Stay Home, Stay Active with SuperJump®: A Home-Based Activity to Prevent Sedentary Lifestyle during COVID-19 Outbreak
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. SuperJump® Training
2.3. Experimental Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report—11. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200131-sitrep-11-ncov.pdf?sfvrsn=de7c0f7_4 (accessed on 23 June 2020).
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of Coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, T.; Zhu, L.; Sheng, H.; Huang, S.; Hu, J. Active quarantine measures are the primary means to reduce the fatality rate of COVID-19. Bullettin World Health Organ. 2020, 1–12. [Google Scholar] [CrossRef]
- Chen, P.; Mao, L.; Nassis, G.P.; Harmer, P.; Ainsworth, B.E.; Li, F. Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J. Sport Health Sci. 2020, 9, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 home confinement on eating behaviour and physical activity: Results of the ECLB-COVID19 International online survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- Martinez-Ferran, M.; de la Guía-Galipienso, F.; Sanchis-Gomar, F.; Pareja-Galeano, H. Metabolic impacts of confinement during the COVID-19 pandemic due to modified diet and physical activity habits. Nutrients 2020, 12, 1549. [Google Scholar] [CrossRef]
- Jakobsson, J.; Malm, C.; Furberg, M.; Ekelund, U.; Svensson, M. Physical activity during the Coronavirus (COVID-19) pandemic: Prevention of a decline in metabolic and immunological functions. Front. Sport. Act. Living 2020, 2, 57. [Google Scholar] [CrossRef]
- Narici, M.; De Vito, G.; Franchi, M.; Paoli, A.; Moro, T.; Marcolin, G.; Grassi, B.; Baldassarre, G.; Zuccarelli, L.; Biolo, G.; et al. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur. J. Sport Sci. 2020, 1–22. [Google Scholar] [CrossRef]
- Ravalli, S.; Musumeci, G. Coronavirus outbreak in Italy: Physiological benefits of home-based exercise during pandemic. J. Funct. Morphol. Kinesiol. 2020, 5, 31. [Google Scholar] [CrossRef]
- Cortis, C.; Puggina, A.; Pesce, C.; Aleksovska, K.; Buck, C.; Burns, C.; Cardon, G.; Carlin, A.; Simon, C.; Ciarapica, D.; et al. Psychological determinants of physical activity across the life course: A “DEterminants of DIet and Physical ACtivity” (DEDIPAC) umbrella systematic literature review. PLoS ONE 2017, 12, e0182709. [Google Scholar] [CrossRef]
- Amato, A.; Baldassano, S.; Cortis, C.; Cooper, J.; Proia, P. Physical activity, nutrition, and bone health. Hum. Mov. 2018, 19, 1–10. [Google Scholar] [CrossRef]
- Yousfi, N.; Bragazzi, N.L.; Briki, W.; Zmijewski, P.; Chamari, K. The COVID-19 pandemic: How to maintain a healthy immune system during the lockdown—A multidisciplinary approach with special focus on athletes. Biol. Sport 2020, 37, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Antunes, R.; Frontini, R.; Amaro, N.; Salvador, R.; Matos, R.; Morouço, P.; Rebelo-Gonçalves, R. Exploring lifestyle habits, physical activity, anxiety and basic psychological needs in a sample of portuguese adults during COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 4360. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. Staying Active during the Coronavirus Pandemic. Available online: https://www.exerciseismedicine.org/assets/page_documents/EIM_Rx for Health_ Staying Active During Coronavirus Pandemic.pdf (accessed on 24 July 2020).
- Liz, J. Staying Active During COVID-19. Available online: https://www.exerciseismedicine.org/support_page.php/stories/?b=892 (accessed on 16 July 2020).
