Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review
Abstract
:1. Introduction
1.1. Research Method
- (1)
- Data collection: research began with peer-reviewed papers published in English within the ScienceDirect, Scopus, Wiley, and Springer databases.
- (2)
- Postprocessing of collected data: papers were categorised on the basis of their general topics, forming the four main sections of the paper.
- (3)
- Classification: papers in each section (each heat-mitigation strategy) were studied, and the findings of each study were recorded.
- (4)
- Writing up the body: each section was comprehensively written, including studies from different climates for each chapter (heat-mitigation strategy).
- (5)
- Conclusion and final review: the conclusion was written considering that it should respond to the reviewed sources in terms of the widely used research methods, used software, studied climates, etc.
- (a)
- Outdoor-thermal-comfort papers published from 1977 onwards are comprehensively examined. Papers from journals with high-impact factors were specifically considered. In total, 153 studies were reviewed.
- (b)
- Most previous studies focused on specific climates. In this paper, various heat-mitigation strategies in different global climates, from Canada to Australia, were reviewed.
- (c)
- Previous papers reviewed either nature-based solutions (green strategies such as living walls) or urban design solutions (e.g., canyon effects). This study utilises a holistic approach to include all aspects of heat-mitigation strategies for urban designers and planners.
1.2. Background of Outdoor-Thermal-Comfort Studies
2. Climatic Parameters Affecting Thermal Comfort
3. Shading Effect
3.1. H/W and SVF
3.2. Trees
Tree Morphology
3.3. Urban-Canyon Orientation
3.4. Geometrical Forms
4. Green, Blue, and White Surfaces
4.1. Vegetation
4.2. Green Roof and Wall
4.3. Highly Reflective Materials
4.4. Water Bodies
5. Psychological Factors Affecting Thermal Comfort
6. Conclusions
- The conducted studies used different data-collection methods. Field measurements and computer simulations are frequently used in order to analyse thermal environments. The most frequently used strategies to improve pedestrians’ thermal comfort include climatic design solutions that are related to the physical properties of urban spaces. These include shading (by buildings and trees), street orientation, and geometrical forms of urban canyons, vegetation, water surfaces, and highly reflective materials. However, many studies confirmed that, in addition to the aforementioned strategies, the psychological factors (perception of people of their thermal environment) and thermal expectations of individuals are also necessary in order to create favourable thermal conditions.
- Among climatic factors affecting outdoor thermal comfort, mean radiant temperature has the greatest effect, followed by wind speed and direction. As a result, strategies that reduce mean radiant temperature (such as shading) are more effective. Results showed that increasing H/W in urban canyons improves outdoor thermal comfort.
- Many studies concluded that deploying different types of vegetation is the best strategy to improve thermal comfort, with an emphasis on trees. By comparing green roofs and walls, it could generally be concluded that green roofs reduce energy consumption for buildings. However, they have little impact on pedestrian thermal comfort. Green walls are more effective than green roofs in improving thermal conditions in urban canyons.
- The use of highly reflective materials in urban canyons tends to increase thermal discomfort due to the reflection of solar radiation (despite the fact that they reduce air temperature). It is not recommended to use such materials in surfaces of urban canyons. Nevertheless, they could be deployed on roofs in order to reduce air temperature in buildings to reduce their overall energy consumption.
- Regarding the orientation and geometries of urban canyons, orientation with respect to the direction of sunlight and the prevailing wind is an important factor for creating favourable thermal conditions. In addition, the various forms and geometries of urban canyons can affect microclimatic and thermal conditions for pedestrians. There is a direct relationship between area density and thermal comfort. In dense areas, heat is trapped due to less ventilation. Comparing different urban forms, courtyards were found to be the best form in terms of thermal comfort and energy consumption.
7. Recommendations for Future Studies
- Considering the significant role of trees in shading and improving outdoor thermal comfort, studies are required on the geometry of trees in each climate. In this way, the most suitable tree species could be used (planted) in order to more efficiently improve outdoor thermal conditions.
- Despite evidence showing that water bodies reduce air temperature and increase humidity, there are not many extensive studies regarding the number, depth, form, and location of water surfaces in urban areas with different climates.
