Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process
Abstract
:1. Introduction
- RQ1.
- What are the energy problems associated with the use of MCDM methods?
- RQ2.
- What are the energy sources associated with the use of MCDM methods?
- RQ3.
- What are the MCDM methods applied in each renewable energy problem and decision step (alternative selection, criteria selection, criteria weighting, evaluation of alternatives, and post-assessment analyzes)?
2. State of the Art
3. Review Method
4. Results
4.1. Preliminary Findings
4.2. Problem Class
4.2.1. Source Selection
4.2.2. Location
4.2.3. Sustainability
4.2.4. Technologies Performance
4.2.5. Project Performance
4.2.6. Other Problems
Problem Class | Definition | References | Total References |
---|---|---|---|
Source Selection | Decision-making process that aims to select a better energy source or a mix of sources | [1,8,29,30,31,32,33,34,35,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101] | 44 articles |
Location | Decision-making process that aims to select the better location of energy generation of a source | [27,28,36,39,40,41,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129] | 35 articles |
Sustainability | Decision-making process that aims to evaluate sustainable energy planning (rank priority policies and strategies, and/or eliminate low-performing sustainable alternatives) | [42,44,45,46,49,50,51,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149] | 31 articles |
Technologies Performance | Decision-making process that aims to select the better technology (technical component, material, etc.) | [52,54,55,56,57,58,59,60,118,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165] | 26 articles |
Project Performance | Decision-making process that aims to evaluate the project’s performance | [61,62,166,167,168,169,170,171,172,173,174,175,176] | 13 articles |
4.3. Sources
4.4. Multicriteria Methods
4.4.1. Criteria Selection Methods
Literature Review
Experts
Delphi Method and Fuzzy-Delphi
4.4.2. Weighting Criteria and Evaluation of Alternatives Methods
AHP
ANP
TOPSIS
PROMETHEE
ELECTRE
VIKOR
4.4.3. Post-Assessment Methods
Sensitivity Analysis
Reliability Analysis
Monte Carlo Simulation
5. Discussion
5.1. Problem Class and Source
5.2. Problem Class and MCDM Method
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Topcu, I.; Ulengin, F.; Kabak, O.; Isik, M.; Unver, B.; Ekici, S.O. The evaluation of electricity generation resources: The case of Turkey. Energy 2019, 167, 417–427. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, P.; Zheng, J.; Li, J.; Lv, S.; Jin, T.; Zou, Y.; Xu, P.; Cheng, C.; Zhang, Y. Degradation of gaseous HCHO in a rotating photocatalytic fuel cell system with an absorption efficiency of up to 94%. Chem. Eng. J. 2020, 392, 123634. [Google Scholar] [CrossRef]
- Khoodaruth, A.; Oree, V.; Elahee, M.K.; Clark, W.W. Exploring options for a 100% renewable energy system in Mauritius by 2050. Util. Policy 2017, 44, 38–49. [Google Scholar] [CrossRef]
- Gu, J.; Renwick, N.; Xue, L. The BRICS and Africa’s search for green growth, clean energy and sustainable development. Energy Policy 2018, 120, 675–683. [Google Scholar] [CrossRef]
- Resnier, M.; Wang, C.; Du, P.; Chen, J. The promotion of sustainable development in China through the optimization of a tax/subsidy plan among HFC and power generation CDM projects. Energy Policy 2007, 35, 4529–4544. [Google Scholar] [CrossRef]
- Ameen, R.F.M.; Mourshed, M. Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustain. Cities Soc. 2019, 44, 356–366. [Google Scholar] [CrossRef]
- Wang, J.-J.; Jing, Y.-Y.; Zhang, C.-F.; Zhao, J.-H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Buyukozkan, G.; Karabulut, Y.; Mukul, E. A novel renewable energy selection model for United Nations’ sustainable development goals. Energy 2018, 165, 290–302. [Google Scholar] [CrossRef]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria method selection. Omega 2019, 86, 107–124. [Google Scholar] [CrossRef]
- Saaty, T.L.; Ergu, D. When is a Decision-Making Method Trustworthy? Criteria for Evaluating Multi-Criteria Decision-Making Methods. Int. J. Inf. Technol. Decis. Mak. 2015, 14, 1171–1187. [Google Scholar] [CrossRef]
- Martins, I.D.; Moraes, F.F.; Távora, G.; Soares, H.L.F.; Infante, C.E.; Arruda, E.F.; Bahiense, L.; Caprace, J.; Lourenço, M.I. A review of the multicriteria decision analysis applied to oil and gas decommissioning problems. Ocean Coast. Manag. 2020, 184, 105000. [Google Scholar] [CrossRef]
- Lee, H.-C.; Chang, C.-T. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renew. Sustain. Energy Rev. 2018, 92, 883–896. [Google Scholar] [CrossRef]
- Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K.; Cavallaro, F.; Khalifah, Z. Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches. Sustainability 2015, 7, 13947–13984. [Google Scholar] [CrossRef] [Green Version]
- Elena Arce, M.; Saavedra, Á.; Míguez, J.L.; Granada, E. The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review. Renew. Sustain. Energy Rev. 2015, 47, 924–932. [Google Scholar] [CrossRef]
- Strantzali, E.; Aravossis, K. Decision making in renewable energy investments: A review. Renew. Sustain. Energy Rev. 2016, 55, 885–898. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Zakuan, N.; Jusoh, A.; Nor, K.M.; Khoshnoudi, M. A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015. Renew. Sustain. Energy Rev. 2017, 71, 216–256. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Kaya, İ.; Çolak, M.; Terzi, F. Use of MCDM techniques for energy policy and decision-making problems: A review. Int. J. Energy Res. 2018, 42, 2344–2372. [Google Scholar] [CrossRef]
