Assessment of the Impact of Atmospheric Corrosivity on the Cement Concrete Airfield Pavement’s Operation Process
Abstract
:1. Introduction
2. Materials and Methods
- rcorr—corrosion rate;
- Δm—mass loss (g);
- A—sample surface area, (m2);
- t—exposure time of the corrosive sample, (years).
3. Results
4. Discussion
- DMFBC—degradation of cement concrete airfield pavement of an airport functional element;
- pi—conversion factor of the parameter characterizing pavement surface deterioration or repair, including damaged or repaired areas;
- wiBC—statistical weight of the importance of deteriorations and repairs in the evaluation of pavement degradation of an EFL;
- wiObi—the statistical weight of the importance of specific deteriorations and repairs in the evaluation of pavement degradation of an EFL;
- Obi—dimensions of deteriorations and repairs of the EFL pavement;
- F—total area of the tested EFL pavement;
- U—deteriorations of the EFL pavement;
- N—repairs of the EFL pavement.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barszcz, P. Investigations on corrosion of aircrafts in the aspect of prolonged service life and operation driven by their technical condition. Pr. Nauk. Inst. Tech. Wojsk Lotniczych 2012, 30, 59–72. [Google Scholar] [CrossRef]
- Feliu, S.; Morcillo, M.; Chico, B. Effect of Distance from Sea on Atmospheric Corrosion Rate. Corrosion 1999, 55, 883–891. [Google Scholar] [CrossRef]
- EN ISO 8565. Metals and Alloys—Atmospheric Corrosion Testing—General Requirements; European Committee for Standardization: Brussels, Belgium, 2012.
- Cai, Y.; Yuanming, X.; Zhao, Y.; Xiaobing, M. Atmospheric corrosion prediction: A review. Corros. Rev. 2020, 38, 299–321. [Google Scholar] [CrossRef]
- Wang, X.M.; Li, X.G.; Tian, X.L. Influence of temperature and relative humidity on the atmospheric corrosion of zinc in field exposures and laboratory environments by atmospheric corrosion monitor. Int. J. Electrochem. Sci. 2015, 10, 8361–8373. [Google Scholar]
- Kobus, J.; Lutze, R. Atmospheric corrosion risk assessment. Logistyka 2015, 4, 4094–4098. [Google Scholar]
- Kreislova, K.; Knotkova, D. The Results of 45 Years of Atmospheric Corrosion Study in the Czech Republic. Materials 2017, 10, 394. [Google Scholar] [CrossRef] [Green Version]
- Bialobrzeski, A.; Czekaj, E.; Heller, M. Corrosive behavior of aluminum and magnesium alloys processed by die casting technology. Arch. Foundry 2002, 2, 294–313. [Google Scholar]
- Mendoza, A.R.; Corvo, F. Outdoor and indoor atmospheric corrosion of carbon steel. Corros. Sci. 1999, 41, 75–86. [Google Scholar] [CrossRef]
- Mendoza, A.R.; Corvo, F. Outdoor and indoor atmospheric corrosion of non-ferrous metals. Corros. Sci. 2000, 42, 1123–1147. [Google Scholar] [CrossRef]
- Shiri, M.; Rezakhani, D. Estimated and Stationary Atmospheric Corrosion Rate of Carbon Steel, Galvanized Steel, Copper and Aluminum in Iran. Metall. Mater. Trans. A 2020, 51, 342–367. [Google Scholar] [CrossRef]
- Schaller, R.F.; Jove-Colon, C.F.; Taylor, J.M.; Schindelholz, E.J. The controlling role of sodium and carbonate on the atmospheric corrosion rate of aluminum. npj Mater. Degrad. 2015, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.Q.; Zheng, Q.F.; Li, D.F.; Wen, J.G. Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments. Corros. Sci. 2009, 51, 719–727. [Google Scholar] [CrossRef]
- Dan, Z.H.; Muto, I.; Hara, N. Role of corrosion products in the suppression of atmospheric corrosion of aluminum and its alloys. ECS Trans. 2010, 25, 23–33. [Google Scholar] [CrossRef]
- Roberge, P.R.; Klassen, R.D.; Haberecht, P.W. Atmospheric corrosivity modeling—A review. Mater. Des. 2003, 23, 321–330. [Google Scholar] [CrossRef]
