Effects of Chemical and Solar Soil-Disinfection Methods on Soil Bacterial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Sampling and Analysis
2.3.1. Soil Sampling
2.3.2. Analysis of Soil Chemical Properties
2.3.3. DNA Extraction and PCR Amplification
2.3.4. Illumina MiSeq Sequencing
2.4. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Soil Bacterial Abundance and Diversity Indices
3.3. Effects of Different Disinfection Methods on the Bacterial Community Composition and Predominant Bacterial Species
3.3.1. Distribution Characteristics of Predominant Soil Bacterial Phyla
3.3.2. Distribution Characteristics of Predominant Soil Bacterial Llasses
3.3.3. Distribution Characteristics of Predominant Soil Bacterial Genera
3.4. Beta Diversity Analysis
3.5. Effects of Different Disinfection Methods on Soil Properties and Predominant Bacterial Communities
4. Discussion
4.1. Effects of Different Disinfection Methods on Bacterial Diversity
4.2. Effects of Different Disinfection Methods on Bacterial Composition
4.3. Correlation between Soil Characteristics and Predominant Soil Bacterial Flora
5. Conclusions
- The fumigation using both DZ and CP significantly altered the bacterial community structure and significantly reduced the bacterial abundance and diversity. Although there was no change in the composition of the bacterial community at the phylum level, few predominant bacterial genera significantly decreased or disappeared, and a few new predominant bacterial genera emerged after fumigation with DZ and CP. However, no significant change was observed in the abundance and diversity of soil bacterial communities after treatment with AC1, AC2, and AC3.
- Beta diversity analysis revealed that no significant differences were observed in the soil bacterial community composition after treatment with AC1, AC2, and AC3. However, significant changes were observed in the soil bacterial community composition after treatment with DZ and CP.
- RDA revealed that soil pH, AK, and AP were the major factors affecting the soil bacterial community structure.
- Our experimental results indicate that the new solarization system has big potentialities in soil disinfections. We believe that it is possible a further improvement of the system, here presented, increasing the quantity of black powder in order to obtain a more homogeneous black film on the soil, and using a cover plastic film with special optical proprieties able to trap highly the heat energy in the soil. This study is in progress. The goal is to demonstrate that the increased efficiency of the new solarization will be able to eliminate totally pathogens in the soil, like fumigation, thanks to the extraordinary increasing of temperatures (around 70 °C). The environment respect, the safeguard of human health and a better quality of crops, using innovative and natural methodological approach for soil treatment, represent the real challenge of the future agriculture.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yao, H.; Jiao, X.; Wu, F. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant Soil 2006, 284, 195–203. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.; Zhang, Y.; Shen, J.; Han, W.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, A.S.; Merwin, I.A.; Fazio, G.; Thies, J.E.; Brown, M.G. Rootstock genotype succession influences apple replant disease and root-zone microbial community composition in an orchard soil. Plant Soil 2010, 337, 259–272. [Google Scholar] [CrossRef]
- Aranda, S.; Montes-Borrego, M.; Jiménez-Díaz, R.M.; Landa, B.B. Microbial communities associated with the root system of wild olives (Olea europaea L. subsp. europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahliae. Plant Soil 2011, 343, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Gil, S.V.; Meriles, J.M.; Conforto, C.; Figoni, G.; Basanta, M.; Lovera, E.; March, G.J. Field assessment of soil biological and chemical quality in response to crop management practices. World J. Microbiol. Biotechnol. 2009, 25, 439–448. [Google Scholar]