- Ilbahar, E.; Cebi, S.; Kahraman, C. A state-of-the-art review on multi-attribute renewable energy decision making. Energy Strateg. Rev. 2019, 25, 18–33. [Google Scholar] [CrossRef]
- Siksnelyte-Butkiene, I.; Zavadskas, E.K.; Streimikiene, D. Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review. Energies 2020, 13, 1164. [Google Scholar] [CrossRef] [Green Version]
- Dresch, A.; Lacerda, D.P.; Antunes Júnior, J.A.V. Design Science Research: A Method for Science and Technology Advancement; Springer: New York, NY, USA, 2014; ISBN 9788582602980. [Google Scholar]
- Vieira, L.C.; Amaral, F.G. Barriers and strategies applying Cleaner Production: A systematic review. J. Clean. Prod. 2016, 113, 5–16. [Google Scholar] [CrossRef]
- Erdin, C.; Ozkaya, G. Turkey’s 2023 Energy Strategies and Investment Opportunities for Renewable Energy Sources: Site Selection Based on ELECTRE. Sustainability 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Shen, K.; He, S.; Zhang, H.; Wang, J. Investment risk evaluation for new energy resources: An integrated decision support model based on regret theory and ELECTRE III. Energy Convers. Manag. 2019, 183, 332–348. [Google Scholar] [CrossRef]
- Shirgholami, Z.; Zangeneh, S.N.; Bortolini, M. Decision system to support the practitioners in the wind farm design: A case study for Iran mainland. Sustain. Energy Technol. Assess. 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Ifaei, P.; Farid, A.; Yoo, C. An optimal renewable energy management strategy with and without hydropower using a factor weighted multi-criteria decision making analysis and nation-wide big data—Case study in Iran. Energy 2018, 158, 357–372. [Google Scholar] [CrossRef]
- Asakereh, A.; Soleymani, M.; Sheikhdavoodi, M.J. A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: Case study in Khuzestan province, Iran. Sol. Energy 2017, 155, 342–353. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, P.; Newton, S.; Fang, J.; Zhou, D.; Zhang, L. Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method. Energy 2015, 90, 953–964. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Güleryüz, S. Evaluation of Renewable Energy Resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations. Energy 2017, 123, 149–163. [Google Scholar] [CrossRef]
- Şengül, Ü.; Eren, M.; Eslamian Shiraz, S.; Gezder, V.; Sengül, A.B. Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renew. Energy 2015, 75, 617–625. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Zeng, S.; Balezentis, T.; Streimikiene, D.; Alisauskaite-Seskiene, I.; Chen, X. Probabilistic multi-criteria assessment of renewable micro-generation technologies in households. J. Clean. Prod. 2019, 212, 582–592. [Google Scholar] [CrossRef]
- Malkawi, S.; Al-Nimr, M.; Azizi, D. A multi-criteria optimization analysis for Jordan’s energy mix. Energy 2017, 127, 680–696. [Google Scholar] [CrossRef]
- Al Garni, H.; Kassem, A.; Awasthi, A.; Komljenovic, D.; Al-Haddad, K. A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustain. Energy Technol. Assess. 2016, 16, 137–150. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Karabulut, Y. Energy project performance evaluation with sustainability perspective. Energy 2017, 119, 549–560. [Google Scholar] [CrossRef]
- Höfer, T.; Sunak, Y.; Siddique, H.; Madlener, R. Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen. Appl. Energy 2016, 163, 222–243. [Google Scholar] [CrossRef]
- Fang, H.; Li, J.; Song, W. Sustainable site selection for photovoltaic power plant: An integrated approach based on prospect theory. Energy Convers. Manag. 2018, 174, 755–768. [Google Scholar] [CrossRef]
- Doorga, J.R.; Rughooputh, S.D.; Boojhawon, R. Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renew. Energy 2019, 133, 1201–1219. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl. Energy 2017, 206, 1225–1240. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, V.T.; Thai, H.T.N.; Duong, D.H. Multi-Criteria Decision Making (MCDM) Approaches for Solar Power Plant Location Selection in Viet Nam. Energies 2018, 11, 1504. [Google Scholar] [CrossRef] [Green Version]
- Aydin, N.Y.; Kentel, E.; Duzgun, H.S. GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy Convers. Manag. 2013, 70, 90–106. [Google Scholar] [CrossRef]
- Okioga, I.T.; Wu, J.; Sireli, Y.; Hendren, H. Renewable energy policy formulation for electricity generation in the United States. Energy Strateg. Rev. 2018, 22, 365–384. [Google Scholar] [CrossRef]
- Neves, D.; Baptista, P.; Simoes, M.; Silva, C.A.; Figueira, J.R. Designing a municipal sustainable energy strategy using multi-criteria decision analysis. J. Clean. Prod. 2018, 176, 251–260. [Google Scholar] [CrossRef]
- Karakosta, C.; Doukas, H.; Psarras, J. Directing clean development mechanism towards developing countries’ sustainable development priorities. Energy Sustain. Dev. 2009, 13, 77–84. [Google Scholar] [CrossRef]
- Hussain Mirjat, N.; Uqaili, M.A.; Harijan, K.; Mustafa, M.W.; Rahman, M.M.; Khan, M.W.A. Multi-Criteria Analysis of Electricity Generation Scenarios for Sustainable Energy Planning in Pakistan. Energies 2018, 11, 757. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.-C.; Lyu, Y.-J.; Wang, B.; Liu, Q.-H.; Wu, Q. China’s energy transition strategy at the city level: The role of renewable energy. J. Clean. Prod. 2018, 205, 980–986. [Google Scholar] [CrossRef]
- Loikkanen, O.; Lahdelma, R.; Salminen, P. Multicriteria evaluation of sustainable energy solutions for Colosseum. Sustain. Cities Soc. 2017, 35, 289–297. [Google Scholar] [CrossRef]