- Panchenko, Y.M.; Marshakov, A.I.; Nikolaeva, L.A.; Igonin, T.N. Estimating the First-year Corrosion Losses of Structural Metals for Continental Regions of the World. Civ. Eng. J. 2020, 6, 1503–1519. [Google Scholar] [CrossRef]
- Portellaa, M.O.G.; Portellaa, K.F.; Pereiraa, P.A.M.; Inonea, P.C.; Brambillaa, K.J.C.; Cabussúc, M.S.; Cerqueirac, D.P.; Sallesc, R.N. Atmospheric corrosion rates of copper, galvanized steel, carbon steel and aluminum in the metropolitan region of Salvador, BA, Northeast Brazil. Procedia Eng. 2012, 42, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Rojas, J.F.; Aperador-Rodríguez, D.; Hernández-García, E.A.; Arroyave, C.E. Annual atmospheric corrosion rate and dose-response function for carbon steel in Bogotá. Atmósfera 2017, 30, 53–61. [Google Scholar] [CrossRef]
- Surowska, B. Wybrane Zagadnienia z Korozji i Ochrony Przed Korozją; Politechnika Lubelska: Lublin, Poland, 2002. [Google Scholar]
- Chico, B.; de la Fuente, D.; Díaz, I.; Simancas, J.; Morcillo, M. Annual Atmospheric Corrosion of Carbon Steel Worldwide. An Integration of ISOCORRAG, ICP/UNECE and MICAT Databases. Materials 2017, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- Sossa, V.; Pérez-Gracia, V.; González-Drigo, R.; A Rasol, M. Lab Non Destructive Test to Analyze the Effect of Corrosion on Ground Penetrating Radar Scans. Remote Sens. 2019, 11, 2814. [Google Scholar] [CrossRef] [Green Version]
- Solla, M.; Lagüela, S.; Fernández, N.; Garrido, I. Assessing Rebar Corrosion through the Combination of Nondestructive GPR and IRT Methodologies. Remote Sens. 2019, 11, 1705. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, K.; Banthia, N. Corrosion detection in reinforced concrete using induction heating and infrared thermography. J. Civil. Struct. Health Monit. 2011, 1, 25–35. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, L.; Zhao, R.; Zhou, J.; Yang, M.; Xia, R. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor. Sensors 2016, 16, 1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesołowski, M.; Iwanowski, P. APCI Evaluation Method for Cement Concrete Airport Pavements in the Scope of Air Operation Safety and Air Transport Participants Life. Int. J. Environ. Res. Public Health 2020, 17, 1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royani, A.; Prifiharni, S.; Nuraini, L.; Priyotomo, G.; Purawiardi, I.; Gunawan, H. Corrosion of carbon steel after exposure in the river of Sukabumi, West Java. In IOP Conference Series: Materials Science and Engineering, Proceedings of the International Seminar on Metallurgy and Materials, Tangerang Selatan, Indonesia, 25–26 September 2018; IOP Publishing Ltd Bristol: Bristol, UK, 2019; Volume 541. [Google Scholar]
- Barszcz, P. Investigation of atmospheric corrosion with use of permanent corrosion stations. Pr. Nauk. Inst. Tech. Wojsk Lotniczych 2012, 30, 5–23. [Google Scholar] [CrossRef] [Green Version]
- >EN ISO 8407. Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens; European Committee for Standardization: Brussels, Belgium, 2014.
- EN ISO 9226. Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity; European Committee for Standardization: Brussels, Belgium, 2012.
- Shi, X. Impact of Airport Pavement Deicing Products on Aircraft and Airfield Infrastructure. A CRP Synthesis 6; Airport Cooperative Research Program, Transportation Research Board: Washington, DC, USA, 2008. [Google Scholar]
- Wesolowski, M.; Blacha, K.; Barszcz, P. Multi-criteria analysis in assessment of the degree of degradation pavement elements functional airports made of cement concrete. In Proceedings of the Environmental Engineering 10th International Conference Materials, Vilnius, Lithuania, 27–28 April 2017; pp. 1–8. [Google Scholar]
