A Bio-Economic Analysis of the Liberian Coastal Fisheries
Abstract
:1. Introduction
Background
2. Analytical Approach
Empirical Model
3. Model Parameters Estimation
3.1. Data
3.1.1. Catch and Effort Data
3.1.2. Economic Data
3.2. Statistical Approach
3.2.1. Biological Parameters
3.2.2. Economic Parameters
4. Results and Discussion
4.1. State of the Coastal Fishery
4.2. Coastal Fleets Economics
4.3. Dynamic Fisheries Policy
4.3.1. Maintaining 2016 Fishing Effort
4.3.2. Business as Usual
4.3.3. Maximum Net Benefits Policy
4.4. Model Structural Uncertainties
5. Conclusions and Policy Recommendation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Belhabib, D.; Sumaila, U.R.; Pauly, D. Feeding the poor: Contribution of West African fisheries to employment and food security. Ocean Coast. Manag. 2015, 111, 72–81. [Google Scholar] [CrossRef]
- World Bank. GNI per Capita, Atlas Method (Current US)-Liberia. Available online: https://data.worldbank.org/indicator/NY.GNP.PCAP.CD?locations=LR (accessed on 20 November 2019).
- Ssentongo, G.W. Marine Fishery Resources of Liberia: A Review of Exploited Fish Stocks; FAO: Rome, Italy, 1987. [Google Scholar]
- MRAG. Fisheries Stock Assessment; Report produced under WARFP/BNF Contract 11/001; MRAG: Liberia, West Africa, 2014. [Google Scholar]
- Ministry of Agriculture. Regulations Relating to Fisheries, Fishing and Related Activities for the Marine Fisheries Sector in the Republic of Liberia; Ministry of Agriculture: New Delhi, India, 2010.
- Arnason, R. Loss of economic rents in the global fishery. J. Bioecon. 2011, 13, 213–232. [Google Scholar] [CrossRef]
- World Bank. The Sunken Billions Revisited: Progress and Challenges in Global Marine Fisheries; World Bank Publications: Washington, DC, USA, 2017. [Google Scholar]
- Rosa, W. (Ed.) Transforming Our World: The 2030 Agenda for Sustainable Development. In A New Era in Global Health; Springer Publishing Company: New York, NY, USA, 2017. [Google Scholar]
- Work Bank. Economic, Environmental, and Social Evaluation of Africa’s Small-Scale Fisheries. 95557; Work Bank: Washington, DC, USA, 2015. [Google Scholar]
- Chu, J.; Garlock, T.M.; Sayon, P.; Asche, F.; Anderson, J.L. Impact evaluation of a fisheries development project. Mar. Policy 2017, 85, 141–149. [Google Scholar] [CrossRef]
- Drammeh, O.K.L. The Fisheries Subsector. In Ministry of Agriculture Comprehensive Assessment of the Agriculture Sector; Volume 2.1: Subsector, Reports; IFAD: Rome, Italy; World Bank: Washington, DC, USA; FAO: Rome, Italy, 2007; pp. 169–188. [Google Scholar]
- MRAG. Fisheries Governance Diagnostic Study; MRAG: Liberia, West Africa, 2013. [Google Scholar]
- Ministry of Agriculture. Fisheries and Aquaculture Policy and Strategy; Ministry of Agriculture: Monrovia, Liberia, 2014.