- Harkouss, F.; Fardoun, F.; Biwole, P.H. Multi-objective optimization methodology for net zero energy buildings. J. Build. Eng. 2018, 16, 57–71. [Google Scholar] [CrossRef]
- Pak, B.K.; Albayrak, Y.E.; Erensal, Y.C. Renewable Energy Perspective for Turkey Using Sustainability Indicators. Int. J. Comput. Intell. Syst. 2015, 8, 187–197. [Google Scholar]
- Barros, J.J.C.; Coira, M.L.; de la Cruz López, M.P.; del Caño Gochi, A. Assessing the global sustainability of different electricity generation systems. Energy 2015, 89, 473–489. [Google Scholar] [CrossRef]
- Petrillo, A.; De Felice, F.; Jannelli, E.; Autorino, C.; Minutillo, M.; Lavadera, A.L. Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system. Renew. Energy 2016, 95, 337–355. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, S.; Zhao, H. Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences. Energy 2019, 168, 450–461. [Google Scholar] [CrossRef]
- Acar, C.; Beskese, A.; Temur, G.T. A novel multicriteria sustainability investigation of energy storage systems. Int. J. Energy Res. 2019, 43, 6419–6441. [Google Scholar] [CrossRef]
- Murrant, D.; Radcliffe, J. Assessing energy storage technology options using a multi-criteria decision analysis-based framework. Appl. Energy 2018, 231, 788–802. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Guo, S.; Zhao, H. Comprehensive Performance Assessment on Various Battery Energy Storage Systems. Energies 2018, 11, 2841. [Google Scholar] [CrossRef] [Green Version]
- Ren, J. Sustainability prioritization of energy storage technologies for promoting the development of renewable energy: A novel intuitionistic fuzzy combinative distance-based assessment approach. Renew. Energy 2018, 121, 666–676. [Google Scholar] [CrossRef]
- Sagbansua, L.; Balo, F. Decision making model development in increasing wind farm energy efficiency. Renew. Energy 2017, 109, 354–362. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Hung, M.-C.; Kang, H.-Y.; Pearn, W.L. A wind turbine evaluation model under a multi-criteria decision making environment. Energy Convers. Manag. 2012, 64, 289–300. [Google Scholar] [CrossRef]
- Socorro García-Cascales, M.; Teresa Lamata, M.; Miguel Sánchez-Lozano, J. Evaluation of photovoltaic cells in a multi-criteria decision making process. Ann. Oper. Res. 2012, 199, 373–391. [Google Scholar] [CrossRef]
- Aloini, D.; Dulmin, R.; Mininno, V.; Pellegrini, L.; Farina, G. Technology assessment with IF-TOPSIS: An application in the advanced underwater system sector. Technol. Forecast. Soc. Chang. 2018, 131, 38–48. [Google Scholar] [CrossRef]
- Madlener, R.; Antunes, C.H.; Dias, L.C. Assessing the performance of biogas plants with multi-criteria and data envelopment analysis. Eur. J. Oper. Res. 2009, 197, 1084–1094. [Google Scholar] [CrossRef] [Green Version]
- Alsayed, M.; Cacciato, M.; Scarcella, G.; Scelba, G. Design of hybrid power generation systems based on multi criteria decision analysis. Sol. Energy 2014, 105, 548–560. [Google Scholar] [CrossRef]
- Jharkharia, S.; Das, C. Low carbon supplier development: A fuzzy c-means and fuzzy formal concept analysis based analytical model. Benchmark. Int. J. 2019, 26, 73–96. [Google Scholar] [CrossRef]
- Ren, J.; Sovacool, B.K. Enhancing China’s energy security: Determining influential factors and effective strategic measures. Energy Convers. Manag. 2014, 88, 589–597. [Google Scholar] [CrossRef]
- Alipour, M.; Hafezi, R.; Ervural, B.; Amin, M.; Kabak, O. Long-term policy evaluation: Application of a new robust decision framework for Iran’s energy exports security. Energy 2018, 157, 914–931. [Google Scholar] [CrossRef]
- Balezentis, T.; Streimikiene, D.; Baležentis, T.; Streimikiene, D.; Balezentis, T.; Streimikiene, D. Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation. Appl. Energy 2017, 185, 862–871. [Google Scholar] [CrossRef]
- Galvez, D.; Rakotondranaivo, A.; Morel, L.; Camargo, M.; Fick, M. Reverse logistics network design for a biogas plant: An approach based on MILP optimization and Analytical Hierarchical Process (AHP). J. Manuf. Syst. 2015, 37, 616–623. [Google Scholar] [CrossRef]
- Ghafghazi, S.; Sowlati, T.; Sokhansanj, S.; Melin, S. A multicriteria approach to evaluate district heating system options. Appl. Energy 2010, 87, 1134–1140. [Google Scholar] [CrossRef]
- Kahraman, C.; Kaya, I.; Çebi, S. Renewable Energy System Selection Based On Computing with Words. Int. J. Comput. Intell. Syst. 2010, 3, 461–473. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Lin, G.T.R.; Li, K.-P.; Yuan, B.J.C. An assessment of exploiting renewable energy sources with concerns of policy and technology. Energy Policy 2010, 38, 4604–4616. [Google Scholar] [CrossRef]
- Catalina, T.; Virgone, J.; Blanco, E. Multi-source energy systems analysis using a multi-criteria decision aid methodology. Renew. Energy 2011, 36, 2245–2252. [Google Scholar] [CrossRef]
- San Cristobal, J.R. Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renew. Energy 2011, 36, 498–502. [Google Scholar] [CrossRef]
- Demirtas, O. Evaluating the best renewable energy technology for sustainable energy planning. Int. J. Energy Econ. Policy 2013, 3, 23–33. [Google Scholar]
- Ertay, T.; Kahraman, C.; Kaya, I. Evaluation of renewable energy alternatives using macbeth and fuzzy ahp multicriteria methods: The case of turkey. Technol. Econ. Dev. Econ. 2013, 19, 38–62. [Google Scholar] [CrossRef] [Green Version]
- Mourmouris, J.C.; Potolias, C. A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece. Energy Policy 2013, 52, 522–530. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Attalage, R.A.; Perera, K.K.C.K.; Dassanayake, V.P.C. A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Appl. Energy 2013, 107, 412–425. [Google Scholar] [CrossRef]
