A multi-Criteria Wetland Suitability Index for Restoration across Ontario’s Mixedwood Plains
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Preparation
3.2. Suitablity Criteria and Normalization
3.3. Literature Analysis for Index Weighting
(CI) = (λmax − n)/(n − 1)
Then CI = 0.0967
RI = 1.24 when n = 6
CR = 0.0771
3.4. Wetland Suitablity Index Validation
3.5. Wetland Suitablity “Hot Spot” Analysis
4. Results
4.1. Index—Ranking and Weighting
(Ag*0.218) + (Bu*0.123) + (Sd*0.482) + (Gw*0.047) + (Sl*0.028) + (Sp*0.102) + (Mw)
4.2. Wetland Restoration Suitablity
4.3. Validation with Historic and Existing Wetlands
4.4. Hot Spot Analysis
5. Discussion
5.1. Wetland Suitablity Criteria and Their Importance
5.2. Wetland Suitability Patterns and Characteristics
5.3. Recommendations and Future Considerations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviation | Description | Statistic Value |
---|---|---|
MPE | Mean prediction error | −0.7296 |
RMSPE | Root-mean-square prediction error | 29.3025 |
MS | Mean standardized | −0.0234 |
ASE | Average standard error | 31.2808 |
SRMSPE | Standardized root-mean-squared prediction error | 0.9384 |
Soil Drainage | Streams | Groundwater | Built-Up | Agriculture | Slope | |
---|---|---|---|---|---|---|
Soil Drainage | 0.5496 | 0.4819 | 0.3429 | 0.5479 | 0.6693 | 0.3000 |
Streams | 0.0916 | 0.0803 | 0.1714 | 0.0457 | 0.0558 | 0.1667 |
Groundwater | 0.0687 | 0.0201 | 0.0429 | 0.0228 | 0.0279 | 0.1000 |
Built-up | 0.0916 | 0.1606 | 0.1714 | 0.0913 | 0.0558 | 0.1667 |
Agriculture | 0.1374 | 0.2410 | 0.2571 | 0.2740 | 0.1673 | 0.2333 |
Slope | 0.0611 | 0.0161 | 0.0143 | 0.0183 | 0.0239 | 0.0333 |
Soil Drainage | Streams | Groundwater | Built-Up | Agriculture | Slope | |
---|---|---|---|---|---|---|
Soil Drainage | 0.4819 | 0.6115 | 0.3765 | 0.7374 | 0.8734 | 0.2504 |
Streams | 0.0803 | 0.1019 | 0.1882 | 0.0615 | 0.0728 | 0.1391 |
Groundwater | 0.0602 | 0.0255 | 0.0471 | 0.0307 | 0.0364 | 0.0835 |
Built-up | 0.0803 | 0.2038 | 0.1882 | 0.1229 | 0.0728 | 0.1391 |
Agriculture | 0.1205 | 0.3057 | 0.2824 | 0.3687 | 0.2184 | 0.1947 |
Slope | 0.0535 | 0.0204 | 0.0157 | 0.0246 | 0.0312 | 0.0278 |
References
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M. Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems; Springer: New York, NY, USA, 2008; ISBN 978-0-387-75509-0. [Google Scholar]
- Seneviratne, S.I.; Donat, M.G.; Mueller, B.; Alexander, L.V. No pause in the increase of hot temperature extremes. Nat. Clim. Chang. 2014, 4, 161–163. [Google Scholar] [CrossRef]
- Bellard, C.; Leclerc, C.; Leroy, B.; Bakkenes, M.; Veloz, S.; Thuiller, W.; Courchamp, F. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 2014, 23, 1376–1386. [Google Scholar] [CrossRef]
- Yalcin, S.; Leroux, S.J. An empirical test of the relative and combined effects of land-cover and climate change on local colonization and extinction. Glob. Chang. Biol. 2018, 24, 3849–3861. [Google Scholar] [CrossRef]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- Shaker, R.R. The spatial distribution of development in Europe and its underlying sustainability correlations. Appl. Geogr. 2015, 63, 304–314. [Google Scholar] [CrossRef]
- Shaker, R.R.; Yakubov, A.D.; Nick, S.M.; Vennie-Vollrath, E.; Ehlinger, T.J.; Forsythe, K.W. Predicting aquatic invasion in Adirondack lakes: A spatial analysis of lake and landscape characteristics. Ecosphere 2017, 8, e01723. [Google Scholar] [CrossRef] [Green Version]
- Shaker, R.R. A mega-index for the Americas and its underlying sustainable development correlations. Ecol. Indic. 2018, 89, 466–479. [Google Scholar] [CrossRef]