- Using highly reflective surfaces in urban canyons is not recommended, as they reradiate solar radiation back to pedestrians. Further studies can provide scientific solutions in order to regulate and optimally use these materials.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Thermal Perception Grades | PET (°C) |
---|---|
Extreme cold stress | Below 4 |
Strong cold stress | 4.1 to 8 |
Moderate cold stress | 8.1 to 13 |
Slight cold stress | 13.1 to 18 |
No thermal stress | 18.1 to 23 |
Slight heat stress | 23.1 to 29 |
Moderate heat stress | 29.1 to 35 |
Strong heat stress | 35.1 to 41 |
Extreme heat stress | Above 41 |
References
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Ren. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Ignatius, M.; Nyuk Hien, W.; Steve Kardinal, J. Urban microclimate analysis with consideration of local ambient temperature, external heat gain, urban ventilation, and outdoor thermal comfort in the tropics. Sustain. Cities Soc. 2015, 19, 121–135. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. Royal Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Chen, L.; Edward, N.G. Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Coccolo, S.; Kampf, J.; Scartezzini, J.-L.; Pearlmutter, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Hass-Klau, C. A review of the evidence from Germany and the UK. Transp. Policy 1993, 1, 21–31. [Google Scholar] [CrossRef]
- Hakim, A.A.; Petrovitch, H.; Burchfiel, C.M.; Ross, W.; Rodriguez, B.L.; White, L.R.; Yano, K.; Curb, J.D.; Abbott, R.D. Effects of walking on mortality among nonsmoking retired men. N. Eng. J. Med. 1998, 338, 94–99. [Google Scholar] [CrossRef]
- Chen, L.; Wen, Y.; Zhang, L.; Xiang, W.-N. Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Build. Environ. 2015, 94, 644–653. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Priyadarsini, R. Study of thermal satisfaction in an Australian educational precinct. Build. Environ. 2017, 123, 119–132. [Google Scholar] [CrossRef]
- Yoshida, A.; Hisabayashi, T.; Kashihara, K.; Kinoshita, S.; Hashida, S. Evaluation of effect of tree canopy on thermal environment, thermal sensation, and mental state. Urban Clim. 2015, 14, 240–250. [Google Scholar] [CrossRef]
- Makaremi, N.; Salleh, E.; Jaafar, M.Z.; Ghaffarian Hoesini, A. Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Build. Environ. 2012, 48, 7–14. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Nick, B.; Koen, S. Thermal comfort in outdoor urban spaces: Understanding the human parameter. Solar Energy 2001, 70.3, 227–235. [Google Scholar] [CrossRef]
- Thorsson, S.; Maria, L.; Sven, L. Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. Int. J. Biometeorol. 2004, 48.3, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Tzu-Ping, L.; Matzarakis, A.; Hwang, R.-L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45.1, 213–221. [Google Scholar]
- Huang, Q.; Meng, X.; Yang, X.; Jin, L.; Liu, X.; Hu, W. The ecological city: Considering outdoor thermal environment. Energy Procedia 2016, 104, 177–182. [Google Scholar] [CrossRef]
- Taleghani, M. Outdoor thermal comfort by different heat mitigation strategies-A review. Ren. Sustain. Energy Rev. 2018, 81, 2011–2018. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Petiti, D.; de Lieto Vollaro, E.; Coppi, M.; de Lieto Vollaro, A. Relating microclimate, human thermal comfort and health during heat waves: An analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain. Cities Soc. 2017, 30, 79–96. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Hatami, Z.; Taleghani, M. Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan. Build. Environ. 2017, 125, 356–372. [Google Scholar] [CrossRef]
- Niu, J.; Liu, J.; Lin, Z.; Mak, C.; Tse, K.T.; Tang, B.S.; Kwok, K.C.S. A new method to assess spatial variations of outdoor thermal comfort: Onsite monitoring results and implications for precinct planning. Build. Environ. 2015, 91, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Tsitoura, M.; Theocharis, T.; Tryfon, D. Evaluation of comfort conditions in urban open spaces. Application in the island of Crete. Energy Convers. Manag. 2014, 86, 250–258. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Ioannis, X.T.; Milo, H. Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Build. Environ. 2012, 57, 110–119. [Google Scholar] [CrossRef]