- Grujić, M.; Ivezić, D.; Živković, M. Application of multi-criteria decision-making model for choice of the optimal solution for meeting heat demand in the centralized supply system in Belgrade. Energy 2014, 67, 341–350. [Google Scholar] [CrossRef]
- Kabak, M.; Dagdeviren, M. Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Convers. Manag. 2014, 79, 25–33. [Google Scholar] [CrossRef]
- Santoyo-Castelazo, E.; Azapagic, A. Sustainability assessment of energy systems: Integrating environmental, economic and social aspects. J. Clean. Prod. 2014, 80, 119–138. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Güleryüz, S. An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey. Int. J. Prod. Econ. 2016, 182, 435–448. [Google Scholar] [CrossRef]
- Celikbilek, Y.; Tuysuz, F. An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources. Energy 2016, 115, 1246–1258. [Google Scholar] [CrossRef]
- Maimoun, M.; Madani, K.; Reinhart, D. Multi-level multi-criteria analysis of alternative fuels for waste collection vehicles in the United States. Sci. Total Environ. 2016, 550, 349–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkart, K.; Bauer, C.; Burgherr, P.; Hirschberg, S.; Schenler, W.; Spada, M. Interdisciplinary assessment of renewable, nuclear and fossil power generation with and without carbon capture and storage in view of the new Swiss energy policy. Int. J. Greenh. Gas Control 2016, 54, 1–14. [Google Scholar] [CrossRef]
- Algarin, C.A.R.; Llanos, A.P.; Castro, A.O. An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy. Int. J. Energy Econ. Policy 2017, 7, 38–47. [Google Scholar]
- Balin, A.; Baracli, H. A fuzzy multi-criteria decision making methodology based upon the interval type-2 fuzzy sets for evaluating renewable energy alternatives in turkey. Technol. Econ. Dev. Econ. 2017, 23, 742–763. [Google Scholar] [CrossRef] [Green Version]
- Haddad, B.; Liazid, A.; Ferreira, P. A multi-criteria approach to rank renewables for the Algerian electricity system. Renew. Energy 2017, 107, 462–472. [Google Scholar] [CrossRef]
- Qin, Q.; Liang, F.; Li, L.; Chen, Y.-W.; Yu, G.-F. A TODIM-based multi-criteria group decision making with triangular intuitionistic fuzzy numbers. Appl. Soft Comput. 2017, 55, 93–107. [Google Scholar] [CrossRef]
- Santos, M.J.; Ferreira, P.; Araujo, M.; Portugal-Pereira, J.; Lucena, A.F.P.; Schaeffer, R. Scenarios for the future Brazilian power sector based on a multi criteria assessment. J. Clean. Prod. 2017, 167, 938–950. [Google Scholar] [CrossRef]
- Chatterjee, K.; Kar, S. A multi-criteria decision making for renewable energy selection using z-numbers in uncertain environment. Technol. Econ. Dev. Econ. 2018, 24, 739–764. [Google Scholar] [CrossRef] [Green Version]
- Hocine, A.; Kouaissah, N.; Bettahar, S.; Benbouziane, M. Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach. Renew. Energy 2018, 129, 540–552. [Google Scholar] [CrossRef]
- Kirppu, H.; Lahdelma, R.; Salminen, P. Multicriteria evaluation of carbon-neutral heat-only production technologies for district heating. Appl. Therm. Eng. 2018, 130, 466–476. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shao, S.; Zhang, F. An Analysis of the Multi-Criteria Decision-Making Problem for Distributed Energy Systems. Energies 2018, 11, 2453. [Google Scholar] [CrossRef] [Green Version]
- Omrani, H.; Alizadeh, A.; Emrouznejad, A. Finding the optimal combination of power plants alternatives: A multi response Taguchi-neural network using TOPSIS and fuzzy best-worst method. J. Clean. Prod. 2018, 203, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Pasaoglu, G.; Garcia, N.P.; Zubi, G. A multi-criteria and multi-expert decision aid approach to evaluate the future Turkish power plant portfolio. Energy Policy 2018, 119, 654–665. [Google Scholar] [CrossRef]
- Sadeghi, A.; Larimian, T. Sustainable electricity generation mix for Iran: A fuzzy analytic network process approach. Sustain. Energy Technol. Assess. 2018, 28, 30–42. [Google Scholar] [CrossRef]
- Shaaban, M.; Scheffran, J.; Boehner, J.; Elsobki, M.S. Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis. Energies 2018, 11, 1117. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Xu, C.; Zhang, T. Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China. Energy 2018, 147, 1227–1239. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, J.; Solgaard, H.S.; Xu, D.; Nguyen, T.T. Using multi-criteria analysis to prioritize renewable energy home heating technologies. Sustain. Energy Technol. Assess. 2018, 29, 36–43. [Google Scholar] [CrossRef]
- Yuan, J.; Li, C.; Li, W.; Liu, D.; Li, X. Linguistic hesitant fuzzy multi-criterion decision-making for renewable energy: A case study in Jilin. J. Clean. Prod. 2018, 172, 3201–3214. [Google Scholar] [CrossRef]
- Karunathilake, H.; Hewage, K.; Mérida, W.; Sadiq, R. Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty. Renew. Energy 2019, 130, 558–573. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. Integrated assessment of a sustainable microgrid for a remote village in hilly region. Energy Convers. Manag. 2019, 180, 442–472. [Google Scholar] [CrossRef]
- Supriyasilp, T.; Pongput, K.; Boonyasirikul, T. Hydropower development priority using MCDM method. Energy Policy 2009, 37, 1866–1875. [Google Scholar] [CrossRef]
- Smyth, B.M.; Smyth, H.; Murphy, J.D. Determining the regional potential for a grass biomethane industry. Appl. Energy 2011, 88, 2037–2049. [Google Scholar] [CrossRef]
