Interpreting Environmental Impacts Resulting from Fruit Cultivation in a Business Innovation Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Case Study
2.2. Goal and Scope Definition
2.3. Functional Unit and System Boundaries
2.4. Inventory Analysis
2.4.1. Foreground Data
2.4.2. Foreground Data
3. Results
3.1. Impact Assessment
3.1.1. Total Damage
3.1.2. Impact of the Production Processes
3.1.3. Carbon Footprint
4. Discussion
4.1. Incremental Innovation at the Process Level
4.1.1. Mitigating the Impacts Associated with Refrigeration
4.1.2. Mitigating the Impacts Associated with Agricultural Operations
4.1.3. Water Use: Room for Reduction?
4.1.4. Reducing Inorganic Fertilizers Use
4.2. Business Model Innovation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carter, C.R.; Rogers, D.S. A framework of sustainable supply chain management: Moving toward new theory. Int. J. Phys. Distrib. Logist. Manag. 2008. [Google Scholar] [CrossRef]
- Boiral, O. Global warming: Should companies adopt a proactive strategy? Long Range Plan. 2006, 39, 315–330. [Google Scholar] [CrossRef]
- Massa, L.; Tucci, C.L. Business model innovation. In The Oxford Handbook of Innovation Management; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Rana, P.; Short, S.W. Value mapping for sustainable business thinking. J. Ind. Prod. Eng. 2015, 32, 67–81. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization (ISO). Environmental Management e Life-Cycle Assessment e Principles and Framework ISO 14040; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization (ISO). Environmental Management e Life-Cycle Assessment e Requirements and Guidelines ISO 14044; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Baumann, H.; Boons, F.; Bragd, A. Mapping the green product development field: Engineering, policy, and business perspectives. J. Clean. Prod. 2002, 10, 409–425. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Allwood, J.M.; Willey, A.R.; King, J.M.H. Development of an eco-ideation tool to identify stepwise greenhouse gas emissions reduction options for consumer goods. J. Clean. Prod. 2011, 19, 1279–1287. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Schuit, C.S.C.; Kraaijenhagen, C. Experimenting with a circular business model: Lessons from eight cases. Environ. Innov. Soc. Transit. 2018, 28, 79–95. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.S.; Graves, A.; Dandy, N.; Posthumus, H.; Hubacek, K.; Morris, J.; Prell, C.; Quinn, C.H.; Stringer, L.C. Who’s in and why? A typology of stakeholder analysis methods for natural resource management. J. Environ. Manag. 2009, 90, 1933–1949. [Google Scholar] [CrossRef] [PubMed]
- Awan, U.; Kraslawski, A.; Huiskonen, J. Progress from blue to the green world: Multilevel governance for pollution prevention planning and sustainability. In Handbook of Environmental Materials Management; Springer International Publishing: New York, NY, USA, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Johnson, M.P.; Schaltegger, S. Two decades of sustainability management tools for SMEs: How far have we come? J. Small Bus. Manag. 2016, 54, 481–505. [Google Scholar] [CrossRef]
- Dijkman, T.J.; Basset-Mens, C.; Antón, A.; Núñez, M. LCA of food and agriculture. In Life Cycle Assessment: Theory and Practice; Springer International Publishing: New York, NY, USA, 2017; pp. 723–754. [Google Scholar] [CrossRef]
- Scandellari, F.; Ventura, M.; Malaguti, D.; Ceccon, C.; Menarbin, G.; Tagliavini, M. Net primary productivity and partitioning of absorbed nutrients in field-grown apple trees. Acta Hortic. 2010. [Google Scholar] [CrossRef]
- Balduzzo, M. Analisi Energetica di un Impianto di Conservazione Ipogeo. Master’s Thesis, University of Padova, Padova, Italy, 2014. (In Italian). [Google Scholar]
- Hofstetter, P. DALYs—An index for human health assessment. In Perspectives in Life Cycle Impact Assessment; Springer: New York, NY, USA, 1998; pp. 155–193. [Google Scholar] [CrossRef]
- Goedkoop, M.; Spriensma, R. The Eco-Indicator 99—A Damage Oriented Method for Life Cycle Assessment, Methodology Report. In PRé Consultant, 3rd ed.; 2001; Available online: http://www.pre-sustainability.com/legacy/download/EI99_annexe_v3.pdf (accessed on 28 September 2020).