- Kennedy, A.C.; Smith, K.L. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 1995, 170, 75–86. [Google Scholar] [CrossRef]
- Degens, B.P.; Schipper, L.A.; Sparling, G.P.; Vojvodic-Vukovic, M. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol. Biochem. 2000, 32, 189–196. [Google Scholar] [CrossRef]
- Schutter, M.E.; Sandeno, J.M.; Dick, R. Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems. Biol. Fertil. Soils 2001, 34, 397–410. [Google Scholar]
- Yao, H.; He, Z.; Wilson, M.T.; Campbell, C.D. Microbial Biomass and Community Structure in a Sequence of Soils with Increasing Fertility and Changing Land Use. Microb. Ecol. 2000, 40, 223–237. [Google Scholar] [CrossRef]
- Larkin, R.P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 2003, 35, 1451–1466. [Google Scholar] [CrossRef]
- Lee, M.W.; Shin, H.S.; Choi, H.J. Spore Germination of Some Fungi under Different Soil Conditions in Relation to Fungistasis. Plant Pathol. J. 1985, 13, 195–202. [Google Scholar]
- Klein, E.; Katan, J.; Gamliel, A. Soil Suppressiveness to Fusarium Disease Following Organic Amendments and Solarization. Plant Dis. 2011, 95, 1116–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Xu, J.; Feng, G.; Li, X.; Chen, S. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. 2016, 6, 31802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, W.; Wang, X.; Huang, B.; Zhang, D.; Liu, J.; Zhu, J.; Yan, D.; Wang, Q.; Cao, A.; Han, Q. Comparative analysis of the effects of five soil fumigants on the abundance of denitrifying microbes and changes in bacterial community composition. Ecotoxicol. Environ. Saf. 2020, 187, 109850. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, D.; Wang, X.; Lü, P.; Li, X.; Cao, A. Research advances in soil fumigants. J. Plant Prot. 2017, 44, 529–543. [Google Scholar]
- Bell, C.H. Fumigation in the 21st century. Crop. Prot. 2000, 19, 563–569. [Google Scholar] [CrossRef]
- Xiong, W.; Zhao, Q.; Zhao, J.; Xun, W.; Li, R.; Zhang, R.; Wu, H.; Shen, Q. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microb. Ecol. 2015, 70, 209–218. [Google Scholar] [CrossRef]
- Benyephet, Y.; Melerovera, J.; Devay, J. Interaction of soil solarization and metham-sodium in the destruction of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum. Crop. Prot. 1988, 7, 327–331. [Google Scholar] [CrossRef]
- Gilreath, J.P.; Motis, T.N.; Santos, B.M.; Mirusso, J.M.; Gilreath, P.R.; Noling, J.W.; Jones, J.P. Influence of supplementary in-bed chloropicrin application on soilborne pest control in tomato (Lycopersicon esculentum). Crop. Prot. 2005, 24, 779–784. [Google Scholar] [CrossRef]
- Hutchinson, C.M.; Mcgiffen, M.E.; Ohr, H.D.; Sims, J.J.; Becker, J.O. Efficacy of methyl iodide and synergy with chloropicrin for control of fungi. Pest Manag. Sci. 2000, 56, 413–418. [Google Scholar] [CrossRef]
- Minuto, A.; Gullino, M.L.; Lamberti, F.; Daddabbo, T.; Tescari, E.; Ajwa, H.A.; Garibaldi, A. Application of an emulsifiable mixture of 1,3-dichloropropene and chloropicrin against root knot nematodes and soilborne fungi for greenhouse tomatoes in Italy. Crop. Prot. 2006, 25, 1244–1252. [Google Scholar] [CrossRef]
- UNEP. Report of the Methyl Bromide Technical Options Committee. Protecting the Ozone Layer: The United Nations History; United Nations Environmental Programme: Nairobi, Kenya, 2002; pp. 43–60. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/7737/46.pdf?sequence=2&%3BisAllowed (accessed on 10 September 2020).
- UNEP. Report of the Methyl Bromide Technical Options Committee; United Nations Environmental Programme: Nairobi, Kenya, 1998; pp. 35–43. Available online: https://ozone.unep.org/sites/default/files/2019-05/MBTOC98.pdf (accessed on 10 September 2020).
- UNEP. Report of the 19th Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer; United Nations Environmental Programme: Nairobi, Kenya, 2007; Available online: https://treaties.un.org/Pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII-2-a&chapter=27&clang=_en (accessed on 10 September 2020).
