Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia
Abstract
:1. Introduction
2. Forests and Deforestation in Malaysia
3. Economic Growth and Carbon Emission in Malaysia
4. Methodology
5. Results
6. Discussion and Implications for Sustainability
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Contribution to the Intergovernmental Panel on Climate Change, Fifth Assessment Report Climate Change WG I, 2013: The Physical Science Basis Summary for Policymakers; IPCC Working Group I: Stockholm, Sweden, 2013. [Google Scholar]
- FAO. Global Forest Resources Assessment; Food and Agricultural Organization of United Nations: Rome, Italy, 2015. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, R.A. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr. Opin. Environ. Sustain. 2012, 4, 597–603. [Google Scholar] [CrossRef]
- Lewis, S.L. Tropical forests and the changing earth system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Malhi, Y.; Grace, J. Tropical forests and atmospheric carbon dioxide. Trends Ecol. 2000, 15, 332–337. [Google Scholar] [CrossRef]
- Jaafar, W.S.W.M.; Maulud, K.N.A.; Kamarulzaman, A.M.M.; Raihan, A.; Sah, S.M.; Ahmad, A.; Saad, S.N.M.; Azmi, A.T.M.; Syukri, N.K.A.J.; Khan, W.R. The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests 2020, 11, 670. [Google Scholar] [CrossRef]
- Shafik, N.; Bandyopadhyay, S. Economic Growth and Environmental Quality: Time Series and Cross-Country Evidence; WPS 904; The World Bank: Washington, DC, USA, 1992. [Google Scholar]
- Parajuli, R.; Joshi, O.; Maraseni, T. Incorporating forests, agriculture, and energy consumption in the framework of the Environmental Kuznets Curve: A dynamic panel data approach. Sustainability 2019, 11, 2688. [Google Scholar] [CrossRef] [Green Version]
- Van derWerf, G.R.; Morton, D.C.; DeFries, R.S.; Olivier, J.G.J.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.; Randerson, J.T. CO2 emissions from forest loss. Nat. Geosci. 2009, 2, 737–738. [Google Scholar] [CrossRef]
- Begum, R.A.; Sohag, K.; Abdullah, S.M.S.; Jaafar, M. CO2 emissions, energy consumption, economic and population growth in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 594–601. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Yang, D. Does Non-Fossil Energy Usage Lower CO2 Emissions? Empirical Evidence from China. Sustainability 2016, 8, 874. [Google Scholar] [CrossRef] [Green Version]
- Mitić, P.; Munitlak Ivanović, O.; Zdravković, A. A cointegration analysis of real GDP and CO2 emissions in transitional countries. Sustainability 2017, 9, 568. [Google Scholar] [CrossRef] [Green Version]
- Narayan, P.K.; Narayan, S. Carbon dioxide emissions and economic growth: Panel data evidence from developing countries. Energy Policy 2010, 38, 661–666. [Google Scholar] [CrossRef]
- Park, J.; Hong, T. Analysis of South Korea’s economic growth, carbon dioxide emission, and energy consumption using the Markov switching model. Renew. Sustain. Energy Rev. 2013, 18, 543–551. [Google Scholar] [CrossRef]
- Hussain, M.; Javid, M.I.; Drake, P.R. An econometric study of carbon dioxide (CO2) emissions, energy consumption, and economic growth of Pakistan. Int. J. Energy Sect. Manag. 2012, 6, 518–533. [Google Scholar] [CrossRef]
- Alam, M.J.; Begum, I.A.; Buysse, J.; Huylenbroeck, G.V. Energy consumption, carbon emissions and economic growth nexus in Bangladesh: Cointegration and dynamic causality analysis. Energy Policy 2012, 45, 217–225. [Google Scholar] [CrossRef]
- Wang, K.M. Modelling the nonlinear relationship between CO2 emissions from oil and economic growth. Econ. Model. 2012, 29, 1537–1547. [Google Scholar] [CrossRef]
- Fei, L.; Dong, S.; Xue, L.; Liang, Q.; Yang, W. Energy consumption-economic growth relationship and carbon dioxide emissions in China. Energy Policy 2011, 39, 568–574. [Google Scholar] [CrossRef]
- Chang, C.C. A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth. Appl. Energy 2010, 87, 3533–3537. [Google Scholar] [CrossRef]