- Ng, E.; Vicky, C. Urban human thermal comfort in hot and humid Hong Kong. Energy Build. 2012, 55, 51–65. [Google Scholar] [CrossRef]
- Djekic, J.; Djukic, A.; Vukmirovic, M.; Djekic, P.; Dinic Brankovic, M. Thermal comfort of pedestrian spaces and the influence of pavement materials on warming up during summer. Energy Build. 2018, 159, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Spangenberg, J.; Gouvea, M.L.; Freitas, E.D. Scale-integrated atmospheric simulations to assess thermal comfort in different urban tissues in the warm humid summer of São Paulo, Brazil. Urban Clim. 2013, 6, 24–43. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lun Lau, K.K.; Yuan, C.; Ng, E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Spagnolo, J.; De Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38.5, 721–738. [Google Scholar] [CrossRef] [Green Version]
- da Silveira Hirashima, S.Q.; Sad de Assis, E.; Nikolopoulou, M. Daytime thermal comfort in urban spaces: A field study in Brazil. Build. Environ. 2016, 107, 245–253. [Google Scholar] [CrossRef] [Green Version]
- da Silveira Hirashima, S.Q.; Katzschner, A.; Ferreira, D.G.; Sad de Asis, E.; Katzscher, L. Thermal comfort comparison and evaluation in different climates. Urban Clim. 2016, 23, 219–230. [Google Scholar] [CrossRef]
- Omonijo, A.G. Assessing seasonal variations in urban thermal comfort and potential health risks using physiologically equivalent temperature: A case of Ibadan, Nigeria. Urban Clim. 2017, 21, 87–105. [Google Scholar] [CrossRef]
- Ahmed, K.S. Comfort in urban spaces: Defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energy Build. 2003, 35, 103–110. [Google Scholar] [CrossRef]
- Yang, W.; Nyuk, H.W.; Jusuf, S.K. Thermal comfort in outdoor urban spaces in Singapore. Build. Environ. 2013, 59, 426–435. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, X.; Li, L.; He, S.; Chen, R. Study on outdoor thermal comfort on a campus in a subtropical urban area in summer. Sustain. Cities Soc. 2016, 22, 164–170. [Google Scholar] [CrossRef]
- Tong, S.; Wong, N.H.; Tan, C.L.; Jusuf, S.K.; Ignatius, M.; Tan, E. Impact of urban morphology on microclimate and thermal comfort in northern China. Solar Energy 2017, 155, 212–223. [Google Scholar] [CrossRef]
- Kariminia, S.; Shamshibrand, S.; Hashim, R.; Saberi, A.; Petkovic, D.; Roy, C.; Motamedi, S. A simulation model for visitors’ thermal comfort at urban public squares using non-probabilistic binary-linear classifier through soft-computing methodologies. Energy 2016, 101, 568–580. [Google Scholar] [CrossRef]
- Correa, E.; Ruiz, M.A.; Canton, A.; Lesino, G. Thermal comfort in forested urban canyons of low building density. An assessment for the city of Mendoza, Argentina. Build. Environ. 2012, 58, 219–230. [Google Scholar] [CrossRef]
- Mazhar, N.; Brown, R.D.; Kenny, N.; Lenzholzer, S. Thermal comfort of outdoor spaces in Lahore, Pakistan: Lessons for bioclimatic urban design in the context of global climate change. Landsc. Urban Plan. 2006, 138, 110–117. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Helmut, M. Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Build. Environ. 2006, 41.2, 94–108. [Google Scholar] [CrossRef]
- Kariminia, S.; Sabarinah, S.A.; Ahmadreza, S. Microclimatic conditions of an urban square: Role of built environment and geometry. Procedia-Soc. Behav. Sci. 2015, 170, 718–727. [Google Scholar] [CrossRef] [Green Version]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; van den Dobbelsteen, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Mahmoud, A.H.A. Analysis of the microclimatic and human comfort conditions in an urban park in hot and arid regions. Build. Environ. 2011, 46, 2641–2656. [Google Scholar] [CrossRef]
- Li, L.; XiaoQing, Z.; Lixiu, Y. The analysis of outdoor thermal comfort in Guangzhou during summer. Proc. Eng. 2017, 205, 1996–2002. [Google Scholar] [CrossRef]
- Jin, H.; Siqi, L.; Jian, K. The thermal comfort of urban pedestrian street in the severe cold area of northeast china. Energy Proc. 2017, 134, 741–748. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C.Y. Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI. Build. Environ. 2018, 130, 49–61. [Google Scholar] [CrossRef]