- Carter, W.P.L.; Luo, D.; Malkina, I.L. Investigation of the atmospheric reactions of chloropicrin. Atmos. Environ. 1997, 31, 1425–1439. [Google Scholar] [CrossRef]
- Chen, C.; Green, R.E.; Thomas, D.M.; Knuteson, J.A. Modeling 1,3-dichloropropene fumigant volatilization with vapor-phase advection in the soil profile. Environ. Sci. Technol. 1996, 29, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.E.; Allen, L.H.; Mccormack, L.A.; Vu, J.C.V.; Dickson, D.W.; Ou, L. Atmospheric Volatilization and Distribution of (Z)- and (E)-1,3-Dichloropropene in Field Beds with and without Plastic Covers. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2004, 39, 709–723. [Google Scholar] [CrossRef]
- Papiernik, S.K.; Dungan, R.S.; Zheng, W.; Guo, M.; Lesch, S.M.; Yates, S.R. Effect of Application Variables on Emissions and Distribution of Fumigants Applied via Subsurface Drip Irrigation. Environ. Sci. Technol. 2004, 38, 5489–5496. [Google Scholar] [CrossRef]
- Cryer, S.A.; Wesenbeeck, I.J.V.; Knuteson, J.A. Predicting regional emissions and near-field air concentrations of soil fumigants using modest numerical algorithms: A case study using 1,3-dichloropropene. J. Agric. Food Chem. 2003, 51, 3401–3409. [Google Scholar] [CrossRef]
- Yates, S.R.; Gan, J.; Papiernik, S.K.; Dungan, R.S.; Wang, D. Reducing Fumigant Emissions After Soil Application. Phytopathology 2002, 92, 1344–1348. [Google Scholar] [CrossRef] [Green Version]
- Long, G. The method of disinfection of facility soil with drugs. Hum. Agricuture 2008, 18. [Google Scholar]
- Hale, S.; Mirusso, J.; Jakob, L.; Oleszczuk, P.; Hartnik, T.; Henriksen, T.; Okkenhaug, G.; Martinsen, V.; Cornelissen, G. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates. Environ. Sci. Technol. 2013, 47, 8674–8683. [Google Scholar] [CrossRef]
- Igalavithana, A.; Deshani, A. Agricultural and Environmental Applications of Biochar: Advances and Barriers || The Effects of Biochar Amendment on Soil Fertility; SSSA Special Publication: Madison, WI, USA, 2016. [Google Scholar]
- Pasquale, M.; Massimo, R.; Lucia, P.; Barbara, I.; Luigi, M. Improvement of soil solarization through a hybrid system simulating a solar hot water panel. In Proceedings of the International Conference on Sustainable Environment and Agriculture, Addis Ababa, Ethiopia, 13–16 July 2015. [Google Scholar]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000; pp. 1–24. [Google Scholar]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.H.; Badger, J. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.J.G.R. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, 590–596. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Peng, X.; Deng, G.; Sheng, H.; Wang, Y.; Zhou, H.; Tam, N.F.Y. Illumina Sequencing of 16S rRNA Tag Revealed Spatial Variations of Bacterial Communities in a Mangrove Wetland. Microb. Ecol. 2013, 66, 96–104. [Google Scholar] [CrossRef]
- Xie, W.; Su, J.; Zhu, Y. Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by illumina high-throughput sequencing. Appl. Environ. Microbiol. 2015, 81, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Ibekwe, A.M. Effects of Fumigants on Non-Target Organisms in Soils. Adv. Agron. 2004, 83, 1–35. [Google Scholar]
- Rokunuzzaman, M.; Hayakawa, A.; Yamane, S.; Tanaka, S.; Ohnishi, K. Effect of soil disinfection with chemical and biological methods on bacterial communities. Egypt. J. Basic Appl. Sci. 2016, 3, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Louise, F.; Mathis Hjort, H.; Morten Schostag, N.; Anne Dorthe, J.; Regin, R.; Flemming, E.; Paul Henning, K.; Bjarne Westergaard, S.; Carsten Suhr, J. Pesticide Side Effects in an Agricultural Soil Ecosystem as Measured by amoA Expression Quantification and Bacterial Diversity Changes. PLoS ONE 2015, 10, e0126080. [Google Scholar]