- Shaker, R.; Ehlinger, T. Agricultural Land Fragmentation and Biological Integrity: The Impacts of a Rapidly Changing Landscape on Streams in Southeastern Wisconsin; University of Wisconsin–Milwaukee Fish Ecology Laboratory: Milwaukee, WI, USA, 2007; p. 50. [Google Scholar]
- Shaker, R.R.; Ehlinger, T.J. Exploring Non-Linear Relationships between Landscape and Aquatic Ecological Condition in Southern Wisconsin: A GWR and ANN Approach. IJAGR 2014, 5, 1–20. [Google Scholar] [CrossRef]
- Karr, J.R.; Chu, E.W. Restoring Life in Running Waters: Better Biological Monitoring; Island Press: Washington, DC, USA, 1998; ISBN 978-1-59726-277-4. [Google Scholar]
- O’Reilly, N.; Ehlinger, T.; Shaker, R. The Development and Evaluation of Methods for Quantifying Risk to Fish in Warm-Water Streams of Wisconsin Using Self-Organized Maps: Influences of Watershed and Habitat Stressors; Northeastern University Center for Urban and Environmental Studies: Boston, MA, USA, 2007; p. 121. [Google Scholar]
- Sivakumar, R.; Ghosh, S. Wetland spatial dynamics and mitigation study: An integrated remote sensing and GIS approach. Natur. Hazards 2016, 80, 975–995. [Google Scholar] [CrossRef]
- OMNRF. A Wetland Conservation Strategy for Ontario 2017–2030; Queen’s Printer for Ontario: Toronto, ON, Canada, 2017; p. 52.
- National Research Council. Wetlands: Characteristics and Boundaries; National Academies Press: Washington, DC, USA, 1995; ISBN 978-0-309-58722-8. [Google Scholar]
- Findlay, C.S.; Houlahan, J. Anthropogenic Correlates of Species Richness in Southeastern Ontario Wetlands. Conserv. Biol. 1997, 11, 1000–1009. [Google Scholar] [CrossRef]
- Zorrilla-Miras, P.; Palomo, I.; Gómez-Baggethun, E.; Martín-López, B.; Lomas, P.L.; Montes, C. Effects of land-use change on wetland ecosystem services: A case study in the Doñana marshes (SW Spain). Landsc. Urban Plan. 2014, 122, 160–174. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.; Wang, Z.; Liu, D.; Niu, Z. Selecting Sites for Converting Farmlands to Wetlands in the Sanjiang Plain, Northeast China, Based on Remote Sensing and GIS. Environ. Manag. 2010, 46, 790–800. [Google Scholar] [CrossRef]
- Odgaard, M.V.; Turner, K.G.; Bøcher, P.K.; Svenning, J.-C.; Dalgaard, T. A multi-criteria, ecosystem-service value method used to assess catchment suitability for potential wetland reconstruction in Denmark. Ecol. Indic. 2017, 77, 151–165. [Google Scholar] [CrossRef]
- Klemas, V. Using Remote Sensing to Select and Monitor Wetland Restoration Sites: An Overview. J. Coast. Res. 2013, 29, 958–970. [Google Scholar] [CrossRef]
- Hobbs, R.J. Old Fields: Dynamics and Restoration of Abandoned Farmland; Island Press: Washington, DC, USA, 2012; ISBN 978-1-61091-098-9. [Google Scholar]
- Giblett, R.J. Canadian Wetlands: Places and People; Intellect Ltd.: Bristol, UK, 2014; ISBN 978-1-78320-176-1. [Google Scholar]
- Canada Committee on Ecological (Biophysical) Land Classification; National Wetlands Working Group; Warner, B.G.; Rubec, C.D.A. The Canadian Wetland Classification System, 2nd ed.; Wetlands Research Branch, University of Waterloo: Waterloo, ON, Canada, 1997; ISBN 978-0-662-25857-5. [Google Scholar]
- Classens, M. The transformation of the Holland Marsh and the dynamics of wetland loss: A historical political ecological approach. J. Environ. Stud. Sci. 2017, 7, 507–518. [Google Scholar] [CrossRef]
- Snell, E.A. Wetland Distribution and Conversion in Southern Ontario; Working paper; Inland Waters and Lands Directorate, Environment Canada: Ottawa, ON, Canada, 1987; ISBN 978-0-662-15077-0.
