Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Period and House
2.2. Description of the Air Heat Pump System
2.3. Measurement and Analysis
2.4. Statistical Analysis
3. Results
3.1. Room Temperature and Coefficient of Performance (COP)
3.2. Electricity Consumption, CO2 Emissions, and Cost Savings
3.3. NH3, H2S, Ultra-Fine Dust (PM2.5), and Formaldehyde Level
3.4. Effect of the Air Pump Heating System on the Productivity Traits of Pigs
3.5. Estimation of the Installation and Annual Operational Costs
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Horne, R.E.; Mortimer, N.D.; Elsayed, M.A. Energy and Carbon Balances of Biofuels Production: Biodiesel and Bioethanol, 2nd ed.; International Fertiliser Society: London, UK, 2003; pp. 14–26. [Google Scholar]
- Meul, M.; Nevens, F.; Reheul, D.; Hofman, G. Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agric. Ecosyst. Environ. 2007, 119, 135–144. [Google Scholar] [CrossRef]
- Kythreotou, N.; Florides, G.; Tassou, S.A. A proposed methodology for the calculation of direct consumption of fossil fuels and electricity for livestock breeding, and its application to Cyprus. Energy 2012, 40, 226–235. [Google Scholar] [CrossRef]
- Corrée, W.J.; Jaap, J.S.; Verhagen, A. Energy Use in Conventional and Organic Farming Systems. In Proceedings of the Open Meeting of the International Fertiliser Society; International Fertiliser Society: London, UK, 2003. [Google Scholar]
- Nakomcic-Smaragdakis, B.; Stajic, T.; Cepic, Z.; Djuric, S. Geothermal energy potentials in the province of Vojvodina from the aspect of the direct energy utilization. Renew. Sust. Energy Rev. 2012, 16, 5696–5706. [Google Scholar] [CrossRef]
- Gardner, G.T.; Stern, P.C. Environmental Problems and Human Behavior; Pearson Custom Publishing: Boston, MA, USA, 2002; pp. 79–110. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L.; IPCC (Intergovernmental Panel on Climate Change). Summary for Policymakers. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Apak, R. Alternative solution to global warming arising from CO2 emissions—Partial neutralization of tropospheric H2CO3 with NH3. Environ. Prog. 2007, 26, 355–359. [Google Scholar] [CrossRef]
- Olivier, J.G. Trends in Global CO2 Emissions: 2012 Report; PBL Netherlands Environmental Assessment Agency: Hague, The Netherlands, 2002; p. 40. [Google Scholar]
- Collin, A.; van Milgent, J.; Dividich, J.L. Modelling the effect of high, constant temperature on food intake in young growing pigs. Anim. Sci. 2001, 72, 519–527. [Google Scholar] [CrossRef]
- Drummond, J.G.; Curtis, S.E.; Simon, J.; Norton, H.W. Effects of aerial ammonia on growth and health of young pigs. J. Anim. Sci. 1980, 50, 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Asman, W.A.H. Ammonia Emissions in Europe: Updated Emission and Emission Variations; National Institute of Public Health and Environmental Protection: Bilthoven, The Netherlands, 1992; Report 228471008. [Google Scholar]
- Blanes-Vidal, V.; Nadimi, E.S.; Ellermann, T.; Andersen, H.V.; Løfstrøm, P. Perceived annoyance from environmental odors and association with atmospheric ammonia levels in non-urban residential communities: a cross-sectional study. Environ. Health 2012, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Saha, C.K.; Zhang, G.; Kai, P.; Bjerg, B. Effects of a partial pit ventilation system on indoor air quality and ammonia emission from a fattening pig room. Biosyst. Eng. 2010, 105, 279–287. [Google Scholar] [CrossRef]
- Ni, J.Q.; Heber, A.J.; Lim, T.T. Ammonia and hydrogen sulphide in swine production. In Air Quality and Livestock Farming; CRC Press: Florida, FA, USA, 2018; pp. 69–88. [Google Scholar]