- Martinelli, L.; Tzu-Ping, L.; Matzarakis, A. Assessment of the influence of daily shadings pattern on human thermal comfort and attendance in Rome during summer period. Build. Environ. 2015, 92, 30–38. [Google Scholar] [CrossRef]
- Middel, A.; Selover, N.; Hagen, B.; Chhetri, N. Impact of shade on outdoor thermal comfort—A seasonal field study in Tempe, Arizona. Int. J. Biometeorol. 2016, 60, 1849–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Liang, Q.; Bo, W. Field research and study of campus thermal environment in winter in severe cold areas. Energy Proc. 2017, 134, 607–615. [Google Scholar] [CrossRef]
- Paolini, R.; Mainini, A.G.; Poli, T.; Vercesi, L. Assessment of thermal stress in a street canyon in pedestrian area with or without canopy shading. Energy Proc. 2014, 48, 1570–1575. [Google Scholar] [CrossRef] [Green Version]
- Yahia, M.W.; Johansson, E. Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—The example of residential spaces with detached buildings. Land. Urban Plan. 2004, 125, 1–16. [Google Scholar] [CrossRef]
- Ali, S.B.; Suprava, P. Thermal comfort in urban open spaces: Objective assessment and subjective perception study in tropical city of Bhopal, India. Urban Clim. 2018, 24, 954–967. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Tzu-Ping, L.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2011, 46, 863–870. [Google Scholar] [CrossRef]
- Watanabe, S.; Nagano, K.; Ishii, J.; Horikoshi, T. Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region. Build. Environ. 2014, 82, 556–565. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Ahmed, A.B.; Olumuyiwa, B.A. Comparing the effect of trees on thermal conditions of two typical urban buildings. Urban Clim. 2013, 3, 76–93. [Google Scholar] [CrossRef]
- Andreou, E. Thermal comfort in outdoor spaces and urban canyon microclimate. Ren. Energy 2013, 55, 182–188. [Google Scholar] [CrossRef]
- Boukhelkhal, I.; Bourbia, P.R.F. Thermal comfort conditions in outdoor urban spaces: Hot dry climate-ghardaia-algeria. Proc. Eng. 2016, 169, 207–215. [Google Scholar] [CrossRef]
- Stocco, S.; Cantón, M.A.; Correa, E.N. Design of urban green square in dry areas: Thermal performance and comfort. Urban Forest. Urban Green. 2015, 14, 323–335. [Google Scholar] [CrossRef]
- Bourbia, F.; Boucheriba, F. Impact of street design on urban microclimate for semi arid climate (Constantine). Ren. Energy 2010, 35, 343–347. [Google Scholar] [CrossRef]
- Ruiz, M.A.; Sosa, B.; Correa, E.N.; Canton, A. Design tool to improve daytime thermal comfort and nighttime cooling of urban canyons. Landsc. Urban Plan. 2017, 167, 249–256. [Google Scholar] [CrossRef]
- Jihad, A.S.; Mohamed, T. Modeling the urban geometry influence on outdoor thermal comfort in the case of Moroccan microclimate. Urban Clim. 2016, 16, 25–42. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Juan, A.A. Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Clim. 2015, 14, 251–267. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Ghobadi, P.; Ahmadi, T.; Calutit, J.C. Numerical investigation of roof heating impacts on thermal comfort and air quality in urban canyons. Appl. Therm. Eng. 2017, 123, 310–326. [Google Scholar] [CrossRef]
- Yang, W.; Nyuk, H.W.; Yaolin, L. Thermal comfort in high-rise urban environments in Singapore. Proc. Eng. 2015, 121, 2125–2131. [Google Scholar] [CrossRef]
- Jamei, E.; Priyadarsini, R. Urban development and pedestrian thermal comfort in Melbourne. Solar Energy 2017, 144, 681–698. [Google Scholar] [CrossRef]
- Achour-Younsi, S.; Fakher, K. Outdoor thermal comfort: Impact of the geometry of an urban street canyon in a Mediterranean subtropical climate–Case study Tunis, Tunisia. Proc. Soc. Behav. Sci. 2016, 216, 689–700. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
- Rodríguez-Algeciras, J.; Tablada, A.; Chaos-Years, M.; la Paz, G.D.; Matzarakis, A. Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba. Ren. Energy 2018, 125, 840–856. [Google Scholar] [CrossRef]
- Qaid, A.; Lamit, H.B.; Ossen, D.R.; Shahminan, R.N.R. Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city. Energy Build. 2016, 133, 577–595. [Google Scholar] [CrossRef]
- Ragheb, A.A.; Ingy, I.E.; Sherif, A. Microclimate and human comfort considerations in planning a historic urban quarter. Int. J. Sustain. Built Environ. 2016, 5, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forest. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustain. Cities Soc. 2016, 26, 27–47. [Google Scholar] [CrossRef]