- Virdin, J.; Kobayashi, M.; Akester, S.; Vegh, T.; Cunningham, S. West Africa’s coastal bottom trawl fishery: Initial examination of a trade in fishing services. Mar. Policy 2019, 100, 288–297. [Google Scholar] [CrossRef]
- Shotton, R. A Bioeconomic Analysis of the Liberian Shrimp Fishery and a Review of other Marine Fisheries in Liberia; International Finance Corporation: Washington, DC, USA, 1983. [Google Scholar]
- Jueseah, A. Economic and Management Implications of the Implementation of an IVQ Regime in the Industrial Offshore Fisheries Sector in Liberia. Master’s Thesis, Norwegian College of Fishery Science (NCFS), University of Tromsø (UiT), Tromsø, Norway, 2012. [Google Scholar]
- World Bank. Africa—First Phase of West Africa Regional Fisheries Program Project; ICR4008; World Bank: Washington, DC, USA, 2017; (unpublished report). [Google Scholar]
- World Bank. West Africa Regional Fisheries Program, Project Appraisal Document (PAD); World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Anderson, L.G. The Economics of Fisheries Management/Lee G. Anderson; Johns Hopkins University Press: Baltimore, MD, USA, 1977. [Google Scholar]
- Anderson, L.G.; Seijo, J.C. Bioeconomics of Fisheries Management, 1st ed.; Wiley-Blackwell: Ames, IA, USA, 2010. [Google Scholar]
- Bjørndal, T.; Munro, G. The Economics and Management of World Fisheries, 1st ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Clark, C.W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1976. [Google Scholar]
- Gordon, H.S. The Economic Theory of a Common-Property Resource: The Fishery. J. Politi-Econ. 1954, 62, 124–142. [Google Scholar] [CrossRef]
- Scott, A. The Fishery: The Objectives of Sole Ownership. J. Political Econ. 1955, 63, 116–124. [Google Scholar] [CrossRef]
- Volterra, V. Fluctuations in the Abundance of a Species considered Mathematically1. Nat. Cell Biol. 1926, 118, 558–560. [Google Scholar] [CrossRef]
- Schaefer, M.B. Some Aspects of the Dynamics of Populations Important to the Management of Commercial Marine Species. Inter-Am. Tropical Tuna Comm. Bull. 1954, 1, 27–56. [Google Scholar]
- Comitini, S.; Huang, D.S. A Study of Production and Factor Shares in the Halibut Fishing Industry. J. Politi-Econ. 1967, 75, 366–372. [Google Scholar] [CrossRef]
- Watling, L.; Norse, E.A. Disturbance of the Seabed by Mobile Fishing Gear: A Comparison to Forest Clearcutting. Conserv. Biol. 1998, 12, 1180–1197. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Smith, M.D. Estimation of a Generalized Fishery Model: A Two-Stage Approach; SSRN Scholarly Paper ID 980756; Social Science Research Network: Rochester, NY, USA, 2009. [Google Scholar]
- Arnason, R.; MRAG. International University to Assist the Fisheries Management Office of the Bureau of National Fisheries (BNF), Republic of Liberia–Final Report. 2016; (unpublished report). [Google Scholar]
- Yeboah, D.A. Use of Capital Income in Artisanal Fisheries: A Case Study of Boat Owners in 1997 Elmina, Ghana; Programme for the Intezrated Development of Artisanal Fisheries in West Africa; Food and Agriculture Organization of the United Nations: Cotonou, Benin, 1997; p. 23. [Google Scholar]
- Marine. Maritime Sales. Available online: http://www.maritimesales.com/Fishing%20Vessels.htm (accessed on 1 February 2018).
- International Convention for the Conservation of Atlantic Tunas. Available online: https://www.iccat.int/en/index.asp (accessed on 20 November 2020).
- Warui, S.W. Optimal Management Policy for the Kenyan Marine Artisanal Fishery. Ph.D. Thesis, University of Iceland, Reykjavik, Iceland, 2014. [Google Scholar]
- Acheson, J.M. Anthropology of Fishing. Annu. Rev. Anthr. 1981, 10, 275–316. [Google Scholar] [CrossRef]
- Anderson, L.G. The Share System in Open-Access and Optimally Regulated Fisheries. Land Econ. 1982, 58, 435. [Google Scholar] [CrossRef]
- Guillen, J.; Boncoeur, J.; Carvalho, N.; Frangoudes, K.; Guyader, O.; Macher, C.; Maynou, F. Remuneration systems used in the fishing sector and their consequences on crew wages and labor rent creation. Marit. Stud. 2017, 16, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Guillen, J.; Macher, C.; Merzéréaud, M.; Boncoeur, J.; Guyader, O. Effects of the Share Remuneration System on Fisheries Management Targets and Rent Distribution. Mar. Resour. Econ. 2015, 30, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Matthiasson, T. Fixed Wage or Share: Contingent Contract Renewal and Skipper Motivation. SSRN 1997. [Google Scholar] [CrossRef] [Green Version]
- McConnell, K.E.; Price, M.K. The lay system in commercial fisheries: Origin and implications. J. Environ. Econ. Manag. 2006, 51, 295–307. [Google Scholar] [CrossRef]
- Platteau, J.; Nugent, J. Share contracts and their rationale: Lessons from marine fishing. J. Dev. Stud. 1992, 28. [Google Scholar] [CrossRef]
- Pham, T.T.T.; Flaaten, O.; Nguyen, T.K.A.; Thuy, P.T.T.; Anh, N.T.K. Remuneration Systems and Economic Performance: Theory and Vietnamese Small-scale Purse Seine Fisheries. Mar. Resour. Econ. 2013, 28, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Tietze, U.; Prado, J.; Ry, J.-M.L.; Lasch, R. Techno-Economic Performance of Marine Capture Fisheries; FAO: Rome, Italy, 2001. [Google Scholar]
- Zoeteweij, H. FAO Fisheries and Aquaculture Department-The Economics of Fisheries; Proceedings of a Round Table Organized by the International Economic Association, Sponsored by FAO; FAO: Rome, Italy, 1956. [Google Scholar]
- Belhabib, D.; Subah, Y.; Broh, N.T.; Jueseah, A.S.; Nipey, J.N.; Boeh, W.Y.; Copeland, D.; Zeller, D.; Pauly, D. When ‘Reality Leaves a Lot to the Imagination’: Liberian Fisheries from 1950 to 2010. In Fisheries Center; The University of British Columbia: Vancouver, BC, Canada, 2013. [Google Scholar]
- Jueseah, A.S.; Kristofersson, D.M.; Knutsson, O.; Tómasson, T. Technical efficiency and profitability analysis of coastal small-scale fisheries in Liberia. (unpublished; manuscript in preparation).
