; Karakatsani, N.; Anagnostopoulos, I.; Gotsias, A.; Zervos, T. Regulation and Performance of the Electricity Market and the Natural Gas Market in Greece, in 2018. 2019. Available online: http://www.rae.gr/site/file/system/docs/ActionReports/national_2019 (accessed on 12 September 2020).
- Apostolou, I. Renewable Energy Sources in Greece: Energy Trends and Predictions; University of Pireaus: Pireaus, Greece, 2018. [Google Scholar]
- Greece MINOS 50 MW Tower Concentrated Solar Power Project EPC Contract Awarded. Available online: http://helioscsp.com/greece-minos-50mw-tower-concentrated-solar-power-project-epc-contract-awarded/ (accessed on 15 September 2020).
- European Commission Hydro Pump Storage in Greece—Amfilochia. Available online: https://ec.europa.eu/eipp/desktop/en/projects/project-32.html (accessed on 15 September 2020).
- Hellenic Association of Photovoltaic Companies. Photovoltaic statistics for Greece. 2020. Available online: https://energypress.gr/sites/default/files/media/pv-stats_greece_2019_31mar2020 (accessed on 12 September 2020).
- Voudoukis, N.F. Photovoltaic Technology and Innovative Solar Cells. Eur. J. Electr. Eng. Comput. Sci. 2018, 2. [Google Scholar] [CrossRef] [Green Version]
- International Renewable Energy Agency. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper); International Renewable Energy Agency: Abu Dhabi, UAE, 2019. [Google Scholar]
- European Commission H2020 Project “Energy Efficiency Project Development for South Attica. Available online: https://cordis.europa.eu/project/id/754171 (accessed on 15 September 2020).
- Kaldellis, J.K.; Kapsali, M.; Kaldelli, E.; Katsanou, E. Comparing recent views of public attitude on wind energy, photovoltaic and small hydro applications. Renew. Energy 2013, 52, 197–208. [Google Scholar] [CrossRef]
- Newspost. Photovoltaic Parks as Wildlife Shelters. Available online: https://newpost.gr/enviroment/5c1257d456dccb7e13df7d05/fwtobolta-ka-parka-ws-katafygia-ths-agrias-zwhs (accessed on 15 September 2020).
- Pacca, S.; Sivaraman, D.; Keoleian, G.A. Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy 2007, 35, 3316–3326. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G.; D’Alessandro, F.; Scrucca, F. Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew. Sustain. Energy Rev. 2015, 42, 1113–1122. [Google Scholar] [CrossRef]
- Fouad, M.M.; ElSayed, A.G.; Shihata, L.A.; Kandil, H.A.; Morgan, E.I. Life cycle assessment for photovoltaic integrated shading system with different end of life phases. Int. J. Sustain. Energy 2019, 38, 821–830. [Google Scholar] [CrossRef]
- Ren, M.; Mitchell, C.R.; Mo, W. Dynamic life cycle economic and environmental assessment of residential solar photovoltaic systems. Sci. Total Environ. 2020, 722, 137932. [Google Scholar] [CrossRef]
- Bazán, J.; Rieradevall, J.; Gabarrell, X.; Vázquez-Rowe, I. Low-carbon electricity production through the implementation of photovoltaic panels in rooftops in urban environments: A case study for three cities in Peru. Sci. Total Environ. 2018, 622–623, 1448–1462. [Google Scholar] [CrossRef]
- Corcelli, F.; Fiorentino, G.; Petit-Boix, A.; Rieradevall, J.; Gabarrell, X. Transforming rooftops into productive urban spaces in the Mediterranean. An LCA comparison of agri-urban production and photovoltaic energy generation. Resour. Conserv. Recycl. 2019, 144, 321–336. [Google Scholar] [CrossRef] [Green Version]
- Martinopoulos, G. Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis. Appl. Energy 2020, 257, 114035. [Google Scholar] [CrossRef]
- Souliotis, M.; Arnaoutakis, N.; Panaras, G.; Kavga, A.; Papaefthimiou, S. Experimental study and Life Cycle Assessment (LCA) of Hybrid Photovoltaic/Thermal (PV/T) solar systems for domestic applications. Renew. Energy 2018, 126, 708–723. [Google Scholar] [CrossRef]
- Bany Mousa, O.; Kara, S.; Taylor, R.A. Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors. Appl. Energy 2019, 241, 113–123. [Google Scholar] [CrossRef]
- Wu, P.; Ma, X.; Ji, J.; Ma, Y. Review on Life Cycle Assessment of Energy Payback of Solar Photovoltaic Systems and a Case Study. Energy Procedia 2017, 105, 68–74. [Google Scholar] [CrossRef]