- Pao, H.T.; Tsai, C.M. CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy 2010, 38, 7850–7860. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. Energy consumption, pollutant emissions and economic growth in South Africa. Energy Econ. 2010, 32, 1374–1382. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R. Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member. Ecol. Econ. 2009, 68, 1667–1675. [Google Scholar] [CrossRef]
- Ang, J.B. Economic development, pollutant emissions and energy consumption in Malaysia. J. Policy Model. 2008, 30, 271–278. [Google Scholar] [CrossRef]
- Paluš, H.; Parobek, J.; Moravčík, M.; Kovalčík, M.; Dzian, M.; Murgaš, V. Projecting Climate Change Potential of Harvested Wood Products under Different Scenarios of Wood Production and Utilization: Study of Slovakia. Sustainability 2020, 12, 2510. [Google Scholar] [CrossRef] [Green Version]
- Nabuurs, G.; Delacote, P.; Ellison, D.; Hanewinkel, M.; Lindner, M.; Nesbit, M.; Ollikainen, M.; Savaresi, A. A New Role for Forests and the Forest Sector in the EU Post-2020 Climate Targets; From Science to Policy 2; European Forest Institute: Joensuu, Finland, 2015; ISBN 9789525980219. [Google Scholar]
- MNRE. Total Forested Areas in Malaysia (1990–2014). Official Portal Ministry of Natural Resources and Environment (MNRE), Malaysia. Available online: http://www.nre.gov.my/en-my/Forestry/Pages/Statistics-Forest.aspx (accessed on 29 January 2020).
- Terrier, A.; Paquette, M.; Gauthier, S.; Girardin, M.P.; Pelletier-Bergeron, S.; Bergeron, Y. Influence of fuel load dynamics on carbon emission by wildfires in the Clay Belt boreal landscape. Forests 2017, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Jomo, K.S.; Chang, Y.T.; Khoo, K.J. Deforesting Malaysia: The Political Economy and Social Ecology of Agricultural Expansion and Commercial Logging; Zed Books Ltd.: London, UK, 2004. [Google Scholar]
- Osman, R.; Phua, M.H.; Ling, Z.Y.; Kamlun, K.U. Monitoring of Deforestation Rate and Trend in Sabah between 1990 and 2008 Using Multi temporal Landsat Data. J. For. Sci. 2012, 28, 144–151. [Google Scholar]
- Shaari, M.S.; Abdul Karim, Z.; Zainol Abidin, N. The Effects of Energy Consumption and National Output on CO2 Emissions: New Evidence from OIC Countries Using a Panel ARDL Analysis. Sustainability 2020, 12, 3312. [Google Scholar] [CrossRef] [Green Version]
- Roda, J.M.; Kamaruddin, N.; Tobias, R.P. Deciphering corporate governance and environmental commitments among southeast Asian transnationals: Uptake of sustainability certification. Forests 2015, 6, 1454–1475. [Google Scholar] [CrossRef] [Green Version]
- Saboori, B.; Sulaiman, J.; Mohd, S. Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the environmental Kuznets curve. Energy Policy 2012, 51, 184–191. [Google Scholar] [CrossRef]
- Noraida, A.W.; Abdul-Rahim, A.S.; Mohd-Shahwahid, H.O. The Impact of Sustainable Forest Management (SFM) Practices On Primary Timber-Based Production in Peninsular Malaysia. JEM 2017, 51, 159–177. [Google Scholar]
- Jaafar, A.H.; Salleh, N.H.M.; Manaf, Z.A. Intersectoral linkages in oil palm industry between Malaysia and Indonesia. JEM 2015, 49, 25–35. [Google Scholar] [CrossRef]
- ShriDewi, A.; Ali, A.M.; Alias, M.H. Impact of biodiesel blend mandate (B10) on the Malaysian palm oil industry. JEM 2014, 48, 29–40. [Google Scholar]
- Alias, M.H.; Arshad, F.M.; Rahman, A.A.A. Market share analysis of Malaysia’s palm oil exports: Implications on its competitiveness. JEM 1992, 26, 3–20. [Google Scholar]
- Ismail, R. An economic evaluation of carbon emission and carbon sequestration for the forestry sector in Malaysia. Biomass Bioenergy 1995, 8, 281–292. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators (WDI); Data series by The World Bank Group; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Ismail, R. Long-term growth in Malaysia: An application of endogenous neoclassical growth model. JEM 1999, 33, 105–121. [Google Scholar]
- CCPI. Climate Change Performance Index Report 2020; German Watch, the European Union and the Barthel Foundation: Bonn, Germany; Brussels, Belgium, 2020. [Google Scholar]
- MNRE. Malaysia’s First Biennial Update Report (BUR) Submitted to the United Nations Framework Convention on Climate Change (UNFCCC) in December 2015; Ministry of Natural Resources and Environment (MNRE): Putrajaya, Malaysia, 2015.