- DUC. Southern Ontario Wetland Conversion Analysis; Ducks Unlimited: Barrie, ON, Canada, 2010; p. 96. [Google Scholar]
- Tiner, R.W. Wetland Indicators: A Guide to Wetland Formation, Identification, Delineation, Classification, and Mapping, Second Edition; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4398-5370-2. [Google Scholar]
- ESTR. Mixedwood Plains Ecozone + Evidence for Key Finding Summary; Canadian biodiversity: Ecosystem status and trends 2010, Evidence for Key Findings Summary; Canadian Councils of Resource Ministers: Ottawa, ON, Canada, 2016; p. 157. [Google Scholar]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybarczyk, G.; Wu, C. Bicycle facility planning using GIS and multi-criteria decision analysis. Appl. Geogr. 2010, 30, 282–293. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Advances in Geographic Information Science; Springer: New York, NY, USA, 2015; ISBN 978-3-540-74756-7. [Google Scholar]
- Egoh, B.; Rouget, M.; Reyers, B.; Knight, A.T.; Cowling, R.M.; van Jaarsveld, A.S.; Welz, A. Integrating ecosystem services into conservation assessments: A review. Ecol. Econ. 2007, 63, 714–721. [Google Scholar] [CrossRef]
- Cromley, R.G.; Huffman, F.T. Modeling Situation Factors Used in MCE Procedures for Raster GIS. Trans. GIS 2006, 10, 239–251. [Google Scholar] [CrossRef]
- Nas, B.; Cay, T.; Iscan, F.; Berktay, A. Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Env. Monit. Assess. 2009, 160, 491–500. [Google Scholar] [CrossRef]
- Wood, L.J.; Dragicevic, S. GIS-Based Multicriteria Evaluation and Fuzzy Sets to Identify Priority Sites for Marine Protection. Biodivers. Conserv. 2007, 16, 2539–2558. [Google Scholar] [CrossRef]
- Shaker, R.R.; Sirodoev, I.G. Assessing sustainable development across Moldova using household and property composition indicators. Habitat. Int. 2016, 55, 192–204. [Google Scholar] [CrossRef]
- Shaker, R.R. Examining sustainable landscape function across the Republic of Moldova. Habitat Int. 2018, 72, 77–91. [Google Scholar] [CrossRef]
- White, D.; Fennessy, S. Modeling the suitability of wetland restoration potential at the watershed scale. Ecol. Eng. 2005, 24, 359–377. [Google Scholar] [CrossRef]
- Darwiche-Criado, N.; Sorando, R.; Eismann, S.G.; Comín, F.A. Comparing Two Multi-Criteria Methods for Prioritizing Wetland Restoration and Creation Sites Based on Ecological, Biophysical and Socio-Economic Factors. Water Resour. Manag. 2017, 31, 1227–1241. [Google Scholar] [CrossRef]
- Horvath, E.K.; Christensen, J.R.; Mehaffey, M.H.; Neale, A.C. Building a potential wetland restoration indicator for the contiguous United States. Ecol. Indic. 2017, 83, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Van Lonkhuyzen, R.A.; LaGory, K.E.; Kuiper, J.A. Modeling the Suitability of Potential Wetland Mitigation Sites with a Geographic Information System. Environ. Manag. 2004, 33, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.L.; Lopez, R.D. Use of Remote Sensing to Support Forest and Wetlands Policies in the USA. Remote Sens. 2011, 3, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- CCEA, C.C. on E.A. Ecological Regionalization in Canada. Available online: http://ecozones.ca/english/regionalization.html (accessed on 22 November 2020).