- Nõu, T.; Viljasoo, V. The effect of heating systems on dust, an indoor climate factor. Agron. Res. 2011, 9, 165–174. [Google Scholar]
- Alsharif, M.; Kim, J.; Kim, J. Opportunities and challenges of solar and wind energy in South Korea: A Review. Sustainability 2018, 10, 1822. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Long, E.; Zhang, Y.; Liu, Q.; Jin, Z.; Liang, F. Experimental study on heating performance of air - source heat pump with water tank for thermal energy storage. Proc. Eng. 2017, 205, 2055–2062. [Google Scholar] [CrossRef]
- Gajewski, A.; Gładyszewska-Fiedoruk, K.; Krawczyk, D.A. Carbon dioxide emissions during Air, Ground, or Groundwater heat pump performance in Białystok. Sustainability 2019, 11, 5087. [Google Scholar] [CrossRef] [Green Version]
- Mei, V.C.; Chen, F.C.; Domitrovic, R.E.; Kilpatrick, J.K.; Carter, J.A. A Study of a Natural Convection Immersed Condenser Heat Pump Water Heater/Discussion. ASHRAE Trans. 2003, 109, 3–8. [Google Scholar]
- Wang, Y.; Jiang, H.; Ma, Z.; Jiang, Y.; Yao, Y. Experiment and analysis of delaying frost of air source heat pump water chiller heater units by increasing the evaporator area. HV&AC 2006, 36, 83–88. [Google Scholar]
- Xu, G.; Zhang, X.; Deng, S. A simulation study on the operating performance of a solar–air source heat pump water heater. Appl. Therm. Eng. 2006, 26, 1257–1265. [Google Scholar] [CrossRef]
- Jie, Z. Study on Seasonal Performance Optimization and Refrigerant Flux Characters of Air Source Heat Pump Water Heater; Shanghai Jiaotong University: Shanghai, China, 2007; pp. 12–38. [Google Scholar]
- Huang, L.; Zheng, R.; Piontek, U. Installation and Operation of a Solar Cooling and Heating System Incorporated with Air-Source Heat Pumps. Energies 2019, 12, 996. [Google Scholar] [CrossRef] [Green Version]
- Lun, Y.H.V.; Tung, S.L.D. Heat Pumps for Sustainable Heating and Cooling, 1st ed.; Springer: Cham, Switzerland, 2019; pp. 35–48. [Google Scholar]
- Han, D.; Chang, Y.S.; Kim, Y. Performance analysis of air source heat pump system for office building. J. Mech. Sci. Technol. 2016, 30, 5257–5268. [Google Scholar] [CrossRef]
- D’Agostino, D.; Mele, L.; Minichiello, F.; Renno, C. The Use of Ground Source Heat Pump to Achieve a Net Zero Energy Building. Energies 2020, 13, 3450. [Google Scholar] [CrossRef]
- Riva, G.; Pedretti, E.F.; Fabbri, C. Utilization of a heat pump in pig breeding for energy saving and climate and ammonia control. J. Agric. Eng. 2000, 77, 449–455. [Google Scholar] [CrossRef]
- Ji, J.; Chow, T.; Pei, G.; Dong, J.; He, W. Domestic air-conditioner and integrated water heater for subtropical climate. Appl. Therm. Eng. 2003, 23, 581–592. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Dong, J.; Yao, Y. Advances in vapor compression air source heat pump system in cold regions: A review. Renew. Sust. Energy Rev. 2018, 81, 353–365. [Google Scholar] [CrossRef]
- Zheng, N.; Song, W.; Zhao, L. Theoretical and experimental investigations on the changing regularity of the extreme point of the temperature difference between zeotropic mixtures and heat transfer fluid. Energy 2013, 55, 541–552. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Nie, J.; Li, Y. Techno-economic analysis of air source heat pump applied for space heating in northern China. Appl. Energy 2017, 207, 533–542. [Google Scholar] [CrossRef]
- The Annual Report Korea Energy Agency. Available online: http://www.energy.or.kr/web/kem_home_new/energy_issue/mail_vol22/pdf/publish_05_201507.pdf (accessed on 22 May 2018).
