Can the Adoption of Protected Cultivation Facilities Affect Farm Sustainability?
Abstract
:1. Introduction
2. Protected Cultivation in Taiwan
3. Materials and Methods
3.1. Data
3.2. Method
3.2.1. The Determinants of the Adoption of Protected Cultivation
3.2.2. Effects of Adopting Protected Cultivation of Farm Outcomes and Labor Use
4. Results
4.1. Determinants of the Decision to Adopt Protected Cultivation
4.2. The Effects of Protected Cultivation Adoption on Farm Revenue, Farm Productivity and Farm Profit
4.3. The Effects of Protected Cultivation Adoption on Labor Use Decisions
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Propensity Score Matching Method
Appendix A.2. Inverse Probability Weighting Method
Appendix A.3. Inverse Probability Weighting Regression Adjustment Method
Variable | Match | Mean | t-Test | |||
---|---|---|---|---|---|---|
Treatment | Comparison | % bias | t | p > |t| | ||
Male | Unmatched | 0.834 | 0.800 | 8.8 | 15.69 | 0.000 |
Matched | 0.834 | 0.843 | −2.4 | −3.55 | 0.000 | |
Age_40 | Unmatched | 0.039 | 0.031 | 4.4 | 8.50 | 0.000 |
Matched | 0.039 | 0.035 | 2.6 | 3.62 | 0.000 | |
Age_4150 | Unmatched | 0.142 | 0.118 | 7.0 | 13.18 | 0.000 |
Matched | 0.142 | 0.135 | 2.0 | 2.72 | 0.006 | |
Age_5160 | Unmatched | 0.296 | 0.280 | 3.6 | 6.57 | 0.000 |
Matched | 0.296 | 0.294 | 0.4 | 0.61 | 0.545 | |
Age_6170 | Unmatched | 0.287 | 0.287 | 0.0 | −0.01 | 0.992 |
Matched | 0.287 | 0.291 | −0.8 | −1.07 | 0.285 | |
Junior | Unmatched | 0.255 | 0.232 | 5.3 | 9.84 | 0.000 |
Matched | 0.255 | 0.255 | 0.1 | 0.16 | 0.871 | |
Senior | Unmatched | 0.280 | 0.253 | 6.2 | 11.54 | 0.000 |
Matched | 0.280 | 0.272 | 2.0 | 2.73 | 0.006 | |
College | Unmatched | 0.078 | 0.081 | −1.4 | −2.47 | 0.013 |
Matched | 0.078 | 0.072 | 2.2 | 3.20 | 0.001 | |
Experience_0509 | Unmatched | 0.111 | 0.121 | −3.1 | −5.71 | 0.000 |
Matched | 0.111 | 0.099 | 3.5 | 5.22 | 0.000 | |
Experience_1019 | Unmatched | 0.209 | 0.207 | 0.4 | 0.81 | 0.420 |
Matched | 0.209 | 0.204 | 1.4 | 1.92 | 0.054 | |
Experience_20 | Unmatched | 0.619 | 0.593 | 5.2 | 9.54 | 0.000 |
Matched | 0.619 | 0.639 | −4.1 | −5.93 | 0.000 | |
HHSIZE | Unmatched | 3.873 | 3.527 | 17.3 | 32.14 | 0.000 |
Matched | 3.873 | 3.827 | 2.3 | 3.18 | 0.001 | |
HHSIZE_child | Unmatched | 0.070 | 0.056 | 10.0 | 18.94 | 0.000 |
Matched | 0.070 | 0.064 | 3.9 | 5.37 | 0.000 | |
Vegetable | Unmatched | 0.385 | 0.387 | −0.4 | −0.71 | 0.476 |
Matched | 0.385 | 0.397 | −2.6 | −3.68 | 0.000 | |
Flower | Unmatched | 0.070 | 0.007 | 32.9 | 90.42 | 0.000 |
Matched | 0.070 | 0.068 | 0.6 | 0.59 | 0.558 | |
Land | Unmatched | 0.905 | 0.842 | 4.4 | 7.80 | 0.000 |
Matched | 0.905 | 0.927 | −1.6 | −1.60 | 0.111 | |
Center | Unmatched | 0.559 | 0.338 | 45.5 | 84.85 | 0.000 |
Matched | 0.559 | 0.563 | −0.9 | −1.28 | 0.202 | |
South | Unmatched | 0.336 | 0.511 | −35.8 | −64.52 | 0.000 |
Matched | 0.336 | 0.328 | 1.8 | 2.60 | 0.009 | |
East | Unmatched | 0.010 | 0.039 | −18.7 | −29.08 | 0.000 |
Matched | 0.010 | 0.011 | −0.4 | −0.91 | 0.360 |
References
- Hayati, D. A Literature Review on Frameworks and Methods for Measuring and Monitoring Sustainable Agriculture; No. 22. Technical Report; Food and Agriculture Organization: Roma, Italy, 2017. [Google Scholar]