- Martinelli, L.; Matzarakis, A. Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustain. Cities Soc. 2017, 29, 97–106. [Google Scholar] [CrossRef]
- Emmanuel, R.; Johansson, E. Influence of urban morphology and sea breeze on hot humid microclimate: The case of Colombo, Sri Lanka. Clim. Res. 2006, 30, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Heisler, G.M. Effects of individual trees on the solar radiation climate of small buildings. Urban Ecol. 1986, 9, 337–359. [Google Scholar] [CrossRef] [Green Version]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2016, 124, 55–68. [Google Scholar] [CrossRef]
- Saito, I.; Osamu, I.; Tadahisa, K. Study of the effect of green areas on the thermal environment in an urban area. Energy Build. 1990, 15, 493–498. [Google Scholar] [CrossRef]
- Nichol, J.E. High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. J. Appl. Meteorol. 1996, 35, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Vailshery, L.L.; Madhumitha, J.; Harini, N. Effect of street trees on microclimate and air pollution in a tropical city. Urban Forest. Urban Green. 2013, 12, 408–415. [Google Scholar] [CrossRef]
- Lenzholzer, S. Research and design for thermal comfort in Dutch urban squares. Res. Conserv. Rec. 2012, 64, 39–48. [Google Scholar] [CrossRef]
- Nasir, R.A.; Ahmad, S.S.; Ahmed, A.Z.; Ibrahim, N. Adapting human comfort in an urban area: The role of tree shades towards urban regeneration. Proc. Soc. Behav. Sci. 2015, 170, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Ka-Lun Lau, K.; Ng, E. Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Build. Environ. 2017, 120, 93–109. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Lao, Z.; Liu, W.; Garcia, E.H.; He, L.; Zhu, J. Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Build. Environ. 2017, 123, 277–288. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, D.; Gao, W.; Chen, W.; Peng, W. Simulation on the impacts of the street tree pattern on built summer thermal comfort in cold region of China. Sustain. Cities Soc. 2018, 37, 563–580. [Google Scholar] [CrossRef]
- Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Build. Environ. 2017, 124, 369–387. [Google Scholar] [CrossRef]
- Picot, X. Thermal comfort in urban spaces: Impact of vegetation growth: Case study: Piazza della Scienza, Milan, Italy. Energy Build. 2004, 36, 329–334. [Google Scholar] [CrossRef]
- Kong, L.; Ka Lu Lau, K.; Yuan, C.; Chen, Y.; Xu, Y.; Ren, C.; Ng, E. Regulation of outdoor thermal comfort by trees in Hong Kong. Sustain. Cities Soc. 2017, 31, 12–25. [Google Scholar] [CrossRef]
- Hanafi, A.; Djamel, A. Role of the urban vegetal in improving the thermal comfort of a public place of a contemporary Saharan city. Energy Proc. 2017, 119, 139–152. [Google Scholar] [CrossRef]
- Zhao, X.; Guojie, L.; Tianyu, G. Research on optimization and biological characteristics of Harbin trees based on thermal comfort in summer. Proc. Eng. 2017, 180, 550–561. [Google Scholar] [CrossRef]
- Zhao, Q.; Sailor, D.J.; Wentz, E.A. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban Forest. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Morakinyo, T.E.; Ka Lun Lau, K.; Ren, C.; Ng, E. Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving. Build. Environ. 2018, 137, 157–170. [Google Scholar] [CrossRef]
- Nunez, M.; Timothy, R.O. The energy balance of an urban canyon. J. Appl. Meteorol. 1977, 16, 11–19. [Google Scholar] [CrossRef]
- Targhi, M.Z.; Van Dessel, S. Potential contribution of urban developments to outdoor thermal comfort conditions: The influence of urban geometry and form in Worcester, Massachusetts, USA. Proc. Eng. 2015, 118, 115–1161. [Google Scholar] [CrossRef] [Green Version]
- Taleb, H.; Dana, T. Enhancing the thermal comfort on urban level in a desert area: Case study of Dubai, United Arab Emirates. Urban Forest. Urban Green. 2014, 13, 253–260. [Google Scholar] [CrossRef]
- Lamarca, C.; Jorge, Q.; Cristián, H. Thermal comfort and urban canyons morphology in coastal temperate climate, Concepción, Chile. Urban Clim. 2018, 23, 159–172. [Google Scholar] [CrossRef]