- Zieja, M.; Barszcz, P.; Blacha, K.; Wesolowski, M. The evaluation method of degradation degree of runway pavement surfaces constructed from cement concrete. In Safety and Reliability—Theory and Applications; Cepin, M., Bris, R., Eds.; Taylor & Francis Group: London, UK, 2017; pp. 529–534. [Google Scholar]
- Wesolowski, M.; Barszcz, P.; Blacha, K. Impact of airfield concrete pavements deterioration level on the safety of air operations. J. KONBiN 2018, 47, 123–142. [Google Scholar] [CrossRef] [Green Version]
Metal Alloy | R-Pearson Coefficient | r2 | p |
---|---|---|---|
Aluminum | 0.41 | 0.010 | 0.018 |
Copper | 0.22 | 0.086 | 0.224 |
Zinc | 0.29 | 0.047 | 0.098 |
Low-carbon steel | 0.10 | 0.169 | 0.581 |
Corrosivity Category | Corrosion Rates rcorr | ||||
---|---|---|---|---|---|
Unit | Low-Carbon Steel | Zinc | Copper | Aluminum | |
C1 | g/(m2 × a) | rcorr ≤ 10 | rcorr ≤ 0.7 | rcorr ≤ 0.9 | not relevant |
μm/a | rcorr ≤ 1.3 | rcorr ≤ 0.1 | rcorr ≤ 0.1 | - | |
C2 | g/(m2 × a) | 10 < rcorr ≤ 200 | 0.7 < rcorr ≤ 5 | 0.9 < rcorr ≤ 5 | rcorr ≤ 0.6 |
μm/a | 1.3 < rcorr ≤ 25 | 0.1 < rcorr ≤ 0.7 | 0.1 < rcorr ≤ 0.6 | - | |
C3 | g/(m2 × a) | 200 < rcorr ≤ 400 | 5 < rcorr ≤ 15 | 5 < rcorr ≤ 12 | 0.6 < rcorr ≤ 2 |
μm/a | 25 < rcorr ≤ 50 | 0.7 < rcorr ≤ 2.1 | 0.6 < rcorr ≤ 1.3 | - | |
C4 | g/(m2 × a) | 400 < rcorr ≤ 650 | 15 < rcorr ≤ 30 | 12 < rcorr ≤ 25 | 2 < rcorr ≤ 5 |
μm/a | 50 < rcorr ≤ 80 | 2.1 < rcorr ≤ 4.2 | 1.3 < rcorr ≤ 2.8 | - | |
C5 | g/(m2 × a) | 650 < rcorr ≤ 1500 | 30 < rcorr ≤ 60 | 25 < rcorr ≤ 50 | 5 < rcorr ≤ 10 |
μm/a | 80 < rcorr ≤ 200 | 4.2 < rcorr ≤ 8.4 | 2.8 < rcorr ≤ 5,6 | - | |
CX | g/(m2 × a) | 1500 < rcorr ≤ 5500 | 60 < rcorr ≤ 180 | 50 < rcorr ≤ 90 | rcorr > 0.6 |
μm/a | 200 < rcorr ≤ 700 | 8.4 < rcorr ≤ 25 | 5.6 < rcorr ≤ 10 | - |
Corrosion Station | Low-Carbon Steel | Zinc | Copper | Aluminum | Atmosphere Corrosivity Category | ||||
---|---|---|---|---|---|---|---|---|---|
rcorr g/m2 | Corrosivity Category | rcorr g/m2 | Corrosivity Category | rcorr g/m2 | Corrosivity Category | rcorr g/m2 | Corrosivity Category | ||
Radom | 123 | C2 | 12.8 | C3 | 7.5 | C3 | 0.0 | C1 | C3 |
Krakow | 167.5 | C2 | 12.0 | C3 | 12.1 | C4 | 0.4 | C2 | C4 |
Miroslawiec | 97.3 | C2 | 12.3 | C3 | 12.8 | C4 | 0.8 | C3 | C4 |
Swidwin | 73.3 | C2 | 12.1 | C3 | 9.3 | C3 | 1.1 | C3 | C3 |
Malbork | 99.5 | C2 | 9.4 | C3 | 9.3 | C3 | 0.5 | C2 | C3 |
Minsk Maz. | 88.5 | C2 | 12.2 | C3 | 11.1 | C3 | 0.9 | C3 | C3 |
Poznan-Krzesiny | 120.8 | C2 | 13.6 | C3 | 8.3 | C3 | 0.1 | C2 | C3 |
Lask | 127 | C2 | 12.5 | C3 | 11.1 | C3 | 0.4 | C2 | C3 |
Powidz | 105.4 | C2 | 15.3 | C4 | 10.6 | C3 | 0.6 | C2 | C4 |
Gdynia | 134.7 | C2 | 8.6 | C3 | 7.7 | C3 | 0.5 | C2 | C3 |
Darlowo | 149.8 | C2 | 9.3 | C3 | 10.8 | C3 | 0.7 | C3 | C3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wesolowski, M.; Rumak, A.; Iwanowski, P.; Poswiata, A. Assessment of the Impact of Atmospheric Corrosivity on the Cement Concrete Airfield Pavement’s Operation Process. Sustainability 2020, 12, 9560. https://doi.org/10.3390/su12229560
Wesolowski M, Rumak A, Iwanowski P, Poswiata A. Assessment of the Impact of Atmospheric Corrosivity on the Cement Concrete Airfield Pavement’s Operation Process. Sustainability. 2020; 12(22):9560. https://doi.org/10.3390/su12229560
Chicago/Turabian StyleWesolowski, Mariusz, Aleksandra Rumak, Pawel Iwanowski, and Adam Poswiata. 2020. "Assessment of the Impact of Atmospheric Corrosivity on the Cement Concrete Airfield Pavement’s Operation Process" Sustainability 12, no. 22: 9560. https://doi.org/10.3390/su12229560
APA StyleWesolowski, M., Rumak, A., Iwanowski, P., & Poswiata, A. (2020). Assessment of the Impact of Atmospheric Corrosivity on the Cement Concrete Airfield Pavement’s Operation Process. Sustainability, 12(22), 9560. https://doi.org/10.3390/su12229560