Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Handling—Energy Intensive Operation
2.2. Trolley Trucks and Belt Conveyors Developments
2.3. Measures of Mining Transport Energy Efficiency
2.4. Accurate Modeling of Belt Conveyors
2.5. Opportunities of Recuperation of a Potential Gravitational Energy of Hauled Tonnages of Mined Material by Belt Conveyors
3. Results and Discussion
3.1. Map of Drive Power Range
- Mineral deposits located in a hilly terrain and the run-of-mine material is transported downhill—a declining belt conveyor route can be laid out;
- The gravity forces work of the conveyed material significantly surpasses the conveyor motion resistances, which usually can be achieved with the help of a storage bunker at the loading point to maintain the actual high capacity.
3.2. Recovery of Energy—The Comparison of an Energy Efficient and a Typical Belt Conveyor
3.3. Energy Efficiency and Environmental Improvements Impact Benefits
4. Conclusions
- conveyor route profile (the inclination angle above 5° is recommended),
- energy efficient components of belt conveyor (the accurate, object-oriented calculations of a belt conveyor resistances to motion are necessary to select the best suited technical solution)
- a storage bunker with a belt conveyor system to keep high capacity and avoid low loading or empty operations (where the regenerative conveyor needs driving).
Author Contributions
Funding
Conflicts of Interest
References
- Asr, E.T.; Kakaie, R.; Ataei, M.; Mohammadi, M.R.T. A review of studies on sustainable development in mining life cycle. J. Clean. Prod. 2019, 229, 213–231. [Google Scholar]
- Hilson, G.; Murck, B. Sustainable development in the mining industry: Clarifying the corporate perspective. Resour. Policy 2000, 26, 227–238. [Google Scholar] [CrossRef]
- Orazalin, N.; Mahmood, M. Determinants of GRI-based sustainability reporting: Evidence from an emerging economy. J. Account. Emerg. Econ. 2019, 10, 140–164. [Google Scholar] [CrossRef]
- Wozniak, J.; Pactwa, K. State of non-financial reporting of polish representatives of the mining industry in a sustainable social dimension. In Proceedings of the IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2019; Volume 362. [Google Scholar]
- Boiral, O.; Heras-Saizarbitoria, I.; Brotherton, M.C. Assessing and Improving the Quality of Sustainability Reports: The Auditors’ Perspective. J. Bus. Ethics 2019, 155, 703–721. [Google Scholar] [CrossRef]
- Boiral, O.; Heras-Saizarbitoria, I.; Brotherton, M.C.; Bernard, J. Ethical Issues in the Assurance of Sustainability Reports: Perspectives from Assurance Providers. J. Bus. Ethics 2019, 159, 1111–1125. [Google Scholar] [CrossRef]
- Fonseca, A.; McAllister, M.L.; Fitzpatrick, P. Sustainability reporting among mining corporations: A constructive critique of the GRI approach. J. Clean. Prod. 2014, 84, 70–83. [Google Scholar] [CrossRef]
- European Aggregates Association. Annual Review: 2018–2019; European Aggregates Association: Brussels, Belgium, 2020. [Google Scholar]
- European Association for Coal and Lignite. Annual Report 2018; European Association for Coal and Lignite: Brussels, Belgium, 2018. [Google Scholar]
- Mininstry Republic of Austria. World Mining Data 2019; Federal Mininstry Republic of Austria: Vienna, Austria, 2019. [Google Scholar]
- Kaźmierczak, U.; Strzałkowski, P. Environmentally Friendly Rock Mining—Case Study of the Limestone Mine “Górażdże”, Poland. Appl. Sci. 2019, 9, 5512. [Google Scholar] [CrossRef] [Green Version]
- Kopacz, M.; Kryzia, D.; Kryzia, K. Assessment of sustainable development of hard coal mining industry in Poland with use of bootstrap sampling and copula-based Monte Carlo simulation. J. Clean. Prod. 2017, 159, 359–373. [Google Scholar] [CrossRef]
- Pactwa, K.; Woźniak, J.; Strempski, A. Sustainable mining—Challenge of Polish mines. Resour. Policy 2018, 1–9. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. Innovation and technology for sustainable mining activity: A worldwide research assessment. J. Clean. Prod. 2019, 221, 38–54. [Google Scholar] [CrossRef]
- Holmberg, K.; Kivikytö-Reponen, P.; Härkisaari, P.; Valtonen, K.; Erdemir, A. Global energy consumption due to friction and wear in the mining industry. Tribol. Int. 2017, 115, 116–139. [Google Scholar] [CrossRef]
- Odyssee Database. Available online: https://odyssee.enerdata.net/database/ (accessed on 27 April 2020).