- FAO. Meeting the Sustainable Development Goals; The State of World Fisheries and Aquaculture: Rome, Italy, 2018. [Google Scholar]
- Pauly, D.; Watson, R.; Alder, J. Global trends in world fisheries: Impacts on marine ecosystems and food security. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Central Bank of Liberia. Central Bank of Liberia-Annual Report 2017; Central Bank of Liberia: Monrovia, Liberia, 2017. [Google Scholar]
- Béné, C.; Hersoug, B.; Allison, E.H. Not by Rent Alone: Analysing the Pro-Poor Functions of Small-Scale Fisheries in Developing Countries. Dev. Policy Rev. 2010, 28, 325–358. [Google Scholar] [CrossRef]
- Camp, E.V.; Larkin, S.L.; Ahrens, R.N.; Lorenzen, K. Trade-offs between socioeconomic and conservation management objectives in stock enhancement of marine recreational fisheries. Fish. Res. 2017, 186, 446–459. [Google Scholar] [CrossRef]
- Cunningham, S.; Neiland, A. Investigating the Linkages between Fisheries, Poverty and Growth: Policy Brief Report by IDDRA for DFID Technology. Available online: https://www.slideshare.net/cpwfbfp/linkages-between-fisheries-poverty-and-growth-policy-brief (accessed on 22 June 2020).
- FAO (Ed.) Increasing the Contribution of Small-Scale Fisheries to Poverty Alleviation and Food Security; FAO Technical Guidelines for Responsible Fisheries 10; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Hicks, C.C.; Cohen, P.J.; Graham, N.A.J.; Nash, K.L.; Allison, E.H.; D’Lima, C.; Mills, D.J.; Roscher, M.; Thilsted, S.H.; Thorne-Lyman, A.L.; et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nat. Cell Biol. 2019, 574, 95–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacs, M. Recent progress in understanding small-scale fisheries in Southern Africa. Curr. Opin. Environ. Sustain. 2012, 4, 338–343. [Google Scholar] [CrossRef]
- Neiland, A.E.; Cunningham, S.; Arbuckle, M.; Baio, A.; Bostock, T.; Coulibaly, D.; Gitonga, N.K.; Long, R.; Sei, S. Assessing the Potential Contribution of Fisheries to Economic Development—The Case of Post-Ebola Sierra Leone. Nat. Resour. 2016, 7, 356–376. [Google Scholar] [CrossRef] [Green Version]
- Alverson, D.L.; Freeberg, M.H.; Murawski, S.A.; Pope, J.G. (Eds.) A Global Assessment of Fisheries Bycatch and Discards; FAO Fisheries Technical Paper 339; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994. [Google Scholar]
- Dayton, P.K.; Thrush, S.F.; Agardy, M.T.; Hofman, R.J. Environmental effects of marine fishing. Aquat. Conserv. Mar. Freshw. Ecosyst. 1995, 205–232. [Google Scholar] [CrossRef]
- Hall, S.J. The Effects of Fishing on Marine Ecosystems and Communities; Fish Biology and Aquatic Resources Series 1; Blackwell Science: Oxford, UK; Blackwell Science: Malden, MA, USA, 2000. [Google Scholar]
- Kumar, B.; Deepthi, G. Trawling and By-Catch: Implications on Marine Ecosystem. Curr. Sci. 2006, 90, 922–931. [Google Scholar]
- Thrush, S.F.; Dayton, P.K. Disturbance to Marine Benthic Habitats by Trawling and Dredging: Implications for Marine Biodiversity. Annu. Rev. Ecol. Syst. 2002, 33, 449–473. [Google Scholar] [CrossRef] [Green Version]
- World Bank. LIBERIA. 2018. Available online: http://pubdocs.worldbank.org/en/733441492188161968/mpo-lbr.pdf (accessed on 20 October 2018).