- Eskew, J.; Ratledge, M.; Wallace, M.; Gheewala, S.H.; Rakkwamsuk, P. An environmental Life Cycle Assessment of rooftop solar in Bangkok, Thailand. Renew. Energy 2018, 123, 781–792. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Yuan, Z. Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China. J. Clean. Prod. 2015, 86, 180–190. [Google Scholar] [CrossRef]
- Nordin, A.H.M.; Sulaiman, S.I.; Shaari, S.; Mustapa, R.F. Life-cycle assessment of residential-scale grid-connected photovoltaic system in Malaysia based on monocrystalline silicon modules. Int. J. Power Electron. Drive Syst. IJPEDS 2020, 11, 677. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, C.S.; Ahsan, T.M. A life cycle assessment model for quantification of environmental footprints of a 3.6 kWp photovoltaic system in Bangladesh. Int. J. Renew. Energy Dev. 2019, 8, 113. [Google Scholar] [CrossRef]
- Sumper, A.; Robledo-García, M.; Villafáfila-Robles, R.; Bergas-Jané, J.; Andrés-Peiró, J. Life-cycle assessment of a photovoltaic system in Catalonia (Spain). Renew. Sustain. Energy Rev. 2011, 15, 3888–3896. [Google Scholar] [CrossRef]
- Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M.L. Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies 2020, 13, 252. [Google Scholar] [CrossRef] [Green Version]
- Blanco, C.F.; Cucurachi, S.; Guinée, J.B.; Vijver, M.G.; Peijnenburg, W.J.G.M.; Trattnig, R.; Heijungs, R. Assessing the sustainability of emerging technologies: A probabilistic LCA method applied to advanced photovoltaics. J. Clean. Prod. 2020, 259, 120968. [Google Scholar] [CrossRef]
- Celik, I.; Song, Z.; Cimaroli, A.J.; Yan, Y.; Heben, M.J.; Apul, D. Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Sol. Energy Mater. Sol. Cells 2016, 156, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Rivera, J.L.; Meng, T.Y.; Laratte, B.; Chen, S. Review of life cycle assessment of nanomaterials in photovoltaics. Sol. Energy 2016, 133, 249–258. [Google Scholar] [CrossRef]
- Shafique, M.; Luo, X.; Zuo, J. Photovoltaic-green roofs: A review of benefits, limitations, and trends. Sol. Energy 2020, 202, 485–497. [Google Scholar] [CrossRef]
- Fthenakis, V.; Kim, H.C.; Frischknecht, R.; Raguei, M.; Sinha, P.; Stucki, M. Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems; International Energy Agency (IEA): Paris, France, 2011. [Google Scholar]
- Fthenakis, V.; Frischknecht, R.; Raguei, M.; Kim, H.C.; Alsema, E.; Held, M.; de Wild-Scholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity; International Energy Agency (IEA): Paris, France, 2011. [Google Scholar]
- International Standard Organization. ISO 14040:2006—Environmental Management—Life Cycle Assessment—Principles and Framework; International Standard Organization: Geneva, Switzerland, 2006. [Google Scholar]
- International Standard Organization. ISO 14044: 2006—Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Standard Organization: Geneva, Switzerland, 2006. [Google Scholar]
- EGING PV EG-P72 325-345 Polycrystalline 72-Cell Module Specification Datasheet 2018. Available online: https://www.enfsolar.com/pv/panel-datasheet/crystalline/34145 (accessed on 12 September 2020).
- Bosch Solar Energy AG Bosch Solar Module M60 c-Si Technical Datasheet 2012. Available online: https://pdf.directindustry.com/pdf/bosch-solar-energy-ag/c-si-m-60-eu42117-i-eu42123-245-260wp/54351-916972.html (accessed on 12 September 2020).
- MAGE SOLAR AG Photovoltaic Modules MAGE POWERTEC PLUS 245-255/5MR Technical Datasheet 2011. Available online: http://dopplergreenenergy.gr/tmp/MAGE_POWERTEC_PLUS_245-255_5_MR_EN.pdf (accessed on 12 September 2020).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Thinkstep, A.G. GaBi Software; Baden-Württemberg, Germany; Available online: http://www.gabi-software.com/ (accessed on 12 September 2020).
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. The ecoinvent Database: Overview and Methodological Framework (7 pp). Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
- CML-IA Characterisation Factors. Available online: https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors (accessed on 4 March 2019).
- Ozin, G. SF6 Worries—The Most Potent and Persistent Greenhouse Gas. Available online: https://www.advancedsciencenews.com/sf6-worries-the-most-potent-and-persistent-greenhouse-gas/#:~:text=%20Today%2C%20SF6%20has%20been,not%20absorbed%20or%20destroyed%20naturally (accessed on 15 September 2020).