- Hardaker, J.B. Guidelines for the Integration of Sustainable Agriculture and Rural Development into Agricultural Policies; Food & Agriculture Organization: Roma, Italy, 1997. [Google Scholar]
- EU Commission. A Framework for Indicators for the Economic and Social Dimensions of Sustainable Agriculture and Rural Development; Food and Agriculture Organization: Roma, Italy, 2001.
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Jat, M.L. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ. Dev. Sustain. 2019, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Fleming, A.; Vanclay, F. Farmer responses to climate change and sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Yohannes, H. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Chang. 2016, 7, 335. [Google Scholar]
- Mishra, G.P.; Singh, N.; Kumar, H.; Singh, S.B. Protected cultivation for food and nutritional security at Ladakh. Def. Sci. J. 2010, 60, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Ummyiah, H.M.; Wani, K.P.; Khan, S.H.; Magray, M.M. Protected cultivation of vegetable crops under temperate conditions. J. Pharmacogn. Phytochem. 2017, 6, 1629–1634. [Google Scholar]
- Sengar, S.H.; Kothari, S. Economic evaluation of greenhouse for cultivation of rose nursery. Afr. J. Agric. Res. 2008, 3, 435–439. [Google Scholar]
- Kuswardhani, N.; Soni, P.; Shivakoti, G.P. Development protected cultivation in horticulture product: Feasibility analysis in West Java Province. Int. J. Adv. Sci. Eng. Inf. Technol. 2014, 4, 368–372. [Google Scholar] [CrossRef]
- Duhan, P.K. Cost benefit analysis of tomato production in protected and open farm. Int. J. Adv. Res. Manag. Soc. Sci. 2016, 5, 140–148. [Google Scholar]
- Salamé-Donoso, T.P.; Santos, B.M.; Chandler, C.K.; Sargent, S.A. Effect of high tunnels on the growth, yields, and soluble solids of strawberry cultivars in Florida. Int. J. Fruit Sci. 2010, 10, 249–263. [Google Scholar] [CrossRef]
- Council of Agriculture, Executive Yuan, Taiwan. Agriculture and Agri-Food Chain Statistics. Available online: https://echart.coa.gov.tw/index.php?cid=3 (accessed on 25 October 2020).
- Castellini, C.; Boggia, A.; Cortina, C.; Dal Bosco, A.; Paolotti, L.; Novelli, E.; Mugnai, C. A multicriteria approach for measuring the sustainability of different poultry production systems. J. Clean. Prod. 2012, 37, 192–201. [Google Scholar] [CrossRef]
- Gafsi, M.; Legagneux, B.; Nguyen, G.; Robin, P. Towards sustainable farming systems: Effectiveness and deficiency of the French procedure of sustainable agriculture. Agric. Syst. 2006, 90, 226–242. [Google Scholar] [CrossRef]
- Herzog, F.; Gotsch, N. Assessing the sustainability of smallholder tree crop production in the tropics: A methodological outline. J. Sustain. Agric. 1998, 11, 13–37. [Google Scholar] [CrossRef]
- Pannell, D.J.; Glenn, N.A. A framework for the economic evaluation and selection of sustainability indicators in agriculture. Ecol. Econ. 2000, 33, 135–149. [Google Scholar] [CrossRef]
- Harvest. Facility Agriculture Overview and Policy in Taiwan. Available online: https://reading.udn.com/v2/magDesc.do?id=116708 (accessed on 18 July 2020).