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, S.K.G.; Mital, M. An ultra-low ammonia charge system for industrial refrigeration. Int. J. Refrig. 2019, 107, 344–354. [Google Scholar] [CrossRef]
- Benhadid-Dib, S.; Benzaoui, A. Refrigerants and their impact in the environment. Use of the solar energy as the source of energy. Energy Procedia 2011, 6, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Widell, K.N.; Eikevik, T. Reducing power consumption in multi-compressor refrigeration systems. Int. J. Refrig. 2010, 33, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Anand, G.; Erickson, D.C.; Makar, E. Characterization of ammonia-water absorption chiller and application. Int. J. Air-Cond. Refrig. 2018, 26. [Google Scholar] [CrossRef]
- Tester, J.W.; Drake, E.M.; Driscoll, M.J.; Golay, M.W.; Peters, W.A. Sustainable Energy: Choosing among Options, 2nd ed.; MIT Press: Cambridge, MA, USA, 2012; p. 1066. ISBN 978-0-262-01747-3. [Google Scholar]
- De Steur, H.; Temmerman, H.; Gellynck, X.; Canavari, M. Drivers, adoption, and evaluation of sustainability practices in Italian wine SMEs. Bus. Strategy Environ. 2020, 29, 744–762. [Google Scholar] [CrossRef]
- Batte, M.T.; Ehsani, M.R. The economics of precision guidance with auto-boom control for farmer-owned agricultural sprayers. Comput. Electron. Agric. 2006, 53, 28–44. [Google Scholar] [CrossRef]
- Medici, M.; Pedersen, S.M.; Carli, G.; Tagliaventi, M.R. Environmental benefits of precision agriculture adoption. Econ. Agro-Aliment. 2019, 21, 637-565. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Medici, M.; Anken, T.; Tohidloo, G.; Pedersen, M.F.; Carli, G.; Canavari, M.; Tsiropoulos, Z.; Fountas, S. Financial and environmental performance of integrated precision farming systems. In Precision Agriculture 2019, Proceedings of the 12th European Conference on Precision Agriculture, ECPA, Montpellier, France, 8–11 July 2019; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 833–839. [Google Scholar] [CrossRef] [Green Version]
- Biggs, L.; Giles, D. Current and Future Agricultural Practices and Technologies Which Affect Fuel Efficiency. Intelligent Energy Europe for a Sustainable Future: 2011. Available online: https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/efficient20_review_of_agricultural_practices_and_technologies_en.pdf (accessed on 28 September 2020).
- De Wrachien, D.; Medici, M. The future of irrigated agriculture between opportunities and threats the role played by irrigated agriculture. Irrig. Drain. Syst. Eng. 2020, 9, 1–2. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009. [Google Scholar] [CrossRef]
- Menon, A.; Menon, A. Enviropreneurial marketing strategy: The emergence of corporate environmentalism as market strategy. J. Mark. 1997. [Google Scholar] [CrossRef] [Green Version]
- Prakash, A. Green marketing, public policy and managerial strategies. Bus. Strategy Environ. 2002, 11, 285–297. [Google Scholar] [CrossRef]
- Canavari, M.; Coderoni, S. Green marketing strategies in the dairy sector: Consumer-stated preferences for carbon footprint labels. Strateg. Chang. 2019, 28, 233–240. [Google Scholar] [CrossRef]