- Wu, R. Energy efficiency technologies–air source heat pump vs. ground source heat pump. J. Sust. Dev. 2009, 2, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Rabczak, S.; Proszak-Miąsik, D. The impact of selected heat pumps on CO2 emissions. E3S Web Conf. 2018, 45, 71. [Google Scholar] [CrossRef] [Green Version]
- Patteeuw, D.; Reynders, G.; Bruninx, K.; Protopapadaki, C.; Delarue, E.; D’haeseleer, W.; Saelens, D.; Helsen, L. CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects. Appl. Energy 2015, 156, 490–501. [Google Scholar] [CrossRef]
- Hedegaard, K.; Münster, M. Influence of individual heat pumps on wind power integration – Energy system investments and operation. Energy Convers. Manag. 2013, 75, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Hedegaard, K.; Mathiesen, B.V.; Lund, H.; Heiselberg, P. Wind power integration using individual heat pumps—Analysis of different heat storage options. Energy 2012, 47, 284–293. [Google Scholar] [CrossRef]
- Johansson, D. The life cycle costs of indoor climate systems in dwellings and offices taking into account system choice, airflow rate, health and productivity. Build. Environ. 2009, 44, 368–376. [Google Scholar] [CrossRef]
- Søren, P.; Krister, S. International Commission of Agricultural and Biosystems Engineering, 4th ed.; Research Centre Bygholm, Danish Institute of Agricultural Sciences: Horsens, Denmark, 2002; pp. 75–92. [Google Scholar]
- Takai, H.; Pedersen, S.; Johnsen, J.O.; Metz, J.H.M.; Groot Koerkamp, P.W.G.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L. Concentrations and Emissions of Airborne Dust in Livestock Buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 59–77. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Formaldehyde—An Assessment of Its Health Effects; National Academies Press (US): Washington, DC, USA, 1980. Available online: https://www.ncbi.nlm.nih.gov/books/NBK217655/ (accessed on 5 March 1980).
- Islam, M.M.; Mun, H.-S.; Bostami, A.B.M.R.; Ahmed, S.T.; Park, K.-J.; Yang, C.-J. Evaluation of a ground source geothermal heat pump to save energy and reduce CO2 and noxious gas emissions in a pig house. Energy Build. 2016, 111, 446–454. [Google Scholar] [CrossRef]
- Masa, V.; Havlasek, M. Integration of air to water heat pumps into industrial district heating substations. Chem. Eng. Trans. 2016, 52, 739–744. [Google Scholar] [CrossRef]
Periods | External Temp. (°C) | Control (°C) | AHP (°C) | SEM | p-Value | Average COP |
---|---|---|---|---|---|---|
Weaning | 4.5 | 24.7 b | 26.1 a | 1.84 | <0.0001 | 3.86 |
Growing | 6.1 | 20.4 b | 22.8 a | 1.88 | <0.0001 | 3.98 |
Finishing | 9.7 | 19.9 b | 21.1 a | 1.14 | <0.0001 | 4.12 |
Average | 7.1 | 21.3 b | 23.0 a | 2.59 | <0.0001 | 4.07 |
Electricity Use (kWh/d) | CO2 Emission (kg) | ||||||
---|---|---|---|---|---|---|---|
Period | Control | AHP | Reduced | Control | AHP | Reduced | Cost Savings (USD) |
Weaning | 108 | 33 | 75 | 52.16 | 15.94 | 36.22 | 97.02 |
Growing | 60 | 30 | 30 | 28.98 | 14.50 | 14.48 | 38.80 |
Finishing | 35 | 9 | 26 | 16.91 | 4.35 | 12.56 | 33.63 |
Average | 63 | 23 | 40 | 30.43 | 11.11 | 19.32 | 51.74 |
Item | Periods | Control | AHP | SEM | p-Value |
---|---|---|---|---|---|
NH3 (ppm) | Weaning | 0.05 a | 0.01 b | 0.02 | <0.0001 |