- MNRE. Second National Communication (NC2) to the UNFCCC 2011; Official Portal Ministry of Natural Resources and Environment (MNRE): Putrajaya, Malaysia, 2011.
- Rashid, Z.A.; Rahman, A.A.A.; Othman, M.S.; Suib, A. Tourism impact analysis—An inter-sectoral analysis of the Malaysian economy. JEM 1993, 27, 99–119. [Google Scholar]
- Pesaran, M.H.; Shin, Y. An autoregressive distributed lag modeling approach to cointegration analysis. In Econometrics and Economic Theory in 20th Century: The Ragnar Frisch Centennial Symposium; Strom, S., Ed.; Cambridge University Press: Cambridge, UK, 1999; p. 11. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Alcántara, V.; Padilla, E. Input–output subsystems and pollution: An application to the service sector and CO2 emissions in Spain. Ecol. Econ. 2009, 68, 905–914. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Dickey, D.; Fuller, W. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica 1981, 49, 1057–1071. [Google Scholar] [CrossRef]
- Elliot, G.; Rothenberg, T.J.; Stock, J.H. Efficient tests for an autoregressive unit root. Econometrica 1996, 64, 813–836. [Google Scholar] [CrossRef] [Green Version]
- Holtz-Eakin, D.; Selden, T.M. Stoking the fires? CO2 emissions and economic growth. J. Public Econ. 1995, 57, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Shafik, N. Economic development and environmental quality: An econometric analysis. Oxf. Econ. Pap. 1994, 46, 75–773. [Google Scholar] [CrossRef]
- Azlina, A.A.; Mustapha, N.H. Energy, economic growth and pollutant emissions nexus: The case of Malaysia. Procedia-Soc. Behav. Sci. 2012, 65, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bilan, Y.; Streimikiene, D.; Vasylieva, T.; Lyulyov, O.; Pimonenko, T.; Pavlyk, A. Linking between renewable energy, CO2 emissions, and economic growth: Challenges for candidates and potential candidates for the EU membership. Sustainability 2019, 11, 1528. [Google Scholar] [CrossRef] [Green Version]
- Pao, H.T.; Tsai, C.M. Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy 2011, 36, 685–693. [Google Scholar] [CrossRef]
- Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q.W. CO2 emissions, energy consumption and economic growth in China: A panel data analysis. Energy Policy 2011, 39, 4870–4875. [Google Scholar] [CrossRef]
- Tiwari, A.K. Energy consumption, CO2 emissions and economic growth: Evidence from India. JIBE 2011, 12, 85–122. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, I.; Acaravci, A. CO2 emissions, energy consumption and economic growth in Turkey. Renew. Sustain. Energy Rev. 2010, 14, 3220–3225. [Google Scholar] [CrossRef]
- Neagu, O.; Teodoru, M.C. The relationship between economic complexity, energy consumption structure and greenhouse gas emission: Heterogeneous panel evidence from the EU countries. Sustainability 2019, 11, 497. [Google Scholar] [CrossRef] [Green Version]
- Neagu, O. The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach. Sustainability 2019, 11, 4753. [Google Scholar] [CrossRef] [Green Version]
- Arouri, M.E.H.; Youssef, A.B.; M’henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Saboori, B.; Sapri, M.; Baba, M. Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)’s transport sector: A fully modified bi-directional relationship approach. Energy 2014, 66, 150–161. [Google Scholar] [CrossRef]
- Hossain, M.S. Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries. Energy Policy 2011, 39, 6991–6999. [Google Scholar] [CrossRef]
- Friedl, B.; Getzner, M. Determinants of CO2 emissions in a small open economy. Ecol. Econ. 2003, 45, 133–148. [Google Scholar] [CrossRef]