Material/Process | Quantity | Unit |
---|---|---|
Machine operation, diesel | 127 | hours |
Sand | 120,600 | kg |
Lorry transportation | 2213 | ton-km |
Energy | 1869 | MJ |
Steel | 139 | tons |
Concrete | 30 | cubic meters |
Reinforcing iron | 480 | kg |
Polyurethane | 361 | kg |
Polyvinylchloride | 508 | kg |
Rubber | 166 | kg |
Copper | 525 | kg |
Electrical/electronic equipment | 50 | kg |
Router | 1 | pieces |
Data cable | 120 | m |
High density polyethylene | 9 | kg |
Cement tiles | 1440 | kg |
Aluminum | 1645 | kg |
Polyethylene | 100 | kg |
Photovoltaic System | Location | Photovoltaic System Capacity (kW) | Panel Nominal Capacity (w) | Number of Panels | Single-Si Wafer Panel Area (m2) | Inverter Capacity (kW) | Solar Cable (m) | Aluminum Panel Bases (kg) | Cables AC NYY 5 × 16 (m) |
---|---|---|---|---|---|---|---|---|---|
Roof PV 1 | Platani | 9.870 | 235 | 42 | 72.71 | 10 | 130 | 95 | 10 |
Roof PV 2 | Edessa | 9.870 | 235 | 42 | 72.71 | 10 | 146 | 95 | 20 |
Roof PV 3 | Peraia | 9.945 | 255 | 39 | 73.26 | 10 | 120 | 88 | 15 |
Roof PV 4 | Vryta | 9.900 | 225 | 44 | 72.93 | 10 | 120 | 99 | 10 |
Roof PV 5 | Edessa | 9.870 | 235 | 42 | 72.71 | 10 | 140 | 95 | 10 |
Environmental Impact Categories | Arnissa PV Farm | Roof PV 1 | Roof PV 2 | Roof PV 3 | Roof PV 4 | Roof PV 5 |
---|---|---|---|---|---|---|
Abiotic Depletion (ADP elements) [kg Sb eq.] | 1.31 × 10−6 | 1.91 × 10−6 | 1.95 × 10−6 | 1.91 × 10−6 | 1.90 × 10−6 | 1.91 × 10−6 |
Abiotic Depletion (ADP fossil) [MJ] | 5.80 × 10−1 | 7.44 × 10−1 | 7.46 × 10−1 | 7.42 × 10−1 | 7.44 × 10−1 | 7.44 × 10−1 |
Acidification Potential (AP) [kg S O2 eq.] | 2.44 × 10−4 | 3.26 × 10−4 | 3.34 × 10−4 | 3.27 × 10−4 | 3.25 × 10−4 | 3.26 × 10−4 |
Eutrophication Potential (EP) [kg Phosphate eq.] | 1.37 × 10−4 | 1.97 × 10−4 | 2.03 × 10−4 | 1.99 × 10−4 | 1.97 × 10−4 | 1.98 × 10−4 |
Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) [kg DCB eq.] | 4.21 × 10−2 | 5.37 × 10−2 | 5.52 × 10−2 | 5.38 × 10−2 | 5.36 × 10−2 | 5.38 × 10−2 |
Global Warming Potential (GWP 100 years) [kg C O2 eq.] | 4.27 × 10−2 | 5.43 × 10−2 | 5.45 × 10−2 | 5.42 × 10−2 | 5.43 × 10−2 | 5.43 × 10−2 |
Global Warming Potential (GWP 100 years), excl. biogenic carbon [kg C O2 eq.] | 4.27 × 10−2 | 5.44 × 10−2 | 5.45 × 10−2 | 5.42 × 10−2 | 5.44 × 10−2 | 5.44 × 10−2 |
Human Toxicity Potential (HTP inf.) [kg DCB eq.] | 7.22 × 10−2 | 9.53 × 10−2 | 1.01 × 10−1 | 9.66 × 10−2 | 9.48 × 10−2 | 9.57 × 10−2 |
Marine Aquatic Ecotoxicity Pot. (MAETP inf.) [kg DCB eq.] | 1.05 × 10+2 | 1.46 × 10+2 | 1.50 × 10+2 | 1.46 × 10+2 | 1.46 × 10+2 | 1.46 × 10+2 |
Ozone Layer Depletion Potential (ODP, steady state) [kg R11 eq.] | 5.02 × 10−9 | 5.39 × 10−9 | 5.39 × 10−9 | 5.37 × 10−9 | 5.39 × 10−9 | 5.39 × 10−9 |
Photochem. Ozone Creation Potential (POCP) [kg Ethene eq.] | 2.29 × 10−5 | 2.83 × 10−5 | 2.88 × 10−5 | 2.83 × 10−5 | 2.83 × 10−5 | 2.84 × 10−5 |
Terrestric Ecotoxicity Potential (TETP inf.) [kg DCB eq.] | 6.76 × 10−4 | 4.98 × 10−4 | 5.18 × 10−4 | 5.03 × 10−4 | 4.96 × 10−4 | 5.00 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouloumpis, V.; Kalogerakis, A.; Pavlidou, A.; Tsinarakis, G.; Arampatzis, G. Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics. Sustainability 2020, 12, 9120. https://doi.org/10.3390/su12219120
Kouloumpis V, Kalogerakis A, Pavlidou A, Tsinarakis G, Arampatzis G. Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics. Sustainability. 2020; 12(21):9120. https://doi.org/10.3390/su12219120
Chicago/Turabian StyleKouloumpis, Victor, Antonios Kalogerakis, Anastasia Pavlidou, George Tsinarakis, and George Arampatzis. 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics" Sustainability 12, no. 21: 9120. https://doi.org/10.3390/su12219120
APA StyleKouloumpis, V., Kalogerakis, A., Pavlidou, A., Tsinarakis, G., & Arampatzis, G. (2020). Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics. Sustainability, 12(21), 9120. https://doi.org/10.3390/su12219120