- Freedman, B.; Hutchings, J.; Gwynne, D.; Smol, J.; Suffling, R.; Turkington, R.; Walker, R.; Bazely, D. Ecology: A Canadian Context; Top Hat: Toronto, ON, Canada, 2014; ISBN 978-0-17-651014-5. [Google Scholar]
- Bradford, A. Averting degradation of southern Ontario wetlands due to hydrologic alterations associated with development. Can. Water Resour. J. Rev. Can. Des Ressour. Hydr. 2016, 41, 543–553. [Google Scholar] [CrossRef]
- Ahern, F.; Frisk, J.; Latifovic, R.; Pouliot, D. Monitoring Ecosystems Remotely: A Selection of Trends Measured from Satellite Observations of Canada; Canadian Councils of Resource Ministers: Toronto, ON, Canada, 2010; p. 73. [Google Scholar]
- OEP. Ontario Population Projections Update, 2019–2046; Ontario Ministry of Finance: Oshawa, ON, Canada, 2020; p. 111.
- Dahl, T.E.; Johnson, C.E.; Frayer, W.E. Wetlands, Status and Trends in the Conterminous United States, Mid-1970’s to Mid-1980’s: First Update of the National Wetlands Status Report; US Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1991; ISBN 978-0-16-035916-3.
- OBC. State of Ontario’s Biodiversity 2015 Summary; Ontario Biodiversity: Peterborough, ON, Canada, 2015; p. 12. [Google Scholar]
- ESRI. ArcGIS Desktop 10.7x; Environmental Systems Research Institute: Redlands, CA, USA, 2019. [Google Scholar]
- Khalili, K. Comparison of Geostatistical Methods for Interpolation Groundwater Level (Case Study: Lake Urmia Basin). Available online: /paper/Comparison-of-Geostatistical-Methods-for-Level-Lake-Khalili/e1eba153321e5229d7e42a13b6c424683be56562 (accessed on 2 November 2020).
- Forsythe, K.W.; Marvin, C.H. Analyzing the Spatial Distribution of Sediment Contamination in the Lower Great Lakes. Water Qual. Res. J. 2005, 40, 389–401. [Google Scholar] [CrossRef]
- Mitchell, D.; Forsythe, K.W.; Marvin, C.; Burniston, D. Temporal Trends and Origins of Lake Erie Cadmium Contamination in Relation to Sediment Substrate Type Using Multivariate Kriging Analyses. Int. J. Geospat. Environ. Res. 2019, 6. Available online: https://dc.uwm.edu/ijger/vol6/iss1/3/ (accessed on 1 November 2020).
- Forsythe, K.W.; Marvin, C.H.; Valancius, C.J.; Watt, J.P.; Aversa, J.M.; Swales, S.J.; Jakubek, D.J.; Shaker, R.R. Geovisualization of Mercury Contamination in Lake St. Clair Sediments. J. Mar. Sci. Eng. 2016, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, D.M.; Deadman, P.; Dudycha, D.; Traynor, S. Multi-criteria evaluation and least cost path analysis for an arctic all-weather road. Appl. Geogr. 2005, 25, 287–307. [Google Scholar] [CrossRef]
- Antrop, M. The language of landscape ecologists and planners: A comparative content analysis of concepts used in landscape ecology. LAND Landsc. Urban Plan. 2001, 55, 163–173. [Google Scholar] [CrossRef]
- Shaker, R.R.; Rybarczyk, G.; Brown, C.; Papp, V.; Alkins, S. (Re)emphasizing Urban Infrastructure Resilience via Scoping Review and Content Analysis. Urban Sci. 2019, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Krippendorff, K. Content Analysis: An Introduction to Its Methodology; Sage: Thousand Oaks, CA, USA, 2019; ISBN 978-1-5063-9566-1. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Kangas, J.; Store, R.; Leskinen, P.; Mehtätalo, L. Improving the quality of landscape ecological forest planning by utilising advanced decision-support tools. For. Ecol. Manag. 2000, 132, 157–171. [Google Scholar] [CrossRef]
- McPhail, A.K. A Method for Analyzing Historical Wetland Habitat Conditions; Severn Sound Environmental Association: Port McNicoll, ON, Canada, 2004; p. 14. [Google Scholar]
- Barbosa, A.M.; Real, R. Applying Fuzzy Logic to Comparative Distribution Modelling: A Case Study with Two Sympatric Amphibians. Available online: https://www.hindawi.com/journals/tswj/2012/428206/ (accessed on 2 November 2020).