- Jeswiet, J.; Szekeres, A. Energy Consumption in Mining Comminution. Procedia CIRP 2016, 48, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Klein, B.; Wang, C.; Nadolski, S. Energy-efficient comminution: Best practices and future research needs. In Green Energy and Technology; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Awuah-Offei, K. Energy efficiency in mining: A review with emphasis on the role of operators in loading and hauling operations. J. Clean. Prod. 2016, 117, 89–97. [Google Scholar] [CrossRef]
- Soofastaei, A.; Karimpour, E.; Knights, P.; Kizil, M. Energy-efficient loading and hauling operations. In Green Energy and Technology; Springer: Cham, Switzerland, 2018; pp. 121–146. [Google Scholar]
- Bunko, T.; Shyshov, M.; Bokii, O.; Belikov, A.; Zhalilov, O.; Kokoulin, I. Increase of energy efficiency of mine fans work on a mine vent network. E3S Web Conf. 2019, 109, 00012. [Google Scholar] [CrossRef]
- Nel, A.J.H.; Arndt, D.C.; Vosloo, J.C.; Mathews, M.J. Achieving energy efficiency with medium voltage variable speed drives for ventilation-on-demand in South African mines. J. Clean. Prod. 2019, 232, 379–390. [Google Scholar] [CrossRef]
- Lee, D.; Cheng, C.C. Energy savings by energy management systems: A review. Renew. Sustain. Energy Rev. 2016, 56, 760–777. [Google Scholar] [CrossRef]
- Moreno-Leiva, S.; Haas, J.; Junne, T.; Valencia, F.; Godin, H.; Kracht, W.; Nowak, W.; Eltrop, L. Renewable energy in copper production: A review on systems design and methodological approaches. J. Clean. Prod. 2020, 246, 118978. [Google Scholar] [CrossRef]
- Numbi, B.P.; Zhang, J.; Xia, X. Optimal energy management for a jaw crushing process in deep mines. Energy 2014, 68, 337–348. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency (EEA). Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC Text with EEA Relevance; European Environment Agency (EEA): Copenhagen, Denmark, 2012.
- European Environment Agency (EEA). Directive (EU) 2018/2002 of the European Parliament and of the Council-of 11 December 2011—Amending Directive 2012/27/EU on Energy Efficiency; European Environment Agency (EEA): Copenhagen, Denmark, 2011.
- European Environment Agency (EEA). Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for the Setting of Ecodesign Requirements for Energy-Related Products (Recast) (Text with EEA Relevance); European Environment Agency (EEA): Copenhagen, Denmark, 2009.
- Kawalec, W.; Król, R. Sustainable Development Oriented Belt Conveyors Quality Standards. In Proceedings of the 14th International Scientific Conference Computer Aided Engineering, Wroclaw, Poland, 20–23 June 2018; Rusiński, E., Pietrusiak, D., Eds.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 327–336. ISBN 978-3-030-04974-4. [Google Scholar]
- Państwowy Instytut Geologiczny—Państwowy Instytut Badawczy Portal Geologia—Mapy Geologiczne. Available online: http://geologia.pgi.gov.pl/arcgis/apps/MapSeries/index.html?appid=8d14826a895641e2be10385ef3005b3c (accessed on 22 October 2020).