- Cao, A.; Qiong, L.; Qinglin, M. Effects of orientation of urban roads on the local thermal environment in Guangzhou City. Proc. Eng. 2015, 121, 2075–2082. [Google Scholar] [CrossRef] [Green Version]
- Taleghani, M.; Tenpierk, M.; van den Dobbelsteen, A.; de Dear, R. Energy use impact of and thermal comfort in different urban block types in the Netherlands. Energy Build. 2013, 67, 166–175. [Google Scholar] [CrossRef]
- Xi, T.; Li, Q.; Mochida, A.; Meng, A. Study on the outdoor thermal environment and thermal comfort around campus clusters in subtropical urban areas. Build. Environ. 2012, 52, 162–170. [Google Scholar] [CrossRef]
- Zinzi, M.; Carnielo, E. Impact of urban temperatures on energy performance and thermal comfort in residential buildings. The case of Rome, Italy. Energy Build. 2017, 157, 20–29. [Google Scholar] [CrossRef]
- Martins, T.A.L.; Adolphe, L.; Bonhomme, M.; Bonneaud, F.; Faraut, S.; Ginestat, S.; Michel, C.; Guyard, W. Impact of urban cool island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France. Sustain. Cities Soc. 2016, 26, 9–26. [Google Scholar] [CrossRef]
- Morille, B.; Marjorie, M. Comparison of the impact of three climate adaptation strategies on summer thermal comfort–Cases study in Lyon, France. Proc. Environ. Sci. 2017, 38, 619–626. [Google Scholar] [CrossRef]
- Gaitani, N.; Mihalakakou, G.; Santamouris, M. On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Build. Environ. 2007, 42, 317–324. [Google Scholar] [CrossRef]
- Zhao, T.F.; Fong, K.F. Characterization of different heat mitigation strategies in landscape to fight against heat island and improve thermal comfort in hot–humid climate (Part I): Measurement and modelling. Sustain. Cities Soc. 2017, 32, 523–531. [Google Scholar] [CrossRef]
- Taleghani, M.; Berardi, U. The effect of pavement characteristics on pedestrians’ thermal comfort in Toronto. Urban Clim. 2018, 24, 449–459. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, A. How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy Build. 2015, 99, 32–49. [Google Scholar] [CrossRef]
- Taleghani, M. The impact of increasing urban surface albedo on outdoor summer thermal comfort within a university campus. Urban Clim. 2018, 24, 175–184. [Google Scholar] [CrossRef]
- Akbari, H.; Damon Matthews, H. Global cooling updates: Reflective roofs and pavements. Energy Build. 2012, 55, 2–6. [Google Scholar] [CrossRef]
- Akbari, H.; Konopacki, S. Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy 2005, 33, 721–756. [Google Scholar] [CrossRef]
- Akbari, H.; Melvin, P.; Haider, T. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Qin Jie, G.L.; Yeow Kwang, D.C. Micro-scale thermal performance of tropical urban parks in Singapore. Build. Environ. 2015, 94, 467–476. [Google Scholar] [CrossRef]
- Skoulika, F.; Santamorius, M.; Koloktsa, D.; Boemi, N. On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Land. Urban Plan. 2014, 123, 73–86. [Google Scholar] [CrossRef]
- Chang, C.R.; Huang Li, M. Effects of urban parks on the local urban thermal environment. Urban Forest. Urban Green. 2014, 13, 672–681. [Google Scholar] [CrossRef]
- Chang, C.R.; Ming-Huang, L.; Shyh-Dean, C. A preliminary study on the local cool-island intensity of Taipei city parks. Landscape Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Klaus, D.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Yu, C.; Wong Nyuk, H. Thermal benefits of city parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A.; Oke, T.R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- Morris, K.I.; Chan, A.; Morris, K.J.K.; Ooi, M.C.G.; Oozeer, M.Y.; Abakar, Y.A.; Nadzir, M.S.M.; Mohammed, I.Y.; Al-Qrimli, H.F. Impact of urbanization level on the interactions of urban area, the urban climate, and human thermal comfort. Appl. Geogr. 2017, 79, 50–72. [Google Scholar] [CrossRef]
- Gómez, F.; Luisa, G.; Jabaloyes, J. Experimental investigation on the thermal comfort in the city: Relationship with the green areas, interaction with the urban microclimate. Build. Environ. 2004, 1077–1086. [Google Scholar] [CrossRef]
- Lin, B.; Li, X.; Zhu, Y.; Qin, Y. Numerical simulation studies of the different vegetation patterns’ effects on outdoor pedestrian thermal comfort. J. Wind Eng. Ind. Aerod. 2008, 96, 1707–1718. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; Jacobs, M.H.; van Hove, B. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Build. Environ. 2015, 83, 120–128. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Biao, Z.; Jie, X. Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. Urban Forest. Urban Green. 2018, 37, 1–6. [Google Scholar] [CrossRef]