- Macombe, C.; Feschet, P.; Garrabé, M.; Loeillet, D. 2nd International Seminar in Social Life Cycle Assessment—Recent developments in assessing the social impacts of product life cycles. Int. J. Life Cycle Assess. 2011, 16, 940–943. [Google Scholar] [CrossRef]
- Brindley, C.; Oxborrow, L. Aligning the sustainable supply chain to green marketing needs: A case study. Ind. Mark. Manag. 2014, 43, 45–55. [Google Scholar] [CrossRef]
- Bakshi, B.; Small, M.J. Incorporating ecosystem services into life cycle assessment. J. Ind. Ecol. 2011, 15, 477–478. [Google Scholar] [CrossRef]
- Chouinard, Y.; Ellison, J.; Ridgeway, R. The big idea: The sustainable economy. Harv. Bus. Rev. 2011, 89, 52–62. [Google Scholar]
- Aggelopoulou, K.D.; Pateras, D.; Fountas, S.; Gemtos, T.A.; Nanos, G.D. Soil spatial variability and site-specific fertilization maps in an apple orchard. Precis. Agric. 2011. [Google Scholar] [CrossRef]
- Canavari, M.; Coderoni, S. Consumer stated preferences for dairy products with carbon footprint labels in Italy. Agric. Food Econ. 2020, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Peattie, K.; Belz, F.-M. Sustainability marketing—An innovative conception of marketing. Mark. Rev. St. Gallen 2010. [Google Scholar] [CrossRef]
Apricot | Nectarine | Plum | Pear | Apple | Kiwi | |
---|---|---|---|---|---|---|
Variety | Faralia | Romagna Red | September Yummy | Abate Fetel | Rosy Glow | Hayward |
Training system | Vase | Slender spindle | Slender spindle | Slender spindle | Solax | Pergola |
Growing surface (ha) | 0.35 | 1.20 | 7.70 | 1.16 | 1.04 | 22.95 |
Layout (m) | 4.0 × 1.5 | 3.5 × 0.6 | 4.2 × 1.5 | 4.5 × 2.0 | 3.5 × 2.0 | 5.0 × 2.0 |
Plant density (trees/ha) | 1666 | 4762 | 1587 | 1111 | 1428 | 1000 |
Year of establishment | 2011 | 2012 | 2013 | 2010 | 2010 | 2017 |
Orchard life (years) | 15 | 15 | 15 | 15 | 15 | 20 |
Yearly yield (t/ha) | 21.6 | 27.5 | 59.9 | 22.9 | 58.6 | 16.1 |
Unit | Apricot | Nectarine | Plum | Pear | Apple | Kiwi | |
---|---|---|---|---|---|---|---|
- Fertilizers | |||||||
Growth regulators | (kg ha−1) | 7.01 | 3.65 | 11.35 | 28.80 | 2.26 | 8.20 |
N-based | (kg ha−1) | 331.19 | - | 137.40 | - | 148.97 | 1.50 |
N-P-K-based | (kg ha−1) | 534.49 | 0.55 | 119.48 | - | - | 201.75 |
N-K-based | (kg ha−1) | 14.83 | - | - | 17.10 | - | 7.02 |
Mg-N-based | (kg ha−1) | 19.65 | - | 107.53 | - | - | - |
Microelements | (kg ha−1) | 0.57 | - | 28.97 | 46.96 | 8.80 | 54.86 |
Compost | (t ha−1) | 20 | 20 | 20 | 20 | 20 | 20 |
- Agrochemicals | |||||||
Insecticides | (kg ha−1) | 19.35 | 14.54 | 65.6 | 60.44 | 13.27 | 21.54 |
Fungicides | (kg ha−1) | 16.01 | 23.12 | 59.6 | 57.87 | 23.23 | 6.00 |
Herbicides | (kg ha−1) | 5.03 | 2.47 | 2.17 | 11.80 | 4.40 | 2.66 |
Other agrochemicals | (kg ha−1) | - | 29.87 | - | - | 14.00 | - |
- Water use | |||||||
Irrigation | (m3 ha−1) | 1633.33 | 2666.67 | 3266.67 | 3266.67 | 3984.00 | 4166.67 |
Treatments | (m3 ha−1) | 9.17 | 18.54 | 63.60 | 78.39 | 168.16 | 97.00 |
- Collection | |||||||