- Liu, X.; Cheng, X.; Wang, H.; Wang, K.; Qiao, K. Effect of fumigation with 1,3-dichloropropene on soil bacterial communities. Chemosphere 2015, 139, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, B.; Wang, Q.; Li, Y.; Fang, W.; Yan, D.; Guo, M.; Cao, A. Effect of fumigation with chloropicrin on soil bacterial communities and genes encoding key enzymes involved in nitrogen cycling. Environ. Pollut. 2017, 227, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Yan, D.; Wang, B.; Huang, B.; Wang, X.; Liu, J.; Liu, X.; Li, Y.; Ouyang, C.; Wang, Q. Responses of Nitrogen-Cycling Microorganisms to Dazomet Fumigation. Front. Microbiol. 2018, 9, 2529. [Google Scholar] [CrossRef] [Green Version]
- Eo, J.; Park, K. Effects of dazomet on soil organisms and recolonisation of fumigated soil. Pedobiologia 2014, 57, 147–154. [Google Scholar] [CrossRef]
- Li, K.; Shi, J.; Han, Y.; Xu, C.; Han, H. Enhanced anaerobic degradation of quinoline, pyriding, and indole with polyurethane (PU), Fe3O4 @PU, powdered activated carbon (PAC), Fe(OH)3 @PAC, biochar, and Fe(OH)3 @biochar and analysis of microbial succession in different reactors. Bioresour. Technol. 2019, 291, 121866. [Google Scholar] [CrossRef]
- Huang, B.; Yan, D.; Wang, Q.; Fang, W.; Cao, A. Effects of dazomet fumigation on soil phosphorus and the composition of phoD-harboring microbial community. J. Agric. Food Chem. 2020, 68, 5049–5058. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Yan, D.; Wang, Q.; Li, Y.; Ouyang, C.; Liu, P.; Shen, J.; Guo, M.; Cao, A. Evaluation of the Combination of Dimethyl Disulfide and Dazomet as an Efficient Methyl Bromide Alternative for Cucumber Production in China. J. Agric. Food Chem. 2014, 62, 4864–4869. [Google Scholar] [CrossRef]
- Chan, K.Y.; Zwieten, L.V.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Isobe, K.; Fujii, H.; Tsuboki, Y. Effect of Charcoal on the Yield of Sweet Potato. Jpn. J. Crop Sci. 1996, 65, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, S.; Sugiura, G. Charcoala as a soil conditioner. Int. Achieve Future 1985, 5, 12–23. [Google Scholar]
- Topoliantz, S.; Ponge, J.; Ballof, S. Manioc peel and charcoal: A potential organic amendment for sustainable soil fertility in the tropics. Biol. Fertil. Soils 2005, 41, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Iswaran, V.; Jauhri, K.S.; Sen, A. Effect of charcoal, coal and peat on the yield of moong, soybean and pea. Soil Biol. Biochem. 1980, 12, 191–192. [Google Scholar] [CrossRef]
- Mizuta, K.; Matsumoto, T.; Hatate, Y.; Nishihara, K.; Nakanishi, T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 2004, 95, 255–257. [Google Scholar] [CrossRef]
- Gao, S. Application Technology of Activated Carbon; Southeast University Press: Nanjing, China, 2002; ISBN 7-81050-869-5. [Google Scholar]
- Sun, Y.; Jiang, G.; Liu, J.; Zhang, W.; Tang, Z. Effects of Continuous Cropping Tomato for Processing on Soil Enzyme Activities and Microbial Flora. Acta Ecol. Sin. 2010, 227–235. [Google Scholar]
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P.; Holden, P.A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 2003, 35, 167–176. [Google Scholar] [CrossRef]
- Marschner, P.; Yang, C.H.; Lieberei, R.; Crowley, D.E. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 2001, 33, 1437–1445. [Google Scholar] [CrossRef]