- Environmental Protection Administration. Extreme Events and Disasters Are the Biggest Threat to Taiwan: Typhoon Morakot; Environmental Protection Administration: Taipei, Taiwan, 2010.
- Council of Agriculture, Executive Yuan, Taiwan. Available online: https://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx (accessed on 15 September 2020).
- Choudhary, M.L.; Patel, V.B.; Siddiqui, M.W.; Mahdl, S.S. Climate Dynamics in Horticultural Science, Volume One: The Principles and Applications; CRC Press: Florida, FL, USA, 2015. [Google Scholar] [CrossRef]
- Knox, J.; Morris, J.; Hess, T. Identifying future risks to UK agricultural crop production: Putting climate change in context. Outlook Agric. 2010, 39, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Rajasekar, M.; Arumugam, T.; Kumar, S.R. Influence of weather and growing environment on vegetable growth and yield. J. Hortic. For. 2013, 5, 160–167. [Google Scholar]
- Wooldridge, J. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Guo, S.; Fraser, M.W. Propensity Score Analysis: Statistical Methods and Applications; Sage Publications Inc.: California, CA, USA, 2010. [Google Scholar]
- Mutoko, M.C. Adoption of Climate-Smart Agricultural Practices: Barriers, Incentives, Benefits and Lessons Learnt from the MICCA Pilot Site in Kenya; MCC Program; FAO: Rome, Italy, 2014; pp. 1–62. [Google Scholar]
- Ghanghas, B.S.; Malik, J.S.; Yadav, V.P.S. Sustainable vegetables and flowers production technology (poly house): Problems & prospects in Haryana. Indian Res. J. Ext. Educ. 2018, 18, 12–16. [Google Scholar]
- Al-Shadiadeh, A.N.; Al-mohammady, F.M.; Abu-Zahrah, T.R. Factors influencing adoption of protected tomato farming practices among farmers in Jordan Valley. World Appl. Sci. J. 2012, 17, 572–578. [Google Scholar]
- Ahmed, S.; Bagchi, K.K. Factors and constraints for adopting new agricultural technology in Assam with special reference to Nalbari district: An empirical study. Contemp. Indian Policy 2004, 3, 205–216. [Google Scholar]
- Gabre-Madhin, E.Z.; Haggblade, S. Successes in African agriculture: Results of an expert survey. World Dev. 2004, 32, 745–766. [Google Scholar] [CrossRef] [Green Version]
- Mignouna, D.B.; Manyong, V.M.; Rusike, J.; Mutabazi, K.D.S.; Senkondo, E.M. Determinants of adopting imazapyr-resistant maize technologies and its impact on household income in Western Kenya. Agbioforum 2011, 14, 158–163. [Google Scholar]
- Punera, B.; Pal, S.; Jha, G.K.; Kumar, P. Economics and institutional aspects of protected cultivation of carnation in Himachal Pradesh. Agric. Econ. Res. Rev. 2017, 29, 73–80. [Google Scholar] [CrossRef]
- Hanan, J.J.; Holley, W.D.; Goldsberry, K.L. Greenhouse Management; Springer Science & Business Media: Berlin, Germany, 2012; Volume 5. [Google Scholar] [CrossRef]
- Maheshwari, B.; Purohit, R.; Malano, H.; Singh, V.P.; Amerasinghe, P. The security of water, food, energy and liveability of cities. Water Sci. Technol. 2014, 71. [Google Scholar] [CrossRef]
- Food and Fertilizer Technology Center. Protective Structures for Improved Crop Production. Available online: https://www.fftc.org.tw/zh/publications/main/1082 (accessed on 5 August 2020).