- Goparaju, L.; Tripathi, A.; Jha, C.S. Forest fragmentation impacts on phytodiversity—An analysis using remote sensing and GIS. Curr. Sci. 2005, 88, 1264–1274. [Google Scholar]
- Choi, S.; Cha, S. A survey of Binary similarity and distance measures. J. Syst. Cybern. Inform. 2010, 43–48. [Google Scholar]
- Jaccard, P. Nouvelles Recherches Sur la Distribution Florale; Rouge: Lausanne, Switzerland, 1908. [Google Scholar]
- Birks, H.J.B. Recent methodological developments in quantitative descriptive biogeography. Ann. Zool. Fenn. 1987, 24, 165–177. [Google Scholar]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Wong, D.W.S.; Lee, J. Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS; Wiley: Hoboken, NJ, USA, 2005; ISBN 978-0-471-46899-8. [Google Scholar]
- SC. Census Subdivision (CSD)—Census Dictionary. Available online: https://www12.statcan.gc.ca/census-recensement/2011/ref/dict/geo012-eng.cfm (accessed on 5 November 2020).
- ODC. Quaternary Watershed Boundaries—Ontario Data Catalogue. Available online: https://data.ontario.ca/dataset/quaternary-watershed-boundaries (accessed on 5 November 2020).
- Zedler, J.B. Wetlands at your service: Reducing impacts of agriculture at the watershed scale. Front. Ecol. Environ. 2003, 1, 65–72. [Google Scholar] [CrossRef]
- DeLaney, T.A. Benefits to downstream flood attenuation and water quality as a result of constructed wetlands in agricultural landscapes. J. Soil Water Conserv. 1995, 50, 620–626. [Google Scholar]
- Canadian Wildlife Service; Environment Canada. The Federal Policy on Wetland Conservation; Environment Canada: Ottawa, ON, Canada, 1991; ISBN 978-0-662-18940-4.
- Rubec, C.D.A.; Hanson, A.R. Wetland mitigation and compensation: Canadian experience. Wetl. Ecol Manag. 2009, 17, 3–14. [Google Scholar] [CrossRef]
- ECCC. Evaluation at a Glance: Evaluation of the National Wetland Conservation Fund; ECCC: Toronto, ON, Canada, 2019.
- USA. North American Wetlands Conservation Act (103 Stat. 1968); NAWCA: Washington, DC, USA, 1989; Volume 103, p. 11.
- Shaker, R.R.; Aversa, J.; Papp, V.; Serre, B.M.; Mackay, B.R. Showcasing Relationships between Neighborhood Design and Wellbeing Toronto Indicators. Sustainability 2020, 12, 997. [Google Scholar] [CrossRef] [Green Version]
- Leitão, A.; Miller, J.; Ahern, J.; McGarigal, K. Measuring Landscapes; Island Press: Washington, DC, USA, 2006; ISBN 978-1-55963-899-9. [Google Scholar]
Variable | Resolution | Source | Year |
---|---|---|---|
Agriculture | 50 m | Agricultural Resource Inventory (ARI)—Ontario Ministry of Agriculture, Food, and Rural Affairs | 1983–2010 |
Built-up Area | 15 m | Built-up Area—Ontario Ministry of Natural Resources (OMNR) | 2013 |
Roads | 10–50 m | Major Roads Network—DMTI Spatial | 2018 |
Groundwater | N/A | Provincial Groundwater Monitoring Network (PGMN)—Ministry of Environment | 2016 |
Major Waterbodies | 5–30 m | Waterbodies Region—DMTI Spatial | 2018 |
DEM | 30 m | DEM90 Digital Elevation Model—EarthEnv | 2014 |
Soil Type | 50 m | Canadian Land Inventory—Detailed Soil Survey (DSS) Compilations | 2010 |
Stream Network | 10 m | Ontario Ministry of Natural Resources—Ontario Hydro Network (OHN) | 2010 |