- Beauregard, M.S.; Hamel, C.; Atul-Nayyar; St-Arnaud, M. Long-Term Phosphorus Fertilization Impacts Soil Fungal and Bacterial Diversity but not AM Fungal Community in Alfalfa. Microb. Ecol. 2010, 59, 379–389. [Google Scholar] [CrossRef]
- Yao, Q.; Liu, J.; Yu, Z.; Li, Y.; Jin, J.; Liu, X.; Wang, G. Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China. Appl. Soil Ecol. 2017, 113, 11–21. [Google Scholar] [CrossRef]
- Staddon, W.J.; Trevors, J.T.; Duchesne, L.C.; Colombo, C.A. Soil microbial diversity and community structure across a climatic gradient in western Canada. Biodivers. Conserv. 1998, 7, 1081–1092. [Google Scholar] [CrossRef]
- Alvey, S.; Yang, C.; Buerkert, A.; Crowley, D.E. Cereal/legume rotation effects on rhizosphere bacterial community structure in west african soils. Biol. Fertil. Soils 2003, 37, 73–82. [Google Scholar] [CrossRef]
- Zak, D.R.; Holmes, W.E.; White, D.C.; Peacock, A.D.; Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 2003, 84, 2042–2050. [Google Scholar] [CrossRef] [Green Version]
- Papatheodorou, E.M.; Argyropoulou, M.; Stamou, G.P. The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Appl. Soil Ecol. 2004, 25, 37–49. [Google Scholar] [CrossRef]
- Sigler, W.V.; Turco, R.F. The impact of chlorothalonil application on soil bacterial and fungal populations as assessed by denaturing gradient gel electrophoresis. Appl. Soil Ecol. 2002, 21, 107–118. [Google Scholar] [CrossRef]
Treatment | Soil Organic Matter (g/kg) | Total Nitrogen (g/kg) | Available Potassium (mg/kg) | Available Phosphorus (mg/kg) | pH |
---|---|---|---|---|---|
CT | 21.77 ± 1.03 b | 0.95 ± 0.02 a | 294 ± 8.02 ab | 25.79 ± 1.57 ab | 7.80 ± 0.13 ab |
DZ | 20.34 ± 1.24 b | 1.08 ± 0.15 a | 292 ± 11.68 ab | 15.89 ± 1.93 c | 7.88 ± 0.09 a |
CP | 20.71 ± 0.63 b | 1.01 ± 0.10 a | 262 ± 9.07 b | 19.04 ± 2.71 c | 7.62 ± 0.10 b |
AC1 | 20.40 ± 1.83 b | 1.03 ± 0.03 a | 281 ± 23.76 ab | 23.34 ± 2.62 b | 7.84 ± 0.17 a |
AC2 | 20.83 ± 1.67 b | 1.06 ± 0.03 a | 285 ± 23.67 ab | 23.34 ± 1.32 b | 7.83 ± 0.06 a |
AC3 | 24.17 ± 1.07 a | 1.07 ± 0.08 a | 322 ± 11.14 ab | 28.07 ± 1.57 a | 7.89 ± 0.06 a |
Treatment | Observed Species | Good’s Coverage | Shannon Index | Simpson Index | Chao1 Index |
---|---|---|---|---|---|
CT | 2457 (55) | 97.12 (0.09) | 8.64 (0.07) | 0.989 (0.001) | 3488.73 (114.23) |
DZ | 2359 (54) | 97.26 (0.10) | 8.27 (0.08) * | 0.984 (0.002) * | 3356.27 (132.39) |
CP | 2308 (32) * | 97.36 (0.05) * | 7.99 (0.11) ** | 0.981 (0.001) ** | 3211.44 (72.37) * |
AC1 | 2348 (41) | 97.22 (0.06) | 8.54 (0.06) | 0.988 (0.001) | 3351.14 (56.35) |
AC2 | 2422 (87) | 97.23 (0.04) | 8.68 (0.19) | 0.990 (0.002) | 3389.39 (43.34) |
AC3 | 2322 (127) | 97.17 (0.05) | 8.44 (0.29) | 0.987 (0.003) | 3436.68 (99.97) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, C.; Liu, E.; Rippa, M.; Mormile, P.; Sun, D.; Yan, C.; Liu, Q. Effects of Chemical and Solar Soil-Disinfection Methods on Soil Bacterial Communities. Sustainability 2020, 12, 9833. https://doi.org/10.3390/su12239833
Yun C, Liu E, Rippa M, Mormile P, Sun D, Yan C, Liu Q. Effects of Chemical and Solar Soil-Disinfection Methods on Soil Bacterial Communities. Sustainability. 2020; 12(23):9833. https://doi.org/10.3390/su12239833
Chicago/Turabian StyleYun, Cuixia, Enke Liu, Massimo Rippa, Pasquale Mormile, Dongbao Sun, Changrong Yan, and Qin Liu. 2020. "Effects of Chemical and Solar Soil-Disinfection Methods on Soil Bacterial Communities" Sustainability 12, no. 23: 9833. https://doi.org/10.3390/su12239833
APA StyleYun, C., Liu, E., Rippa, M., Mormile, P., Sun, D., Yan, C., & Liu, Q. (2020). Effects of Chemical and Solar Soil-Disinfection Methods on Soil Bacterial Communities. Sustainability, 12(23), 9833. https://doi.org/10.3390/su12239833