- Vecchio, Y.; Agnusdei, G.P.; Miglietta, P.P.; Capitanio, F. Adoption of precision farming tools: The case of Italian farmers. Int. J. Environ. Res. Public Health 2020, 17, 869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergstrand, K.-J. Approaches for Mitigating the Environmental Impact of Greenhouse Horticulture. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, January 2010. [Google Scholar]
- Bres, W. Estimation of nutrient losses from open fertigation systems to soil during horticultral plant cultivation. Pol. J. Environ. Stud. 2009, 18, 341–345. [Google Scholar]
- Carlsson-Kanyama, A. Food consumption patterns and their influence on climate change. Ambio 1998, 27, 528–534. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Cameron, A.; Trivedi, P. Microeconometrics: Methods and Applications; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Hirano, K.; Imbens, G.; Ridder, G. Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 2003, 71, 1161–1189. [Google Scholar] [CrossRef] [Green Version]
Full Sample | Treatment Group: Protected Cultivation Adopters | Control Group: Protected Cultivation Non-Adopters | |||||
---|---|---|---|---|---|---|---|
Number of Farms (%) | 255,925 (100%) | 39,917 (16%) | 216,008 (84%) | ||||
Variable | Definition | Mean | S.D. | Mean | S.D. | Mean | S.D. |
Adoption | If adopting protective cultivation (= 1). | 0.16 | 0.36 | 1.00 | 0.00 | 0.00 | 0.00 |
Farm revenue | Annual farm revenue (TWD 1000). | 407.99 | 790.97 | 760.07 | 1150.37 | 342.92 | 685.25 |
Farm productivity | Farm revenue per hectare of cultivated land (TWD 1000/hectare). | 529.45 | 992.38 | 973.49 | 2265.84 | 447.40 | 418.25 |
Farm profit | Farm’s annual profit (TWD 1000). | 226.16 | 403.00 | 412.94 | 552.66 | 191.65 | 358.25 |
Hired labor | Total number of hired workers (person). | 4.02 | 11.33 | 6.66 | 15.24 | 3.54 | 10.38 |
On-farm days | Days of the farm operator worked on farm in 2015 (day). | 113.85 | 76.93 | 150.81 | 83.43 | 107.02 | 73.67 |
Off-farm work | If the farm operator worked off the farm in 2015 (= 1). | 0.21 | 0.41 | 0.10 | 0.30 | 0.23 | 0.42 |
Disaster | If the farm household exposed to any natural disaster in 2015 (= 1). | 0.10 | 0.31 | 0.11 | 0.32 | 0.10 | 0.30 |
Socio-demographic characteristics of farm operators | |||||||
Male | If a male farm operator (= 1). | 0.80 | 0.40 | 0.83 | 0.37 | 0.80 | 0.40 |
Age_40 | If age is ≦40 (= 1). | 0.03 | 0.18 | 0.04 | 0.19 | 0.03 | 0.17 |
Age_4150 | If age is 41–50 (= 1). | 0.12 | 0.33 | 0.14 | 0.35 | 0.12 | 0.32 |
Age_5160 | If age is 51–60 (= 1). | 0.28 | 0.45 | 0.30 | 0.46 | 0.28 | 0.45 |
Age_6170 | If age is 61–70 (= 1). | 0.29 | 0.45 | 0.29 | 0.45 | 0.29 | 0.45 |