- Soofastaei, A.; Aminossadati, S.M.; Arefi, M.M.; Kizil, M.S. Development of a multi-layer perceptron artificial neural network model to determine haul trucks energy consumption. Int. J. Min. Sci. Technol. 2016, 26, 285–293. [Google Scholar] [CrossRef]
- Dzakpata, I.K.; Knights, P.; Kizil, M.S.; Nehring, M. Truck and Shovel Versus In-Pit Conveyor Systems: A Comparison of the Valuable Operating Time Open Pit Mine Production Scheduling View Project; University of Wollongong: Wollongong, NSW, Australia, 2016. [Google Scholar]
- Peralta, S.; Sasmito, A.P.; Kumral, M. Reliability effect on energy consumption and greenhouse gas emissions of mining hauling fleet towards sustainable mining. J. Sustain. Min. 2016, 15, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Kecojevic, V.; Komljenovic, D.; Kecojevic, V.; Komljenovic, D. Haul truck fuel consumption and CO2 emission under various engine load conditions. Min. Eng. 2010, 62, 44–48. [Google Scholar]
- Esfahanian, E.; Meech, J.A. Hybrid Electric Haulage Trucks for Open Pit Mining; IFAC Proceedings Volumes (IFAC-PapersOnline); Elsevier: Amsterdam, The Netherlands, 2013; Volume 15, pp. 104–109. [Google Scholar]
- Sahoo, L.K.; Bandyopadhyay, S.; Banerjee, R. Benchmarking energy consumption for dump trucks in mines. Appl. Energy 2014, 113, 1382–1396. [Google Scholar] [CrossRef] [Green Version]
- Nehring, M.; Knights, P.F.; Kizil, M.S.; Hay, E. A comparison of strategic mine planning approaches for in-pit crushing and conveying, and truck/shovel systems. Int. J. Min. Sci. Technol. 2018, 28, 205–214. [Google Scholar] [CrossRef]
- Mazumdar, J. Performance improvement of mining haul trucks operating on trolley systems. In Proceedings of the Conference Record—IAS Annual Meeting, Orlando, FL, USA, 9–13 October 2011; IEEE Industry Applications Society: New York, NY, USA, 2011. [Google Scholar]
- Mazumdar, J.; Koellner, W.; Moghe, R. Interface issues of mining haul trucks operating on trolley systems. In Proceedings of the Conference Proceedings—IEEE Applied Power Electronics Conference and Exposition—APEC, Palm Springs, CA, USA, 21–25 February 2010; pp. 1158–1165. [Google Scholar]
- Mazumdar, J. All electric operation of ultraclass mining haul trucks. In Proceedings of the Conference Record—IAS Annual Meeting, Lake Buena Vista, FL, USA, 6–11 October 2013; IEEE Industry Applications Society: New York, NY, USA, 2013. [Google Scholar]
- Cruzat, J.V.; Valenzuela, M.A. Integrated Modeling and Evaluation of Electric Mining Trucks during Propel and Retarding Modes. IEEE Trans. Ind. Appl. 2018, 54, 6586–6597. [Google Scholar] [CrossRef]
- Khazin, M.; Tarasov, A. Ecological and economic evaluation of quarry trolley trucks. Perm. J. Pet. Min. Eng. 2018, 17, 166–180. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N. Energy and greenhouse gas impacts of mining and mineral processing operations. J. Clean. Prod. 2010, 18, 266–274. [Google Scholar] [CrossRef]
- Fajer, R.; Idziak, E.; Konieczka, Z.; Mrówka, A.; Orzechowski, L.; Szczepaniak, T. Optymalizacja rozwiązań technicznych przenośników taśmowych w PGE GiEK SA Oddział KWB Bełchatów. Gór. Geoinż. 2011, 35, 81–89. [Google Scholar]
- Bajda, M.; Jurdziak, L.; Konieczka, Z. Comparison of electricity consumption by belt conveyors in a brown coal mine: Pt 1, Study of statistical significance of differences and correlations. Gór. Odkryw. 2018, 26, 263–274. [Google Scholar]
- Luo, J.; Huang, W.; Zhang, S. Energy cost optimal operation of belt conveyors using model predictive control methodology. J. Clean. Prod. 2015, 105, 196–205. [Google Scholar] [CrossRef]
- He, D.; Pang, Y.; Lodewijks, G. Green operations of belt conveyors by means of speed control. Appl. Energy 2017, 188, 330–341. [Google Scholar] [CrossRef]
- Krol, R.; Kawalec, W.; Gladysiewicz, L. An Effective Belt Conveyor for Underground Ore Transportation Systems. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 42047. [Google Scholar] [CrossRef]
- Gładysiewicz, L.; Kawalec, W.; Król, R. Selection of carry idler spacing of belt conveyor taking into account random stream of transported bulk material. Eksploat. Niezawodn. Maint. Reliab. 2016, 18, 32–37. [Google Scholar] [CrossRef]