- Karakounos, I.; Dimoudi, A.; Zoras, S. The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy Build. 2018, 158, 1266–1274. [Google Scholar] [CrossRef]
- Radhi, H.; Stephen, S.; Essam, A. Impact of urban heat islands on the thermal comfort and cooling energy demand of artificial islands—A case study of AMWAJ Islands in Bahrain. Sustain. Cities Soc. 2015, 19, 310–318. [Google Scholar] [CrossRef]
- Barakat, A.; Hany, A.; Zeyad, E.S. Urban design in favor of human thermal comfort for hot arid climate using advanced simulation methods. Alex. Eng. J. 2017, 9, 533–543. [Google Scholar] [CrossRef]
- Georgi, J.N.; Dimos, D. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build. Environ. 2010, 45, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.A.; Sujin, P.; Song, G.S. Comparison of human thermal responses between the urban forest area and the central building district in Seoul, Korea. Urban Forest. Urban Green. 2016, 15, 133–148. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street greenery and its physical and psychological impact on thermal comfort. Land. Urban Plan. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Ren. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Taleghani, M.; Sailor, D.J.; Tenpierk, M.; van den Dobbelsteen, A. Thermal assessment of heat mitigation strategies: The case of Portland State University, Oregon, USA. Build. Environ. 2014, 73, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Alexandri, E.; Phil, J. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build. Environ. 2008, 43, 480–493. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lai, A.; Lau, K.K.L.; Ng, E. Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forest. Urban Green. 2017, 37, 42–55. [Google Scholar] [CrossRef]
- Castleton, H.F.; Stovin, V.; Beck, S.B.M.; Davisnon, J.B. Green roofs; building energy savings and the potential for retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Mazzeo, D.; Brumo, R.; Arcuri, N. Experimental investigation of the thermal performances of an extensive green roof in the Mediterranean area. Energy Build. 2016, 122, 63–79. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Ren. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Sailor, D.J. Simulated urban climate response to modifications in surface albedo and vegetative cover. J. Appl. Meteorol. 1995, 34, 1694–1704. [Google Scholar] [CrossRef] [Green Version]
- Synnefa, A.; Danodu, A.; Santamorius, M.; Tomboru, M.; Soulakellis, N. On the use of cool materials as a heat island mitigation strategy. J. Appl. Meteorol. Climatol. 2008, 2846–2856–2856. [Google Scholar] [CrossRef]
- Rosenfeld, A.H.; Akbari, H.; Romm, J.J.; Pomerantz, M. Cool communities: Strategies for heat island mitigation and smog reduction. Energy Build. 1998, 28, 51–62. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; John, E.T.H. Effects of urban surfaces and white roofs on global and regional climate. J. Clim. 2012, 25, 1028–1044. [Google Scholar] [CrossRef]
- Menon, S.; Akbari, H.; Mahanama, S.; Sednev, I.; Levinson, R. Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets. Environ. Res. Lett. 2010, 5, 014005. [Google Scholar] [CrossRef]
- Castaldo, V.L.; Rosso, F.; Golasi, I.; Piselli, C.; Salata, F.; Pisello, A.L.; Ferrero, M.; Cotana, F.; Vollaro, A.L. Thermal comfort in the historical urban canyon: The effect of innovative materials. Energy Procedia 2017, 134, 151–160. [Google Scholar] [CrossRef]
- Rosso, F.; Golassi, I.; Castaldo, V.L.; Piselli, C.; Salata, F.; Ferrero, M.; Cotana, F.; de Lieto Vollaro, A. On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Ren. Energy 2018, 118, 825–839. [Google Scholar] [CrossRef]
- Rossi, F.; Anderini, E.; Castellani, B.; Nicolini, A.; Morini, E. Integrated improvement of occupants’ comfort in urban areas during outdoor events. Build. Environ. 2015, 93, 285–292. [Google Scholar] [CrossRef]
- Ye, L.; Ichinose, T. Experimental evaluation of mitigation of thermal effects by “Katsuren travertine” paving material. Energy Build. 2014, 81, 253–261. [Google Scholar]