- Van Dael, M.; Van Passel, S.; Pelkmans, L.; Guisson, R.; Swinnen, G.; Schreurs, E. Determining potential locations for biomass valorization using a macro screening approach. Biomass Bioenergy 2012, 45, 175–186. [Google Scholar] [CrossRef]
- Omitaomu, O.A.; Blevins, B.R.; Jochem, W.C.; Mays, G.T.; Belles, R.; Hadley, S.W.; Harrison, T.J.; Bhaduri, B.L.; Neish, B.S.; Rose, A.N. Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites. Appl. Energy 2012, 96, 292–301. [Google Scholar] [CrossRef]
- Vučijak, B.; Kupusović, T.; Midžić-Kurtagić, S.; Ćerić, A. Applicability of multicriteria decision aid to sustainable hydropower. Appl. Energy 2013, 101, 261–267. [Google Scholar] [CrossRef]
- Grubert, E.A.; Stillwell, A.S.; Webber, M.E. Where does solar-aided seawater desalination make sense? A method for identifying sustainable sites. Desalination 2014, 339, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lozano, J.M.; Garcia-Cascales, M.S.; Lamata, M.T. Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain. Energy 2014, 73, 311–324. [Google Scholar] [CrossRef]
- Atici, K.B.; Simsek, A.B.; Ulucan, A.; Tosun, M.U. A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection. Util. Policy 2015, 37, 86–96. [Google Scholar] [CrossRef]
- Fetanat, A.; Khorasaninejad, E. A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean Coast. Manag. 2015, 109, 17–28. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Kechagia, K. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew. Energy 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; García-Cascales, M.S.; Lamata, M.T. Evaluation of suitable locations for the installation of solar thermoelectric power plants. Comput. Ind. Eng. 2015, 87, 343–355. [Google Scholar] [CrossRef]
- Wanderer, T.; Herle, S. Creating a spatial multi-criteria decision support system for energy related integrated environmental impact assessment. Environ. Impact Assess. Rev. 2015, 52, 2–8. [Google Scholar] [CrossRef]
- Watson, J.J.W.; Hudson, M.D. Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landsc. Urban Plan. 2015, 138, 20–31. [Google Scholar] [CrossRef]
- Cebi, S.; Ilbahar, E.; Atasoy, A. A fuzzy information axiom based method to determine the optimal location for a biomass power plant: A case study in Aegean Region of Turkey. Energy 2016, 116, 894–907. [Google Scholar] [CrossRef]
- Aly, A.; Jensen, S.S.; Pedersen, A.B. Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renew. Energy 2017, 113, 159–175. [Google Scholar] [CrossRef]
- Baseer, M.A.; Rehman, S.; Meyer, J.P.; Alam, M.M. GIS-based site suitability analysis for wind farm development in Saudi Arabia. Energy 2017, 141, 1166–1176. [Google Scholar] [CrossRef] [Green Version]
- Dinmohammadi, A.; Shafiee, M. Determination of the Most Suitable Technology Transfer Strategy for Wind Turbines Using an Integrated AHP-TOPSIS Decision Model. Energies 2017, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Doljak, D.; Stanojević, G. Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia. Energy 2017, 127, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, M.; Tafarte, P.; Thraen, D. Towards energy landscapes—“Pathfinder for sustainable wind power locations”. Energy 2017, 134, 611–621. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Božanić, D.; Ljubojević, S. Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia. Renew. Energy 2017, 103, 501–521. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Chen, H.H.; Kang, H.-Y. A conceptual model for prioritizing dam sites for tidal energy sources. Ocean Eng. 2017, 137, 38–47. [Google Scholar] [CrossRef]
- Ziemba, P.; Wątróbski, J.; Zioło, M.; Karczmarczyk, A. Using the PROSA Method in Offshore Wind Farm Location Problems. Energies 2017, 10, 1755. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.S.; Ramírez-Gómez, Á. Optimizing the location of a biomass plant with a fuzzy-DEcision-MAking Trial and Evaluation Laboratory (F-DEMATEL) and multi-criteria spatial decision assessment for renewable energy management and long-term sustainability. J. Clean. Prod. 2018, 182, 509–520. [Google Scholar] [CrossRef]
- Mahdy, M.; Bahaj, A.S. Multi criteria decision analysis for offshore wind energy potential in Egypt. Renew. Energy 2018, 118, 278–289. [Google Scholar] [CrossRef]
- Ali, S.; Taweekun, J.; Techato, K.; Waewsak, J.; Gyawali, S. GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renew. Energy 2019, 132, 1360–1372. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Nematollahi, O.; Mijani, N.; Shorabeh, S.N.; Firozjaei, H.K.; Toomanian, A. An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning. Renew. Energy 2019, 136, 1130–1146. [Google Scholar] [CrossRef]
- Ghorbani, N.; Makian, H.; Breyer, C. A GIS-based method to identify potential sites for pumped hydro energy storage—Case of Iran. Energy 2019, 169, 854–867. [Google Scholar] [CrossRef]
- Doorga, J.R.S.; Rughooputh, S.D.; Boojhawon, R. High resolution spatio-temporal modelling of solar photovoltaic potential for tropical islands: Case of Mauritius. Energy 2019, 169, 972–987. [Google Scholar] [CrossRef]
- Theodorou, S.; Florides, G.; Tassou, S. The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus, A review. Energy Policy 2010, 38, 7783–7792. [Google Scholar] [CrossRef]
- Jovanovic, M.; Turanjanin, V.; Bakic, V.; Pezo, M.; Vucicevic, B. Sustainability estimation of energy system options that use gas and renewable resources for domestic hot water production. Energy 2011, 36, 2169–2175. [Google Scholar] [CrossRef]
- Wang, L.; Xu, L.; Song, H. Environmental performance evaluation of Beijing’s energy use planning. Energy Policy 2011, 39, 3483–3495. [Google Scholar] [CrossRef]