- Kisielewski, W.; Król, R. Wpływ krążników na energochłonność przenośnika taśmowego. Min. Sci. 2014, 21, 61–72. [Google Scholar] [CrossRef]
- Katterfeld, A.; Richter, C. Reducing the Energy Consumption of Belt Conveyors by the Use of Intelligent Garlands. In Proceedings of the 12th International Conference on Bulk Materials Storage, Handling and Transportation (ICBMH 2016), Darwin, NT, Australia, 11–14 July 2016; pp. 600–605. [Google Scholar]
- Gładysiewicz, L.; Konieczna-Fuławka, M. Influence of idler set load distribution on belt rolling resistance. Arch. Min. Sci. 2019, 64, 251–259. [Google Scholar]
- Jansen, M. The development of energy-optimized conveyor belts—A joint project of the Conveyor Belt Group of ContiTech AC and RWE Power AG. World Min. Surf. Undergr. 2008, 60, 83. [Google Scholar]
- Masaki, M.S.; Zhang, L.; Xia, X. A design approach for multiple drive belt conveyors minimizing life cycle costs. J. Clean. Prod. 2018, 201, 526–541. [Google Scholar] [CrossRef] [Green Version]
- Schützhold, J.; Benath, K.; Müller, V.; Hofmann, W. Design criteria for energy efficient belt conveyor drives. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014, Ischia, Italy, 18–20 June 2014; IEEE Computer Society: Washington, DC, USA, 2014; pp. 1256–1263. [Google Scholar]
- Halepoto, I.A.; Khaskheli, S. Modeling of an Integrated Energy Efficient Conveyor System Model using Belt Loading Dynamics. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, X. A new energy calculation model of belt conveyor. In Proceedings of the IEEE AFRICON Conference, Nairobi, Kenya, 23–25 September 2009. [Google Scholar]
- He, D.; Pang, Y.; Lodewijks, G. Speed control of belt conveyors during transient operation. Powder Technol. 2016, 301, 622–631. [Google Scholar] [CrossRef]
- Hiltermann, J.; Lodewijks, G.; Schott, D.L.; Rijsenbrij, J.C.; Dekkers, J.A.J.M.; Pang, Y. A Methodology to Predict Power Savings of Troughed Belt Conveyors by Speed Control. Part. Sci. Technol. 2011, 29, 14–27. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, X. Optimal control of operation efficiency of belt conveyor systems. Appl. Energy 2010, 87, 1929–1937. [Google Scholar] [CrossRef]
- Gładysiewicz, L. Belt Conveyors. Theory and Calculations; Wroclaw University of Technology Publishing House: Wroclaw, Poland, 2003. (In Polish) [Google Scholar]
- Gładysiewicz, L.; Kawalec, W. Object modeling of a belt conveyor. In Mine Planning and Equipment Selection 2000, Proceedings of the Ninth International Symposium on Mine Planning and Equipment Selection, Athens, Greece, 6–9 November 2000; A.A. Balkema: Roterdam, The Netherlends, 2004; pp. 811–814. [Google Scholar]
- Kawalec, W.; Kulinowski, P. Computations of belt conveyors. Transp. Przem. Masz. Rob. 2007, 1, 6–11. [Google Scholar]
- Kulinowski, P.; Kawalec, W. Program Komputerowy QNK-TT do Wspomagania Projektowania Przenośników Taśmowych. Available online: http://www.EnterTECH.com.pl/QNK (accessed on 24 August 2020).
- Mathaba, T.; Xia, X. Optimal and energy efficient operation of conveyor belt systems with downhill conveyors. Energy Effic. 2017, 10, 405–417. [Google Scholar] [CrossRef]
- Państwowy Instytut. Geologiczny Zestawienie Geologicznych Zasobów Bilansowych i Wydobycia Ważniejszych Kopalin w Polsce w 2018 r. Available online: http://geoportal.pgi.gov.pl/css/surowce/images/2018/pdf/zasoby_i_wydobycie_kopalin_2018.pdf (accessed on 20 April 2020).
- Borcz, A.; Kozioł, W. Machine systems in surface mining. Part 1. Machines in polish mining. Nowocz. Bud. Inż. 2015, 4, 102–107. [Google Scholar]
- Kiriia, R.; Shyrin, L. Reducing the energy consumption of the conveyor transport system of mining enterprises. E3S Web Conf. 2019, 109, 00036. [Google Scholar] [CrossRef]
- Kawalec, W.; Suchorab, N.; Konieczna-Fuławka, M.; Król, R. Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine. Energies 2020, 13, 5214. [Google Scholar] [CrossRef]
- Polish Government. Energy Efficiency Act of May 20, 2016; Polish Government: Warsav, Poland, 2016. [Google Scholar]
- Grupa Kapitałowa Energa. Cennik Standardowy dla Przedsiębiorstw. Available online: https://www.energa.pl/dam/jcr:127d671c-818e-4675-a7c0-06ede63b7683/Cennikstandardowydlaprzedsiębiorstw_01112019_.pdf (accessed on 28 April 2020).