- Nishimura, N.; Nomura, T.; Iyota, H.; Kimoto, S. Novel water facilities for creation of comfortable urban micrometeorology. Solar Energy 1998, 64, 197–207. [Google Scholar] [CrossRef]
- Broadbent, A.M.; Coutts, A.M. The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theor. Appl. Climatol. 2017, 134, 1–23. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierk, M.; van den Dobbelsteen, A.; Sailor, D. Heat mitigation strategies in winter and summer: Field measurements in temperate climates. Build. Environ. 2014, 81, 309–319. [Google Scholar] [CrossRef]
- Xu, J.; Wei, Q.; Huang, X.; Zhu, Z.; Li, G. Evaluation of human thermal comfort near urban waterbody during summer. Build. Environ. 2010, 45, 1072–1080. [Google Scholar] [CrossRef]
- Syafii, N.I. Thermal environment assessment around bodies of water in urban canyons: A scale model study. Sustain. Cities Soc. 2017, 34, 79–89. [Google Scholar] [CrossRef]
- Rutty, M.; Scott, D. Bioclimatic comfort and the thermal perceptions and preferences of beach tourists. Int. J. Biometorol. 2015, 59, 37–45. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Priyadarsini, R.; Amrit, S. A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustain. Cities Soc. 2018, 41, 647–665. [Google Scholar] [CrossRef]
- Villadiego, K.; Velay-Dabat, M.A. Outdoor thermal comfort in a hot and humid climate of Colombia: A field study in Barranquilla. Build. Environ. 2014, 75, 142–152. [Google Scholar] [CrossRef]
- Lin, T.P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Taleghani, M. Dwelling on Courtyards: Exploring the Energy Efficiency and Comfort Potential of Courtyards for Dwellings in The Netherlands. PhD Thesis, Architecture and the Built Environment, Delft University of Technology, Delft, The Netherlands, 2014; pp. 1–354. [Google Scholar]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
Geographical Region | Climate | Temperature Range (°C) | References |
---|---|---|---|
Malaysia | Temperate | 18–23 | [11] |
Malaysia | Subtropical | 26–30 | [11] |
Isfahan, Iran | Hot and dry | 23.06–29.73 | [18] |
Central and western Europe | Temperate | 18–23 | [19] |
Taiwan | Tropical | 26–30 | [19] |
Crete, Greece | Mediterranean | 20–25 | [20] |
Athens, Greece | Mediterranean | 18–23 | [21] |
Hong Kong | Hot and humid | 28 | [22] |
Nis, Serbia | Temperate | 18–23 | [23] |
Sao Paulo, Brasilia | Hot and humid | 27.2 | [24] |
Hong Kong | Tropical | 25–29 | [25] |
Sydney, Australia | Subtropical | 26.2 | [26] |
Belo Horizonte, Brasilia | Tropical | 19–27 | [27] |
Belo Horizonte, Brasilia | Tropical | 16–30 | [28] |
Freiburg, Germany | Continental | 18–28 | [28] |
Ibadan, Nigeria | Tropical | 23–27 | [29] |
Dhaka, Bangladesh | Tropical | 28.5–32.8 | [30] |
Singapore | Tropical | 26–31.7 | [31,32] |
Guangzhou, China | Subtropical | 28.54–31 | [32] |
Subject | Number | References |
---|---|---|
| 17 | [8,10,16,18,19,20,31,33,34,35,36,37,38,39,40,41,42] |
| 15 | [21,22,23,34,42,43,44,45,46,47,48,49,50,51,52] |
| 25 | [14,21,24,30,37,38,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71] |
| 26 | [10,21,24,25,33,35,53,55,57,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88] |
| 12 | [24,37,39,63,89,90,91,92,93,94,95,96] |
| 12 | [15,16,97,98,99,100,101,102,103,104,105,106] |
| 25 | [17,48,56,67,102,103,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125] |
| 10 | [62,68,82,126,127,128,129,130,131,132] |
| 10 | [133,134,135,136,137,138,139,140,141,142] |
| 6 | [36,143,144,145,146,147] |
| 7 | [9,12,26,148,149,150,151,152,153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasrollahi, N.; Ghosouri, A.; Khodakarami, J.; Taleghani, M. Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability 2020, 12, 10000. https://doi.org/10.3390/su122310000
Nasrollahi N, Ghosouri A, Khodakarami J, Taleghani M. Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability. 2020; 12(23):10000. https://doi.org/10.3390/su122310000
Chicago/Turabian StyleNasrollahi, Nazanin, Amir Ghosouri, Jamal Khodakarami, and Mohammad Taleghani. 2020. "Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review" Sustainability 12, no. 23: 10000. https://doi.org/10.3390/su122310000
APA StyleNasrollahi, N., Ghosouri, A., Khodakarami, J., & Taleghani, M. (2020). Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability, 12(23), 10000. https://doi.org/10.3390/su122310000