- Bushman, B.A. Physical activity guidelines for Americans. ACSMs Health Fit. J. 2019, 23, 5–9. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2017; ISBN 9788578110796. [Google Scholar]
- Grazioli, E.; Cerulli, C.; Dimauro, I.; Moretti, E.; Murri, A.; Parisi, A. New strategy of home-based exercise during pandemic COVID-19 in breast cancer patients: A case study. Sustainability 2020, 12, 6940. [Google Scholar] [CrossRef]
- Aguiñaga, S.; Ehlers, D.K.; Salerno, E.A.; Fanning, J.; Motl, R.W.; McAuley, E. Home-based physical activity program improves depression and anxiety in older adults. J. Phys. Act. Health 2018, 15, 692–696. [Google Scholar] [CrossRef]
- Nyenhuis, S.M.; Greiwe, J.; Zeiger, J.S.; Nanda, A.; Cooke, A. Exercise and fitness in the age of social distancing during the COVID-19 pandemic. J. Allergy Clin. Immunol. Pract. 2020, 8, 2152–2155. [Google Scholar] [CrossRef]
- DeSimone, G.T. Virtual fitness: Choosing a program that is right for you. ACSMs. Health Fit. J. 2020, 24, 3–4. [Google Scholar] [CrossRef]
- Cortis, C.; Giancotti, G.F.; Rodio, A.; Bianco, A.; Fusco, A. Home is the new gym: Exergame as a potential tool to maintain adequate fitness levels also. Hum. Mov. 2020, 21, 79–87. [Google Scholar] [CrossRef]
- Mokmin, N.A.M.; Jamiat, N. The effectiveness of a virtual fitness trainer app in motivating and engaging students for fitness activity by applying motor learning theory. Educ. Inf. Technol. 2020, 1–18. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, M.; Zhang, L. Efficiency of jumping exercise in improving bone mineral density among premenopausal women: A meta-analysis. Sport. Med. 2014, 44, 1393–1402. [Google Scholar] [CrossRef]
- Cugusi, L.; Manca, A.; Romita, G.; Bergamin, M.; Di Blasio, A.; Mercuro, G. Exercise intensity and energy expenditure during a mini-trampoline rebounding exercise session in overweight women. Sci. Sport. 2017, 32, e23–e28. [Google Scholar] [CrossRef]
- Cugusi, L.; Manca, A.; Serpe, R.; Romita, G.; Bergamin, M.; Cadeddu, C.; Solla, P.; Mercuro, G. Effects of a mini-trampoline rebounding exercise program on functional parameters, body composition and quality of life in overweight women. J. Sports Med. Phys. Fit. 2018, 58, 287–294. [Google Scholar] [CrossRef]
- Aragão, F.A.; Karamanidis, K.; Vaz, M.A.; Arampatzis, A. Mini-trampoline exercise related to mechanisms of dynamic stability improves the ability to regain balance in elderly. J. Electromyogr. Kinesiol. 2011, 21, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Miklitsch, C.; Krewer, C.; Freivogel, S.; Steube, D. Effects of a predefined mini-trampoline training programme on balance, mobility and activities of daily living after stroke: A randomized controlled pilot study. Clin. Rehabil. 2013, 27, 939–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draper, N.; Clement, T.; Alexander, K. Physiological demands of trampolining at different intensities. Res. Q. Exerc. Sport 2020, 91, 136–141. [Google Scholar] [CrossRef]
- White, J.R. Changes following ten weeks of exercise using a mini-trampoline on overweight women (Abstract). Med. Sci. Sport Exerc. 1980, 12, 103. [Google Scholar]
- Edin, J.; Gerberich, S.; Leon, A.; McNally, C.; Serfass, R.; Shaw, G.; Moy, J.; Casal, D. Analysis of the training effects of minitrampoline rebounding on physical fitness, body composition, and blood lipids. J. Cardiopulm. Rehabil. 1990, 10, 401–408. [Google Scholar] [CrossRef]