Boxes | (ha−1) | 1413 | - | 3744 | 15 | - | |
Bins | (ha−1) | - | 120 | - | 99 | 303 | 89 |
Chopping | Fertilization | Pruning 1 | Agrochemical Application | Harvest | |
---|---|---|---|---|---|
- Fuel consumption (l ha−1) | |||||
Tractor | 6 | 3 | 3 | 8 | 3 |
+ harvester wagon | - | - | 2.5 | - | 2.5 |
+ bin wagon | - | - | - | - | 2.5 |
- No. orchard operations (year−1) | |||||
Apricot | 12 | 10 | 1 | 10 | 1 |
Nectarine | 12 | 3 | 3 | 16 | 1 |
Plum | 7 | 13 | 3 | 21 | 1 |
Pear | 7 | 22 | 1 | 30 | 1 |
Apple | 10 | 9 | 3 | 35 | 1 |
Kiwi | 10 | 14 | 4 | 10 | 1 |
Apricot | Nectarine | Plum | Pear | Apple | Kiwi | |
---|---|---|---|---|---|---|
- Planting | 0.82% | 4.42% | 1.87% | 3.09% | 1.66% | 1.19% |
Fertilizers (organic) | 0.40% | 0.65% | 0.27% | 0.29% | 0.21% | 0.39% |
Fertilizers (inorganic) | 26.83% | 0.36% | 7.73% | 1.55% | 2.38% | 6.38% |
- Fertilizers | 27.23% | 1.01% | 8.01% | 1.84% | 2.59% | 6.76% |
Irrigation (water) | 3.58% | 9.43% | 4.95% | 5.26% | 4.78% | 8.93% |
Irrigation (electricity) | 0.84% | 6.97% | 1.15% | 1.21% | 1.08% | 2.06% |
- Irrigation | 4.43% | 16.40% | 6.10% | 6.48% | 5.86% | 10.99% |
Fungicides, insecticides, | 2.00% | 6.16% | 4.84% | 4.84% | 1.51% | 1.50% |
herbicides | 0.31% | 0.25% | 0.09% | 0.53% | 0.14% | 0.16% |
- Agrochemicals | 2.32% | 6.41% | 4.93% | 5.37% | 1.66% | 1.66% |
- Agronomic operations (fuel) | 20.80% | 39.97% | 19.82% | 27.71% | 21.95% | 21.64% |
- Harvesting boxes | 2.33% | 1.53% | 0.19% | 1.13% | 1.46% | 0.04% |
- Refrigeration (electricity) | 7.27% | 4.76% | 38.48% | 40.09% | 53.55% | 37.72% |
- Packaging | 0.82% | 1.69% | 1.56% | 0.63% | 1.17% | 0.59% |
Apricot | Nectarine | Plum | Pear | Apple | Kiwi | |
---|---|---|---|---|---|---|
Planting | 3 | 7 | 3 | 13 | 4 | 6 |
Fertilizers | 322 | 5 | 50 | 29 | 21 | 110 |
Irrigation | 27 | 57 | 19 | 51 | 25 | 91 |
Agrochemicals | 17 | 23 | 19 | 52 | 9 | 17 |
Agronomic operations | 62 | 59 | 31 | 109 | 46 | 90 |
Plastic use | 46 | 34 | 29 | 40 | 36 | 29 |
Refrigeration | 72 | 23 | 201 | 516 | 373 | 516 |
Remaining processes | 1 | 0 | 1 | 3 | 0 | 4 |
Total | 550 | 208 | 354 | 811 | 514 | 862 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medici, M.; Canavari, M.; Toselli, M. Interpreting Environmental Impacts Resulting from Fruit Cultivation in a Business Innovation Perspective. Sustainability 2020, 12, 9793. https://doi.org/10.3390/su12239793
Medici M, Canavari M, Toselli M. Interpreting Environmental Impacts Resulting from Fruit Cultivation in a Business Innovation Perspective. Sustainability. 2020; 12(23):9793. https://doi.org/10.3390/su12239793
Chicago/Turabian StyleMedici, Marco, Maurizio Canavari, and Moreno Toselli. 2020. "Interpreting Environmental Impacts Resulting from Fruit Cultivation in a Business Innovation Perspective" Sustainability 12, no. 23: 9793. https://doi.org/10.3390/su12239793
APA StyleMedici, M., Canavari, M., & Toselli, M. (2020). Interpreting Environmental Impacts Resulting from Fruit Cultivation in a Business Innovation Perspective. Sustainability, 12(23), 9793. https://doi.org/10.3390/su12239793