Existing Wetland | Approx. 50 m | Wetland Unit—Land Information Ontario (LIO) | 2011 |
DU 1800 Wetland | Variable | 1800 Presettlement wetland extent (c.1800)—Ducks Unlimited Canada (DUC) | 2010 |
Variable | Goal | Pre-Processing |
---|---|---|
Agriculture | Prioritize conversion | Clip, Select and Export Agriculture only, Rasterize |
Built-up Area | Avoid | Clip, Rasterize, Append “roads” to “built-up” |
Road Network | Avoid | Clip, Rasterize, Append “roads” to “built-up” |
Soil Drainage | Prioritize soils that are naturally more like wetlands and avoid those with rapid drainage. Prioritize areas that are prone to flooding | Clip, Rasterize, Aggregate Classes |
Groundwater Level | Prioritize shallow | Interpolate Surface (Kriging), Clip |
Slope | Prioritize gentler slopes | Mosaic, Clip, Run Slope on DEM, Aggregate Classes |
Stream Proximity | Prioritize closer proximity to streams | Clip, Run 250 m and 500 m buffers, Rasterize |
Major Waterbodies | Avoid major lakes and streams | Clip, Rasterize |
Soil Drainage | Streams | Groundwater | Built-Up | Agriculture | Slope | Waterbodies | |
---|---|---|---|---|---|---|---|
Soil Drainage | 1 | 6 | 8 | 6 | 4 | 9 | N/A |
Streams | 1/6 | 1 | 4 | 1/2 | 1/3 | 5 | N/A |
Groundwater | 1/8 | 1/4 | 1 | 1/4 | 1/6 | 3 | N/A |
Built-up | 1/6 | 2 | 4 | 1 | 1/3 | 5 | N/A |
Agriculture | 1/4 | 3 | 6 | 3 | 1 | 7 | N/A |
Slope | 1/9 | 1/5 | 1/3 | 1/5 | 1/7 | 1 | N/A |
Waterbodies | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Criterion | Symbol | Range | Classes | Rank | Weight |
---|---|---|---|---|---|
Agriculture | Ag | (Best) Agriculture—Not | Agriculture | 10 | 0.218 |
Not | 0 | ||||
Built-up Area | Bu | (Best) Not—Built-up | Not | 10 | 0.123 |
Built-up | 0 | ||||
Soil Drainage Type | Sd | (Best) Very Poorly Drained to Not Applicable/Water | Very Poorly Drained | 10 | 0.482 |
Poorly and Imperfectly Drained | 7.5 | ||||
Moderately Well/Well Drained | 5 | ||||
Rapidly/Very Rapidly Drained | 2.5 | ||||
Not Applicable/Water | 0 | ||||
Groundwater Level (m) | Gw | (Best) 11.65–86.19 | 11.65–28.02 | 10 | 0.047 |
28.02–41.76 | 5 | ||||
41.76–86.19 | 0 | ||||
Slope (%) | Sl | (Best) 0–41.5378 | 0–0.4868 | 10 | 0.028 |
0.4868–1.298 | 5 | ||||
1.298–41.5378 | 0 | ||||
Stream Proximity | Sp | (Best) Within 250–Within 500 | Within 250 m | 10 | 0.102 |
Within 500 m | 5 | ||||
Major Waterbodies | Mw | (Best) Not—Major Waterbody | Major Waterbody | NoData | Constraint |
Not | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medland, S.J.; Shaker, R.R.; Forsythe, K.W.; Mackay, B.R.; Rybarczyk, G. A multi-Criteria Wetland Suitability Index for Restoration across Ontario’s Mixedwood Plains. Sustainability 2020, 12, 9953. https://doi.org/10.3390/su12239953
Medland SJ, Shaker RR, Forsythe KW, Mackay BR, Rybarczyk G. A multi-Criteria Wetland Suitability Index for Restoration across Ontario’s Mixedwood Plains. Sustainability. 2020; 12(23):9953. https://doi.org/10.3390/su12239953
Chicago/Turabian StyleMedland, Sally J., Richard R. Shaker, K. Wayne Forsythe, Brian R. Mackay, and Greg Rybarczyk. 2020. "A multi-Criteria Wetland Suitability Index for Restoration across Ontario’s Mixedwood Plains" Sustainability 12, no. 23: 9953. https://doi.org/10.3390/su12239953