- Ziemele, J.; Vigants, G.; Vitolins, V.; Blumberga, D.; Veidenbergs, I. District heating systems performance analyses. Heat energy tariff. Environ. Clim. Technol. 2014, 13, 32–43. [Google Scholar] [CrossRef]
- Chou, J.-S.; Ongkowijoyo, C.S. Risk-based group decision making regarding renewable energy schemes using a stochastic graphical matrix model. Autom. Constr. 2014, 37, 98–109. [Google Scholar] [CrossRef]
- Maxim, A. Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis. Energy Policy 2014, 65, 284–297. [Google Scholar] [CrossRef]
- Bertsch, V.; Fichtner, W. A participatory multi-criteria approach for power generation and transmission planning. Ann. Oper. Res. 2015, 245, 177–207. [Google Scholar] [CrossRef]
- Yap, H.Y.; Nixon, J.D. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Manag. 2015, 46, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Hadian, S.; Madani, K. A system of systems approach to energy sustainability assessment: Are all renewables really green? Ecol. Indic. 2015, 52, 194–206. [Google Scholar] [CrossRef]
- Spyridaki, N.-A.; Banaka, S.; Flamos, A. Evaluating public policy instruments in the Greek building sector. Energy Policy 2016, 88, 528–543. [Google Scholar] [CrossRef]
- Džiugaitė-Tumėnienė, R.; Motuzienė, V.; Šiupšinskas, G.; Čiuprinskas, K.; Rogoža, A. Integrated assessment of energy supply system of an energy-efficient house. Energy Build. 2017, 138, 443–454. [Google Scholar] [CrossRef]
- Blanco, G.; Amarilla, R.; Martinez, A.; Llamosas, C.; Oxilia, V. Energy transitions and emerging economies: A multi-criteria analysis of policy options for hydropower surplus utilization in Paraguay. Energy Policy 2017, 108, 312–321. [Google Scholar] [CrossRef]
- Elzarka, H.M.; Yan, H.; Chakraborty, D. A vague set fuzzy multi-attribute group decision-making model for selecting onsite renewable energy technologies for institutional owners of constructed facilities. Sustain. Cities Soc. 2017, 35, 430–439. [Google Scholar] [CrossRef]
- Abotah, R.; Daim, T.U. Towards building a multi perspective policy development framework for transition into renewable energy. Sustain. Energy Technol. Assess. 2017, 21, 67–88. [Google Scholar] [CrossRef]
- Khan, M.I. Evaluating the strategies of compressed natural gas industry using an integrated SWOT and MCDM approach. J. Clean. Prod. 2018, 172, 1035–1052. [Google Scholar] [CrossRef]
- Abdulrahman, A.O.; Huisingh, D. The role of biomass as a cleaner energy source in Egypt’s energy mix. J. Clean. Prod. 2018, 172, 3918–3930. [Google Scholar] [CrossRef]
- Nikas, A.; Doukas, H.; Martinez Lopez, L. A group decision making tool for assessing climate policy risks against multiple criteria. Heliyon 2018, 4, e00588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A Novel Methodological Framework for the Design of Sustainable Rural Microgrid for Developing Nations. IEEE Access 2018, 6, 24925–24951. [Google Scholar] [CrossRef]
- Medina-González, S.; Espuña, A.; Puigjaner, L. An efficient uncertainty representation for the design of sustainable energy generation systems. Chem. Eng. Res. Des. 2018, 131, 144–159. [Google Scholar] [CrossRef]
- Nock, D.; Baker, E. Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study. Appl. Energy 2019, 242, 655–673. [Google Scholar] [CrossRef]
- Cavallaro, F. Multi-criteria decision aid to assess concentrated solar thermal technologies. Renew. Energy 2009, 34, 1678–1685. [Google Scholar] [CrossRef]
- Cavallaro, F. A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method. Energy Policy 2010, 38, 463–474. [Google Scholar] [CrossRef]
- Jing, Y.-Y.; Bai, H.; Wang, J.-J. A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources. Energy Policy 2012, 42, 286–296. [Google Scholar] [CrossRef]
- Bagocius, V.; Zavadskas, E.K.; Turskis, Z. Sequence determining of construction of the offshore wind farm construction applying permutation method. Econ. Manag. 2014, 17, 50–61. [Google Scholar] [CrossRef]
- Mattiussi, A.; Rosano, M.; Simeoni, P. A decision support system for sustainable energy supply combining multi-objective and multi-attribute analysis: An Australian case study. Decis. Support Syst. 2014, 57, 150–159. [Google Scholar] [CrossRef]
- Onar, S.C.; Oztaysi, B.; Otay, I.; Kahraman, C. Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. Energy 2015, 90, 274–285. [Google Scholar] [CrossRef]
- Georgiou, D.; Mohammed, E.S.; Rozakis, S. Multi-criteria decision making on the energy supply configuration of autonomous desalination units. Renew. Energy 2015, 75, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Gumus, S.; Kucukvar, M.; Tatari, O. Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. Sustain. Prod. Consum. 2016, 8, 78–92. [Google Scholar] [CrossRef]
- Kolios, A.; Mytilinou, V.; Lozano-Minguez, E.; Salonitis, K. A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs. Energies 2016, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Fozer, D.; Sziraky, F.Z.; Racz, L.; Nagy, T.; Tarjani, A.J.; Toth, A.J.; Haaz, E.; Benko, T.; Mizsey, P. Life cycle, PESTLE and Multi-Criteria Decision Analysis of CCS process alternatives. J. Clean. Prod. 2017, 147, 75–85. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Nik, V.M.; Mauree, D.; Scartezzini, J.-L. An integrated approach to design site specific distributed electrical hubs combining optimization, multi-criterion assessment and decision making. Energy 2017, 134, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Ren, X. Sustainability ranking of energy storage technologies under uncertainties. J. Clean. Prod. 2018, 170, 1387–1398. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Aramesh, M.; Khanjari, Y. Innovative ANP model to prioritization of PV/T systems based on cost and efficiency approaches: With a case study for Asia. Renew. Energy 2018, 117, 434–446. [Google Scholar] [CrossRef]