- Cheung, W.W.L.; Sumaila, U.R. Trade-offs between conservation and socio-economic objectives in managing a tropical marine ecosystem. Ecol. Econ. 2008, 66, 193–210. [Google Scholar] [CrossRef]
- Daw, M.T.; Coulthard, S.; Cheung, W.W.L.; Brown, K.; Abunge, C.; Galafassi, D.; Peterson, G.D.; McClanahan, T.R.; Omukoto, J.O.; Munyi, L. Evaluating Taboo Trade-Offs in Ecosystems Services and Human Well-Being. Proc. Natl. Acad. Sci. USA 2015, 112, 6949–6954. [Google Scholar] [CrossRef] [Green Version]
- Charles, A.T. Living with uncertainty in fisheries: Analytical methods, management priorities and the Canadian groundfishery experience. Fish. Res. 1998, 37, 37–50. [Google Scholar] [CrossRef]
- Hernuryadin, Y.; Kotani, K.; Kamijo, Y. Time Preferences between Individuals and Groups in the Transition from Hunter-Gatherer to Industrial Societies. Sustainability 2019, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, D.; Hilborn, R.; Walters, C. Uncertainty, Resource Exploitation, and Conservation: Lessons from History. Science 1993, 260, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Garza-Gil, M.D.; Varela-Lafuente, M.M.; Surı́s-Regueiro, J.C. European hake fishery bioeconomic management (southern stock) applying an effort tax. Fish. Res. 2003, 60, 199–206. [Google Scholar] [CrossRef]
- Beverton, R.J.H.; Holt, S.J. On the dynamics of exploited fish populations. Fish. Investig. 1957, 19, 1–533. [Google Scholar]
- Tahvonen, O. Economics of harvesting age-structured fish populations. J. Environ. Econ. Manag. 2009, 58, 281–299. [Google Scholar] [CrossRef]
- Da-Rocha, J.-M.; Gutiérrez, M.-J.; Antelo, L.T. Selectivity, Pulse Fishing and Endogenous Lifespan in Beverton-Holt Models. Environ. Resour. Econ. 2013, 54, 139–154. [Google Scholar] [CrossRef] [Green Version]
Stocks | Statistics | Kru Boats | Fanti Boats | Ind. Vessels | Standardized CPUE (ton boat−1 year−1) |
---|---|---|---|---|---|
Small pelagic (tons year−1) | Mean | 1043.5 | 16,286.7 | 86.2 | 5.9 |
Std Dev | 451.7 | 2355.3 | 73.1 | 1.4 | |
Min | 656.1 | 14,048.8 | 12.5 | 4.6 | |
Max | 1626.5 | 19,142.7 | 166.1 | 7.3 | |
Medium pelagic (tons year−1) | Mean | 990.4 | 3501.7 | 2.5 | 1.4 |
Std Dev | 252.2 | 705.5 | 2.1 | 0.4 | |
Min | 747.9 | 2568.4 | 0.4 | 0.9 | |
Max | 1324.0 | 4162.7 | 4.8 | 1.8 | |
Shallow-water demersal (tons year−1) | Mean | 1842.1 | 390.7 | 129.8 | 0.6 |
Std Dev | 245.2 | 58.5 | 72.5 | 0.1 | |
Min | 1518.5 | 350.9 | 22.5 | 0.5 | |
Max | 2088.7 | 477.4 | 178.6 | 0.8 | |
Deep-water demersal (tons year−1) | Mean | 1055.2 | 85.4 | 159.1 | 0.4 |
Std Dev | 858.1 | 62.9 | 126.8 | 0.2 | |
Min | 138.0 | 11.9 | 34.8 | 0.1 | |
Max | 2178.0 | 165.2 | 313.5 | 0.6 | |