- Sun, J.; Shi, J.; Shen, B.; Li, S.; Wang, Y. Nexus among energy consumption, economic growth, urbanization and carbon emissions: Heterogeneous panel evidence considering China’s regional differences. Sustainability 2018, 10, 2383. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.L.; Peters, G.P.; Guan, D.; Hubacek, K. The contribution of Chinese exports to climate change. Energy Policy 2008, 36, 3572–3577. [Google Scholar] [CrossRef] [Green Version]
- Yunfeng, Y.; Laike, Y. China’s foreign trade and climate change: A case study of CO2 emissions. Energy Policy 2010, 38, 350–356. [Google Scholar] [CrossRef]
- Bloch, H.; Rafiq, S.; Salim, R. Coal consumption, CO2 emission and economic growth in China: Empirical evidence and policy responses. Energy Econ. 2012, 34, 518–528. [Google Scholar] [CrossRef]
- Choi, Y.; Zhang, N.; Zhou, P. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Appl. Energy 2012, 98, 198–208. [Google Scholar] [CrossRef]
- Hang, G.; Yuan-Sheng, J. The relationship between CO2 emissions, economic scale, technology, income and population in China. Procedia Environ. Sci. 2011, 11, 1183–1188. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.; Kim, H.S. Is economic growth good or bad for the environment? Empirical evidence from Korea. Energy Econ. 2013, 36, 744–749. [Google Scholar] [CrossRef]
- Soytas, M.A.; Denizel, M.; Usar, D. Corporate Sustainability: Empirical Evidence of Causality on Financial Performance; Working Paper; Iowa State University: Ames, IA, USA, 2017. [Google Scholar] [CrossRef]
- Månsson, K.; Kibria, B.M.; Shukur, G.; Sjölander, P. On the estimation of the CO2 emission, economic growth and energy consumption nexus using dynamic OLS in the presence of multicollinearity. Sustainability 2018, 10, 1315. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Ghani, A.B.A.; Mahyudin, E. Carbon Dioxide Emission, Energy Consumption, Economic Growth, Population, Poverty and Forest Area: Evidence from Panel Data Analysis. IJEEP 2017, 7, 99–106. [Google Scholar]
- Nepal, P.; Korhonen, J.; Prestemon, J.P.; Cubbage, F.W. Projecting Global and Regional Forest Area under the Shared Socioeconomic Pathways Using an Updated Environmental Kuznets Curve Model. Forests 2019, 10, 387. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.H.; Kronrad, G.D. The cost of sequestering carbon on private forest lands. For. Policy Econ. 2001, 2, 133–142. [Google Scholar] [CrossRef]
- Im, E.H.; Adams, D.M.; Latta, G.S. Potential impacts of carbon taxes on carbon flux in western Oregon private forests. For. Policy Econ. 2007, 9, 1006–1017. [Google Scholar] [CrossRef]
- Barbier, E.B.; Tesfaw, A.T. Can REDD+ save the forest? The role of payments and tenure. Forests 2012, 3, 881–895. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis: Intergovernmental Panel on Climate Change; Agenda; United Nations Framework Convention on Climate Change: Geneva, Switzerland, 2007; p. 333. [Google Scholar]
- Laurance, W.F. Lessons from research for sustainable development and conservation in Borneo. Forests 2016, 7, 314. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Zulkarnain, M.; Bakar, A.; Afif, M.; Razak, K.A.; Rasib, A.W.; Kanniah, K.D.; Kadir, W.H.W.; Omar, H.; Faidi, A.; et al. Non-destructive, laser-based individual tree aboveground biomass estimation in a tropical rainforest. Forests 2017, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Kindermann, G.; Obersteiner, M.; Sohngen, B.; Sathaye, J.; Anadarko, K.; Rametsteiner, E.; Schlamadinger, B.; Wunder, S.; Beach, R. Global cost estimates of reducing carbon emissions through avoided deforestation. Proc. Natl. Acad. Sci. USA 2018, 105, 10302–10307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galante, M.V.; Dutschke, M.; Patenaude, G.; Vickers, B. Climate change mitigation through reduced-impact logging and the hierarchy of production forest management. Forests 2012, 3, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Pirker, J.; Mosnier, A.; Nana, T.; Dees, M.; Momo, A.; Muys, B.; Kraxner, F.; Siwe, R. Determining a Carbon Reference Level for a High-Forest-Low-Deforestation Country. Forests 2019, 10, 1095. [Google Scholar] [CrossRef] [Green Version]