- Contrò, V.; Bianco, A.; Cooper, J.; Sacco, A.; Macchiarella, A.; Traina, M.; Proia, P. Effects of different circuit training protocols on body mass, fat mass and blood parameters in overweight adults. J. Biol. Res. Boll. Della Soc. Ital. Di Biol. Sper. 2017, 90, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Mannocci, A.; Di Thiene, D.; Del Cimmuto, A.; Masala, D.; Boccia, A.; De Vito, E.; La Torre, G. International physical activity questionnaire: Validation and assessment in an Italian sample. Ital. J. Public Health 2010, 7, 369–376. [Google Scholar] [CrossRef]
- Clement, T.; Alexander, K.; Draper, N. Investigating the effect of bouncing type on the physiological demands of trampolining. Eur. J. Sport Sci. 2020, 1–6. [Google Scholar] [CrossRef]
- Domene, P.A.; Moir, H.J.; Pummell, E.; Easton, C. Salsa dance and Zumba fitness: Acute responses during community-based classes. J. Sport Health Sci. 2016, 5, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Arney, B.E.; Glover, R.; Fusco, A.; Cortis, C.; de Koning, J.J.; van Erp, T.; Jaime, S.; Mikat, R.P.; Porcari, J.P.; Foster, C. Comparison of rating of perceived exertion scales during incremental and interval exercise. Kinesiology 2019, 51, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Arney, B.E.; Glover, R.; Fusco, A.; Cortis, C.; de Koning, J.J.; van Erp, T.; Jaime, S.; Mikat, R.P.; Porcari, J.P.; Foster, C. Comparison of RPE (Rating of Perceived Exertion) scales for session RPE. Int. J. Sports Physiol. Perform. 2019, 14, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Hector, L.L.; Welsh, R.; Schrager, M.; Green, M.A.; Snyder, A.C. Effects of specific versus cross-training on running performance. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 367–372. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Graves, L.E.F.; Ridgers, N.D.; Williams, K.; Stratton, G.; Atkinson, G.; Cable, N.T. The physiological cost and enjoyment of Wii fit in adolescents, young adults, and older adults. J. Phys. Act. Health 2010, 7, 393–401. [Google Scholar] [CrossRef]
Men (n = 10) | Women (n = 7) | |
---|---|---|
Age (years) | 27.1 ± 2.8 | 24 ± 0.8 |
Weight (kg) | 72.4 ± 11.4 | 57.5 ± 6.8 |
Height (m) | 1.7 ± 0.1 | 1.6 ± 0.0 |
BMI * (kg·m−2) | 24.3 ± 2.7 | 22.6 ± 2.5 |
HRmax (beat∙min−1) | 189 ± 2 | 191 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannaccone, A.; Fusco, A.; Jaime, S.J.; Baldassano, S.; Cooper, J.; Proia, P.; Cortis, C. Stay Home, Stay Active with SuperJump®: A Home-Based Activity to Prevent Sedentary Lifestyle during COVID-19 Outbreak. Sustainability 2020, 12, 10135. https://doi.org/10.3390/su122310135
Iannaccone A, Fusco A, Jaime SJ, Baldassano S, Cooper J, Proia P, Cortis C. Stay Home, Stay Active with SuperJump®: A Home-Based Activity to Prevent Sedentary Lifestyle during COVID-19 Outbreak. Sustainability. 2020; 12(23):10135. https://doi.org/10.3390/su122310135
Chicago/Turabian StyleIannaccone, Alice, Andrea Fusco, Salvador J. Jaime, Sara Baldassano, Jill Cooper, Patrizia Proia, and Cristina Cortis. 2020. "Stay Home, Stay Active with SuperJump®: A Home-Based Activity to Prevent Sedentary Lifestyle during COVID-19 Outbreak" Sustainability 12, no. 23: 10135. https://doi.org/10.3390/su122310135
APA StyleIannaccone, A., Fusco, A., Jaime, S. J., Baldassano, S., Cooper, J., Proia, P., & Cortis, C. (2020). Stay Home, Stay Active with SuperJump®: A Home-Based Activity to Prevent Sedentary Lifestyle during COVID-19 Outbreak. Sustainability, 12(23), 10135. https://doi.org/10.3390/su122310135