Crustacean (tons year−1) | Mean | 342.7 | 2.9 | 45.8 | 0.1 |
Std Dev | 70.8 | 2.3 | 50.8 | 0.0 | |
Min | 277.6 | 0.5 | 5.0 | 0.1 | |
Max | 425.0 | 6.0 | 116.0 | 0.1 | |
Large pelagic (tons year−1) | Mean | 353.1 | 389.4 | 7.2 | - 1 |
Std Dev | 198.1 | 118.7 | 12.6 | - | |
Min | 184.5 | 238.8 | 0.1 | - | |
Max | 640.0 | 528.3 | 26 | - | |
Effort (no. of boats year−1) | Mean | 2922 | 753 | 4 | - |
Std Dev | 283 | 78 | 2 | - | |
Min | 2615 | 685 | 1 | - | |
Max | 3163 | 827 | 7 | - | |
Years observed | 4 | 4 | 4 | - |
Species Assemblage | Statistics | Kru & Fanti Boats | Industrial Vessels |
---|---|---|---|
Small pelagic (US$ kg−1) | Mean | 1.1 | 1.3 |
Std Dev | 0.2 | 0.4 | |
Min | 0.9 | 0.8 | |
Max | 1.6 | 1.9 | |
Sample (n) | 10 | 10 | |
Medium pelagic (US$ kg−1) | Mean | 2.3 | 3.5 |
Std Dev | 0.7 | 0.9 | |
Min | 1.5 | 2.3 | |
Max | 3.5 | 5.0 | |
Sample (n) | 15 | 15 | |
Shallow-water demersal (US$ kg−1) | Mean | 2.5 | 2.9 |
Std Dev | 0.9 | 0.1 | |
Min | 1.2 | 2.6 | |
Max | 4.0 | 3.0 | |
Sample (n) | 15 | 10 | |
Deep-water demersal (US$ kg−1) | Mean | 3.6 | 4.0 |
Std Dev | 1.6 | 0.3 | |
Min | 2.0 | 3.3 | |
Max | 7.2 | 4.0 | |
Sample (n) | 15 | 8 | |
Crustacean (US$ kg−1) | Mean | 4.0 | 10.2 |
Std Dev | 1.1 | 3.1 | |
Min | 2.2 | 6.0 | |
Max | 5.0 | 15.0 | |
Sample (n) | 10 | 8 | |
Large pelagic (US$ kg−1) | Mean | 1.5 | 1.7 |
Std Dev | 0.7 | 0.1 | |
Min | 0.5 | 1.5 | |
Max | 3.0 | 1.8 | |
Sample (n) | 10 | 5 |
Coefficients | Estimates of Alpha & Beta | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Stock | b | c | d | R2 | p-Value | SE | Shapiro Wilk Test (w-Value) | Shapiro Wilk Test (p-Value) | Alpha (α) | Beta (β) |
Small pelagic | 0.41 | 0.05 | −9.2 × 10−5 | 0.56 | 0.66 | 0.20 | 0.99 | 0.94 | 0.41 | 4.3 × 10−6 |
Medium pelagic | 0.46 | 0.24 | −6.2 × 10−5 | 0.87 | 0.36 | 0.11 | 0.86 | 0.26 | 0.46 | 1.5 × 10−5 |
Shallow-water demersal | 0.41 | 0.20 | −5.2 × 10−5 | 0.72 | 0.53 | 0.05 | 0.91 | 0.50 | 0.41 | 1.1 × 10−5 |
Deep-water demersal | 1.18 | 2.95 | −1.2 × 10−4 | 0.92 | 0.28 | 0.34 | 0.89 | 0.38 | 1.18 | 3.5 × 10−4 |
Crustacean | 1.66 | 13.55 | −7.1 × 10−5 | 0.62 | 0.61 | 0.23 | 0.82 | 0.15 | 1.66 | 9.6 × 10−4 |
Species Assemblage | Kru Canoe (1/Boat) | Fanti Boat (1/Boat) | Ind. Vessel (1/Boat) | Schooling Parameter |
---|---|---|---|---|
Small pelagic | 5.5 × 10−6 | 3.4 × 10−4 | 1.54 × 10−4 | 0.98 |
Medium pelagic | 1.6 × 10−5 | 1.7 × 10−4 | 1.2 × 10−5 | 0.98 |
Shallow-water demersal | 6.0 × 10−5 | 4.6 × 10−5 | 3.2 × 10−3 | 1.00 |
Deep-water demersals | 2.3 × 10−5 | 6.2 × 10−6 | 7.04 × 10−3 | 1.00 |
Crustacea | 9.6 × 10−6 | 5.3 × 10−7 | 2.09 × 10−2 | 1.00 |
Large pelagic | 5.8 × 10−2 * | 3.5 × 10−1 * | 6.57 * | 0.00 |