- Pamučar, D.; Badi, I.; Sanja, K.; Obradović, R. A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya. Energies 2018, 11, 2489. [Google Scholar] [CrossRef] [Green Version]
- Diemuodeke, E.O.; Addo, A.; Oko, C.O.C.; Mulugetta, Y.; Ojapah, M.M. Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm. Renew. Energy 2019, 134, 461–477. [Google Scholar] [CrossRef]
- Yan, C.; Rousse, D.; Glaus, M. Multi-criteria decision analysis ranking alternative heating systems for remote communities in Nunavik. J. Clean. Prod. 2019, 208, 1488–1497. [Google Scholar] [CrossRef]
- Kang, H.-Y.; Hung, M.-C.; Pearn, W.L.; Lee, A.H.I.; Kang, M.-S. An Integrated Multi-Criteria Decision Making Model for Evaluating Wind Farm Performance. Energies 2011, 4, 2002–2026. [Google Scholar] [CrossRef]
- Alsayed, M.; Cacciato, M.; Scarcella, G.; Scelba, G. Multicriteria optimal sizing of photovoltaic-wind turbine grid connected systems. IEEE Trans. Energy Convers. 2013, 28, 370–379. [Google Scholar] [CrossRef]
- Aplak, H.S.; Sogut, M.Z. Game theory approach in decisional process of energy management for industrial sector. Energy Convers. Manag. 2013, 74, 70–80. [Google Scholar] [CrossRef]
- Lombardi, P.; Sokolnikova, T.; Suslov, K.; Voropai, N.; Styczynski, Z.A. Isolated power system in Russia: A chance for renewable energies? Renew. Energy 2016, 90, 532–541. [Google Scholar] [CrossRef]
- Sakthivel, G.; Sivakumar, R.; Saravanan, N.; Ikua, B.W. A decision support system to evaluate the optimum fuel blend in an IC engine to enhance the energy efficiency and energy management. Energy 2017, 140, 566–583. [Google Scholar] [CrossRef]
- Vishnupriyan, J.; Manoharan, P.S. Multi-criteria decision analysis for renewable energy integration: A southern India focus. Renew. Energy 2018, 121, 474–488. [Google Scholar] [CrossRef]
- Colombo, E.; Romeo, F.; Mattarolo, L.; Barbieri, J.; Morazzo, M. An impact evaluation framework based on sustainable livelihoods for energy development projects: An application to Ethiopia. Energy Res. Soc. Sci. 2018, 39, 78–92. [Google Scholar] [CrossRef]
- Ziemba, P. Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management. Energies 2019, 12, 749. [Google Scholar] [CrossRef] [Green Version]
- Hajibandeh, N.; Ehsan, M.; Soleymani, S.; Shafie-Khah, M.; Catalao, J.P.S. Prioritizing the effectiveness of a comprehensive set of demand response programs on wind power integration. Int. J. Electr. Power Energy Syst. 2019, 107, 149–158. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, H.; Yong, H.; Kan, Z. Renewable energy project performance evaluation using a hybrid multi-criteria decision-making approach: Case study in Fujian, China. J. Clean. Prod. 2019, 206, 1123–1137. [Google Scholar] [CrossRef]
- Muhsen, D.H.; Nabil, M.; Haider, H.T.; Khatib, T. A novel method for sizing of standalone photovoltaic system using multi-objective differential evolution algorithm and hybrid multi-criteria decision making methods. Energy 2019, 174, 1158–1175. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050; International Renewable Energy Agency: Abu Dhabi, UAE, 2018; ISBN 1059-910X. [Google Scholar]
- Rediske, G.; Siluk, J.C.M.; Michels, L.; Rigo, P.D.; Rosa, C.B.; Cugler, G. Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil. Energy 2020, 197, 117167. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Xu, B.; Nayak, A.; Gray, D.; Ouenniche, J. Assessing energy business cases implemented in the North Sea Region and strategy recommendations. Appl. Energy 2016, 172, 360–371. [Google Scholar] [CrossRef]
- Linstone, H.A.; Turoff, M.; Helmer, O. The Delphi Method Techniques and Applications; Addison-Wesley Publishing Company: Boston, MA, USA, 2002. [Google Scholar]
- Engelke, H.; Mauksch, S.; Darkow, I.-L.; von der Gracht, H.A. Opportunities for social enterprise in Germany—Evidence from an expert survey. Technol. Forecast. Soc. Chang. 2015, 90, 635–646. [Google Scholar] [CrossRef]
- In Seong, C.; Yasuhiro, T.; Gen, M.; Tozawa, T. An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy Sets Syst. 1995, 76, 277–288. [Google Scholar] [CrossRef]
- Ossadnik, W.; Schinke, S.; Kaspar, R.H. Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis. Group Decis. Negot. 2016, 25, 421–457. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World, 3rd ed.; RWS Publications: Pittsburgh, PA, USA, 2012. [Google Scholar]
- Ishizaka, A.; Balkenborg, D.; Kaplan, T. Influence of aggregation and measurement scale on ranking a compromise alternative in AHP. J. Oper. Res. Soc. 2011, 62, 700–710. [Google Scholar] [CrossRef] [Green Version]
- Kainulainen, T.; Leskinen, P.; Korhonen, P.; Haara, A.; Hujala, T. A statistical approach to assessing interval scale preferences in discrete choice problems. J. Oper. Res. Soc. 2009, 60, 252–258. [Google Scholar] [CrossRef]
- Ayag, Z. A multiple-criteria decision making method for evaluating solar power plant location alternatives. In Proceedings of the 9th International Management Conference, Bucharest, Romania, 5–6 November 2015; pp. 878–884. [Google Scholar]
- Olson, D.L.; Fliedner, G.; Currie, K. Comparison of the Rembrandt system with analytic hierarchy process. Eur. J. Oper. Res. 1995, 82, 522–539. [Google Scholar] [CrossRef]
- Rodrigues, F.; Junior, L.; Cesar, L.; Carpinetti, R. Uma comparação entre os métodos TOPSIS e Fuzzy-TOPSIS no apoio à tomada de decisão multicritério para seleção de fornecedores. Gest. Prod. 2014, 4, 17–34. [Google Scholar]