Years | Total (Net) Forest Cover Change (Per Annum) | Natural Forest Cover Change (Per Annum) | ||
---|---|---|---|---|
1000 ha | Percent | 1000 ha | Percent | |
1990–2000 | −79 | −0.36 | −49 | −0.2 |
2001–2005 | −140 | −0.66 | −49 | −0.24 |
2006–2010 | −87 | −0.42 | −128 | −0.64 |
Variables | CO2 Emissions (Kilo Yons) | GDP (Million RM) | Forest Area (ha) | |||
---|---|---|---|---|---|---|
Actual | Logarithmic (LCO2) | Actual | Logarithmic (LGDP) | Actual | Logarithmic (LFA) | |
Mean | 157,853.74 | 11.8930 | 699,714.75 | 13.381 | 18,145,570.1 | 16.7138 |
Standard Error | 11,313.046 | 0.0799 | 52,409.542 | 0.0789 | 60,104.182 | 0.0033 |
Median | 158,256.71 | 11.972 | 648,959.53 | 13.3831 | 18,056,000 | 16.709 |
Standard Deviation | 58,784.31 | 0.4151 | 272,327.97 | 0.4099 | 312,310.49 | 0.0172 |
Kurtosis | −1.1566 | −0.4021 | −0.8810 | −0.83865 | −0.7572 | −0.7803 |
Skewness | 0.0551 | −0.5811 | 0.3664 | −0.253 | 0.4209 | 0.394 |
Minimum | 56,592.81 | 10.9436 | 291,457.46 | 12.5826 | 17,681,000 | 16.688 |
Maximum | 252,838.58 | 12.4405 | 1,229,312 | 14.022 | 18,782,000 | 16.7484 |
Logarithmic Form of the Variables | ADF | DF-GLS | ||
---|---|---|---|---|
Level | 1st Difference | Level | 1st Difference | |
CO2 emissions (LCO2) | −2.588 * | −3.062 ** | −2.068 | −3.181 * |
Economic growth (LGDP) | −1.922 | −3.699 *** | −1.505 | −4.024 *** |
Forested area (LFA) | −2.151 | −2.752 * | −0.515 | −3.300 * |
Equation/Excluded | Chi-Square | Df. | p-Value | |
---|---|---|---|---|
LCO2 | LGDP | 26.129 *** | 4 | 0.000 |
LFA | 41.907 *** | 4 | 0.000 | |
All | 89.686 *** | 8 | 0.000 | |
LGDP | LCO2 | 12.953 ** | 4 | 0.012 |
LFA | 22.979 *** | 4 | 0.000 | |
All | 33.688 *** | 8 | 0.000 | |
LFA | LCO2 | 21.872 *** | 4 | 0.000 |
LGDP | 23.347 *** | 4 | 0.000 | |
All | 30.669 *** | 8 | 0.000 |
Variables | Coefficient | Standard Error | t-Statistic | p-Value |
---|---|---|---|---|
GDP (LGDP) | 0.9313719 *** | 0.0313171 | 29.74 | 0.000 |
Forested area (LFA) | −2.972577 *** | 0.7481949 | −3.97 | 0.001 |
Constant | 49.11344 *** | 12.73751 | 3.86 | 0.001 |
Number of observations | 27 | |||
df (degrees of freedom) | 26 | |||
R-squared | 0.9838 | |||
Adjusted R-squared | 0.9825 | |||
Standard error of the estimate | 13.51702 | |||
Mean of dependent variable | 11.89308 | |||
F-value | 9.3393529 | |||
Prob > F | 0.0000 | |||
Root MSE | 0.05497 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begum, R.A.; Raihan, A.; Said, M.N.M. Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia. Sustainability 2020, 12, 9375. https://doi.org/10.3390/su12229375
Begum RA, Raihan A, Said MNM. Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia. Sustainability. 2020; 12(22):9375. https://doi.org/10.3390/su12229375
Chicago/Turabian StyleBegum, Rawshan Ara, Asif Raihan, and Mohd Nizam Mohd Said. 2020. "Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia" Sustainability 12, no. 22: 9375. https://doi.org/10.3390/su12229375
APA StyleBegum, R. A., Raihan, A., & Said, M. N. M. (2020). Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia. Sustainability, 12(22), 9375. https://doi.org/10.3390/su12229375