Fleet | Crew Share (γ %) | Variable Cost (vc boat−1 yr−1) (US$ 1000 boat−1) | Fixed Cost (fc boat−1 yr−1) (US$ 1000 boat−1) | Total Cost (boat−1 yr−1) (US$ 1000 boat−1) |
---|---|---|---|---|
Kru canoe | 50% | 0.60 | 0.88 | 1.48 |
Fanti boat | 40% | 2.65 | 10.64 | 13.29 |
Industrial vessel | 8% * | 143.93 | 329.25 | 473.18 |
Species Assemblage | MSY (1000 t) | Xmsy (1000 t) | Xmax (1000 t) | Stock (1000 t) | Stock/Xmax | Stock/Xmsy |
---|---|---|---|---|---|---|
Small pelagic | 9.52 | 46.95 | 93.90 | 68.83 | 0.7 | 1.5 |
Medium pelagic | 3.56 | 15.41 | 30.82 | 25.75 | 0.8 | 1.7 |
Shallow-water demersal | 3.91 | 19.16 | 38.32 | 12.87 | 0.3 | 0.7 |
Deep-water demersals | 0.99 | 1.67 | 3.34 | 3.05 | 0.9 | 1.8 |
Crustacean | 0.71 | 0.86 | 1.72 | 1.26 | 0.7 | 1.5 |
18.70 | 84.05 | 168.09 | 111.76 | 0.7 | 1.3 |
All Vessel | Vessel−1 | ||||||
---|---|---|---|---|---|---|---|
Economics Status | Total | Kru | Fanti | Industrial | Kru | Fanti | Industrial |
Revenue (US$ 1000) | 39,012.9 | 12,562.0 | 24,315.1 | 2135.8 | 3.97 | 35.5 | 534.0 |
Cost (US$ 1000) | 31,854.3 | 10,962.2 | 18,829.0 | 2063.1 | 3.47 | 27.5 | 515.8 |
Profits (US$ 1000) | 7158.6 | 1599.7 | 5486.1 | 72.7 | 0.51 | 8.0 | 18.2 |
Profits/revenue | 0.18 | 0.13 | 0.23 | 0.03 | 0.13 | 0.23 | 0.03 |
Return on investment | 0.70 | 0.68 | 0.81 | 0.06 | 0.68 | 0.81 | 0.06 |
Employed Boats | Present Value of Profits (million US$) | Long-Term Annual Profits (million US$) | Profits Boat−1 (1000 US$) | |||||
---|---|---|---|---|---|---|---|---|
Policy Scenario | Kru | Fanti | Trawler | Kru | Fanti | Ind. | ||
Maintaining 2016 effort | 3165 | 685 | 4 | 33.1 | 2.8 | 0.6 | 1.1 | 21.6 |
BAU | 4710 | 687 | 0 | 12.8 | −15.0 | 0.0 | 0.0 | 0.0 |
Maximum net benefits | 1334 | 510 | 7 | 41.8 | 5.3 | 1.5 | 4.8 | 134.7 |
Realistic optimal | 2561 | 685 | 4 | 35.8 | 3.6 | 0.9 | 1.6 | 63.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jueseah, A.S.; Kristofersson, D.M.; Tómasson, T.; Knutsson, O. A Bio-Economic Analysis of the Liberian Coastal Fisheries. Sustainability 2020, 12, 9848. https://doi.org/10.3390/su12239848
Jueseah AS, Kristofersson DM, Tómasson T, Knutsson O. A Bio-Economic Analysis of the Liberian Coastal Fisheries. Sustainability. 2020; 12(23):9848. https://doi.org/10.3390/su12239848
Chicago/Turabian StyleJueseah, Alvin Slewion, Dadi Mar Kristofersson, Tumi Tómasson, and Ogmundur Knutsson. 2020. "A Bio-Economic Analysis of the Liberian Coastal Fisheries" Sustainability 12, no. 23: 9848. https://doi.org/10.3390/su12239848
APA StyleJueseah, A. S., Kristofersson, D. M., Tómasson, T., & Knutsson, O. (2020). A Bio-Economic Analysis of the Liberian Coastal Fisheries. Sustainability, 12(23), 9848. https://doi.org/10.3390/su12239848