- Zajączkowski, M.; Czerniak, A.; Adamski, P. Wydobywanie Kopalin ze Złóż Położonych na Gruntach w Zarządzie PGL LP-Zasady i Tryb Ubiegania się o Koncesję Przez Jednostki PGL LP; Lasy Państwowe: Warsaw, Poland, 2017. [Google Scholar]
- Superior Industries. Long Distance Conveying—Long Term Savings. Conveyor vs Haul Trucks. Available online: https://superior-ind.com/portfolio-items/savings-conveyors-vs-haul-trucks/ (accessed on 2 October 2020).
- Abbaspour, H.; Drebenstedt, C. Environmental Comparison of Different Transportation Systems—Truck-Shovel and IPCCs—In Open-Pit Mines by System Dynamic Modeling. In Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection—MPES 2018; Springer International Publishing: Cham, Switzerland, 2019; pp. 287–305. [Google Scholar]
- National Centre for Emissions Management (KOBiZE). Emission Indexes CO2, SO2, NOx, COi, Total Particulates for Electric Energy; KOBiZE: Warsaw, Poland, 2019. (in Polish) [Google Scholar]
- CEMA: Conveyor Equipment Manufacturers Association. Belt Conveyors for Bulk Materials, 6th ed.; CEMA: Conveyor Equipment Manufacturers Association: Naples, FL, USA, 2009. [Google Scholar]
Parameter | Value | |
---|---|---|
Conveyor length | 600 m | |
Angle of route profile | 2–7° | |
Material conveyed | Crushed dolomite, density 2100 kg/m3 | |
Maximum Tonnage capacity | 640 t/h | |
Drive unit | 75 kW, 2 pulleys, VFD | |
Conveyor Belt type | Textile, EP1000/4 (8 + 2), 12,23 kg/m | |
Belt speed | 2 m/s | |
Conveyor belt’s support element—Idlers | energy efficient, rotational resistance 1.2N | Carrying idlers: 3 roll, trough angle: 30°, space intervals: 1.2 m |
Return idlers: 1 roll, space intervals: 3 m, | ||
Belt cleaning device—Scraper resistance | 300 N | |
Ambient temperature | 11 °C |
Parameter | CONVEYOR | |||
---|---|---|---|---|
Typical | Efficient | |||
Without Storage Bunker | With Storage Bunker | Without Storage Bunker | With Storage Bunker | |
Working hours, h | 2000 | 500 | 2000 | 500 |
Idle working hours, h | 1300 | 200 | 1300 | 200 |
Average capacity, t/h | 140 | 350 | 140 | 350 |
Site specific energy consumption, kWh/t | 0.178 | 0.095 | 0.095 | 0.057 |
Gravity work, kWh/t | −0.117 | −0.117 | −0.117 | −0.117 |
Idle power, kW | 21 | 21 | 10.0 | 10.0 |
Regenerative work | NO | YES | YES | YES |
Energy consumption, MWh | 27.3 | 4.2 | 13.0 | 2.0 |
Recovered energy, MWh | −6.1 | 2.2 | 2.3 | 6.0 |
Capacity, t | 20 |
Annual distance, km | 15,000 |
Average fuel usage, l/100 km | 40 |
Total fuel usage, l | 6000 |
Density of diesel fuel, kg/l | 0.84 |
Mass of used diesel fuel (~toe), t | 5.04 |
SSEC, kWh/t (by CEMA [76]) | 0.652 |
Energy consumption, MWh | 65.22 |
Conversion MWh to toe | 5.61 |
Parameter | Mining Truck | Regenerative Belt Conveyor |
---|---|---|
Emitted CO2 | 15,730 | 1584 |
Saved emission | none | 4752 |
Emission Type | kg/MWh | kg |
---|---|---|
CO2 | 792 | 4752 |
SO2 | 0.704 | 4.224 |
NOx | 0.653 | 3.918 |
CO | 0.285 | 1.71 |
dust | 0.037 | 0.222 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawalec, W.; Król, R.; Suchorab, N. Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges. Sustainability 2020, 12, 9215. https://doi.org/10.3390/su12219215
Kawalec W, Król R, Suchorab N. Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges. Sustainability. 2020; 12(21):9215. https://doi.org/10.3390/su12219215
Chicago/Turabian StyleKawalec, Witold, Robert Król, and Natalia Suchorab. 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges" Sustainability 12, no. 21: 9215. https://doi.org/10.3390/su12219215
APA StyleKawalec, W., Król, R., & Suchorab, N. (2020). Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges. Sustainability, 12(21), 9215. https://doi.org/10.3390/su12219215