Growing | 0.63 a | 0.16 b | 0.33 | <0.0001 | |
Finishing | 2.27 a | 0.97 b | 0.45 | <0.0001 | |
Average | 1.10 a | 0.42 b | 0.78 | <0.0001 | |
H2S (ppb) | Weaning | 0.00 | 0.00 | 0.00 | - |
Growing | 0.00 | 0.00 | 0.00 | - | |
Finishing | 5.14 a | 2.81 b | 0.56 | <0.0001 | |
Average | 1.93 a | 1.06 b | 0.94 | <0.0001 |
Item | Periods | Control | AHP | SEM | p-Value |
---|---|---|---|---|---|
Ultra-fine dust (PM2.5) (µg/m3) | Weaning | 28.39 | 24.74 | 16.60 | 0.46 |
Growing | 29.03 | 26.33 | 23.71 | 0.64 | |
Finishing | 21.14 | 21.69 | 14.22 | 0.87 | |
Average | 25.84 | 24.14 | 18.80 | 0.54 | |
Formaldehyde (ppm) | Weaning | 0.06 | 0.05 | 0.02 | 0.26 |
Growing | 0.08 a | 0.05 b | 0.04 | 0.03 | |
Finishing | 0.22 a | 0.13 b | 0.19 | 0.02 | |
Average | 0.12 | 0.10 | 0.12 | 0.27 |
Item | Control | AHP | SEM | p-Value |
---|---|---|---|---|
Weaning period (0–4 weeks) | ||||
Initial weight (kg) | 8.56 | 8.29 | 3.17 | 0.86 |
Final weight (kg) | 25.81 | 25.87 | 5.66 | 0.98 |
Weight gain (kg) | 17.26 | 17.58 | 3.01 | 0.82 |
Feed intake (kg) | 33.48 | 33.79 | 7.45 | 0.93 |
FCR (Feed/gain) | 1.95 | 2.01 | 0.60 | 0.83 |
Growing period (4–10 weeks) | ||||
Initial weight (kg) | 25.81 | 25.87 | 5.66 | 0.98 |
Final weight (kg) | 70.77 | 66.10 | 7.80 | 0.22 |
Weight gain (kg) | 40.23 | 43.96 | 4.27 | 0.03 |
Feed intake (kg) | 100.93 | 96.66 | 4.63 | 0.54 |
FCR (Feed/gain) | 2.25 | 2.44 | 0.41 | 0.36 |
Finishing period (10–16 weeks) | ||||
Initial weight (kg) | 70.77 | 66.10 | 7.80 | 0.22 |
Final weight (kg) | 113.43 | 107.97 | 7.18 | 0.13 |
Weight gain (kg) | 41.87 | 42.66 | 4.64 | 0.73 |
Feed intake (kg) | 150.81 | 151.48 | 4.26 | 0.92 |
FCR (Feed/gain) | 3.53 | 3.69 | 0.49 | 0.51 |
Average (0–16 weeks) | ||||
Initial weight (kg) | 8.56 | 8.29 | 2.80 | 0.96 |
Final weight (kg) | 113.43 | 107.97 | 7.18 | 0.13 |
Weight gain (kg) | 99.68 | 104.88 | 5.46 | 0.06 |
Feed intake (kg) | 285.23 | 281.93 | 3.23 | 0.82 |
FCR (Feed/gain) | 2.71 | 2.83 | 0.23 | 0.30 |
Item | Control | AHP | |
---|---|---|---|
Installation cost (USD) | 1288 | 5000 | |
Life span | 5 years | 15 years | As per company instruction |
Annual operational cost (USD) | 4323 | 394 | |
Savings (USD) | - | 3929 | |
Payback period (Y) | >useful life | 4.1 | |
Depreciation time | 5 years | 15 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, M.G.; Rathnayake, D.; Mun, H.S.; Dilawar, M.A.; Park, K.W.; Lee, S.R.; Yang, C.J. Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm. Sustainability 2020, 12, 9772. https://doi.org/10.3390/su12229772
Jeong MG, Rathnayake D, Mun HS, Dilawar MA, Park KW, Lee SR, Yang CJ. Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm. Sustainability. 2020; 12(22):9772. https://doi.org/10.3390/su12229772
Chicago/Turabian StyleJeong, Myeong Gil, Dhanushka Rathnayake, Hong Seok Mun, Muhammad Ammar Dilawar, Kwang Woo Park, Sang Ro Lee, and Chul Ju Yang. 2020. "Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm" Sustainability 12, no. 22: 9772. https://doi.org/10.3390/su12229772
APA StyleJeong, M. G., Rathnayake, D., Mun, H. S., Dilawar, M. A., Park, K. W., Lee, S. R., & Yang, C. J. (2020). Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm. Sustainability, 12(22), 9772. https://doi.org/10.3390/su12229772