- Jerry Ho, W.-R.; Tsai, C.-L.; Tzeng, G.-H.; Fang, S.-K. Combined DEMATEL technique with a novel MCDM model for exploring portfolio selection based on CAPM. Expert Syst. Appl. 2011, 38, 16–25. [Google Scholar] [CrossRef]
- Shafiee, M. A fuzzy analytic network process model to mitigate the risks associated with offshore wind farms. Expert Syst. Appl. 2015, 42, 2143–2152. [Google Scholar] [CrossRef]
- Dinçer, H.; Yüksel, S. Multidimensional evaluation of global investments on the renewable energy with the integrated fuzzy decision-making model under the hesitancy. Int. J. Energy Res. 2019, 43, 1775–1784. [Google Scholar] [CrossRef]
- Aruldoss, M.; Lakshmi, T.M.; Venkatesan, V.P. A Survey on Multi Criteria Decision Making Methods and Its Applications. Am. J. Inf. Syst. 2013, 1, 31–43. [Google Scholar]
References | Study’s Description | Journal | Scopus Citations * |
---|---|---|---|
Pohekar and Ramachandran (2004) [13] | A review of 90 articles analyzing MCDM methods in the power generation planning area. They concluded that several methods are based on priority setting, weighted averages, and overcoming fuzzy principles. They focused on the mathematical explanation methods, lacking a discussion about the problems. | Renewable and Sustainable Energy Reviews | 1090 |
Wang et al. (2009) [7] | A review of the corresponding methods in different MCDM stages (criteria selection, weighting methods, MCDA methods, aggregation methods) for sustainable energy. They discuss energy supply systems’ factors from technical, economic, environmental, and social aspects. The study does not provide an overview of the leading renewable energy problems associated with MCDM methods. | Renewable and Sustainable Energy Reviews | 1101 |
Mardani et al. (2015) [14] | Conducted a review to provide an overview of several critical approaches and techniques proposed by MCDM over the years. Their study investigated 54 articles from 2003 to 2015 and examples approaches and techniques for sustainable and renewable energy issues. This study focuses on the methods by article. | Sustainability | 119 |
Arce et al. (2015) [15] | A review of appropriated methods and three stages of MCDA (criteria selection methods, weighting methods, and MCDA methods) using grey relation methods (i.e., criteria selection and weighting methods). | Renewable and Sustainable Energy Reviews | 64 |
Strantzali and Aravossis (2016) [16] | A review of 183 articles about energy planning and life cycle assessment (LCA), cost-benefit analysis (CBA), and multicriteria decision aid (MCDA). Their approach is broad and did not explain every step of the MCDM methods. | Renewable and Sustainable Energy Reviews | 152 |
Mardani et al. [17] (2017) | A Systematic review of 196 articles by 2015, covering all energy sources in 13 fields. Their approach is broad and did not explain every step of the MCDM methods. | Renewable and Sustainable Energy Reviews | 121 |
Kumar et al. (2017) [18] | Presented a narrative review of methods (their strengths and weaknesses), method application software, criteria, and indicators. However, they offer no connection between studies and do not discuss their practical applications. | Renewable and Sustainable Energy Reviews | 360 |
Kaya, Çolak, and Terzi (2018) [19] | A review of traditional MCDM papers and renewable and non-renewable energy alternatives. They focus on the criteria utilized by the paper. Their approach did not explain every step of the MCDM methods. | International Journal of Energy Research | 23 |
Ilbahar, Cebi and Kahraman (2019) [20] | A review of 150 papers using MCDA methods and renewable energy. They classified the purposes of the articles into four categories and pointed out the methods used. They do not treat methods per MCDM step. | Energy Strategy Reviews | 21 |
Siksnelyte-Butkiene, Zavadskas and Streimikiene (2020) [21] | A review of multiple-criteria decision-making (MCDM) methods as a key tool to evaluate renewable energy technologies in households. They focus on the technology source choose the problem. | Energies | 6 |
MCDM Step | Methods | Number of Articles |
---|---|---|
Criteria Selection | Literature Review | 98 |
Experts | 19 | |
Delphi and Fuzzy Delphi | 4 | |
Criteria Weighting | AHP and Fuzzy AHP | 64 |
ANP and Fuzzy ANP | 12 | |
ELECTRE | 8 | |
TOPSIS and Fuzzy TOPSIS | 6 | |
PROMETHEE | 6 | |
DEMATEL | 4 | |
Evaluation of Alternatives | AHP and Fuzzy AHP | 40 |
TOPSIS and Fuzzy TOPSIS | 29 | |
ELECTRE | 14 | |
ANP and Fuzzy ANP | 9 | |
PROMETHEE | 9 | |
VIKOR | 6 | |
Post-Assessment | Sensitivity Analysis | 34 |
Reliability Analysis | 11 | |
Monte Carlo Simulation | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigo, P.D.; Rediske, G.; Rosa, C.B.; Gastaldo, N.G.; Michels, L.; Neuenfeldt Júnior, A.L.; Siluk, J.C.M. Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process. Sustainability 2020, 12, 10195. https://doi.org/10.3390/su122310195
Rigo PD, Rediske G, Rosa CB, Gastaldo NG, Michels L, Neuenfeldt Júnior AL, Siluk JCM. Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process. Sustainability. 2020; 12(23):10195. https://doi.org/10.3390/su122310195
Chicago/Turabian StyleRigo, Paula Donaduzzi, Graciele Rediske, Carmen Brum Rosa, Natália Gava Gastaldo, Leandro Michels, Alvaro Luiz Neuenfeldt Júnior, and Julio Cezar Mairesse Siluk. 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process" Sustainability 12, no. 23: 10195. https://doi.org/10.3390/su122310195
APA StyleRigo, P. D., Rediske, G., Rosa, C. B., Gastaldo, N. G., Michels, L., Neuenfeldt Júnior, A. L., & Siluk, J. C. M. (2020). Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process. Sustainability, 12(23), 10195. https://doi.org/10.3390/su122310195