Age_71 | If age is ≧71 (= 1). | 0.28 | 0.45 | 0.24 | 0.42 | 0.28 | 0.45 |
Primal | If finished elementary school or below (= 1). | 0.43 | 0.49 | 0.39 | 0.49 | 0.43 | 0.50 |
Junior | If finished junior high school (= 1). | 0.24 | 0.42 | 0.26 | 0.44 | 0.23 | 0.42 |
Senior | If finished senior high school (= 1). | 0.26 | 0.44 | 0.28 | 0.45 | 0.25 | 0.43 |
College | If college education or higher (= 1). | 0.08 | 0.27 | 0.08 | 0.27 | 0.08 | 0.27 |
Experience _04 | If less than 5 years farm experience (= 1). | 0.08 | 0.26 | 0.06 | 0.24 | 0.08 | 0.27 |
Experience _0509 | If 5–9 years farm experience (= 1). | 0.12 | 0.32 | 0.11 | 0.31 | 0.12 | 0.33 |
Experience _1019 | If 10–19 years farm experience (= 1). | 0.21 | 0.41 | 0.21 | 0.41 | 0.21 | 0.41 |
Experience _20 | If more than 19 years farm experience (= 1). | 0.60 | 0.49 | 0.62 | 0.49 | 0.59 | 0.49 |
Household characteristics | |||||||
HHSIZE | Number of family members (person). | 3.58 | 1.98 | 3.87 | 2.04 | 3.53 | 1.96 |
HHSIZE _child | Ratio of family members aged <15 to total number of members. | 0.06 | 0.13 | 0.07 | 0.14 | 0.06 | 0.13 |
Farm characteristics | |||||||
Vegetable | If a vegetable farm (= 1). | 0.39 | 0.49 | 0.38 | 0.49 | 0.39 | 0.49 |
Fruit | If a fruit farm (= 1). | 0.60 | 0.49 | 0.55 | 0.50 | 0.61 | 0.49 |
Flower | If a flower farm (= 1). | 0.02 | 0.13 | 0.07 | 0.25 | 0.01 | 0.08 |
Land | Size of the farm land (hectare). | 0.85 | 1.47 | 0.90 | 1.34 | 0.84 | 1.49 |
North | If in northern Taiwan (= 1). | 0.11 | 0.31 | 0.10 | 0.29 | 0.11 | 0.32 |
Center | If in central Taiwan (= 1). | 0.37 | 0.48 | 0.56 | 0.50 | 0.34 | 0.47 |
South | If in southern Taiwan (= 1). | 0.48 | 0.50 | 0.34 | 0.47 | 0.51 | 0.50 |
East | If in eastern Taiwan (= 1). | 0.03 | 0.18 | 0.01 | 0.10 | 0.04 | 0.19 |
Variable | Coefficient (1) | S.E. (2) | Marginal Effect (3) | |
---|---|---|---|---|
Male | 0.040 | * | 0.023 | 0.009 |
Age_40 a | 0.330 | *** | 0.063 | 0.074 |
Age_4150 | 0.219 | *** | 0.045 | 0.049 |
Age_5160 | 0.130 | 0.037 | 0.029 | |
Age_6170 | 0.101 | 0.021 | 0.023 | |
Junior b | 0.072 | 0.031 | 0.016 | |
Senior | 0.086 | 0.054 | 0.019 | |
College | 0.050 | 0.039 | 0.011 | |
Experience_0509 c | 0.143 | 0.063 | 0.032 | |
Experience_1019 | 0.221 | *** | 0.057 | 0.049 |
Experience_20 | 0.330 | *** | 0.045 | 0.074 |
HHSIZE | 0.031 | *** | 0.011 | 0.007 |
HHSIZE_child | 0.059 | 0.039 | 0.013 | |
Vegetable d | 0.024 | 0.216 | 0.005 | |
Flower | 1.336 | *** | 0.198 | 0.299 |
Land | 0.014 | ** | 0.007 | 0.003 |
Center e | 0.380 | ** | 0.170 | 0.085 |
South | −0.114 | 0.166 | −0.026 | |
East | −0.583 | *** | 0.166 | −0.130 |
Constant | −1.729 | *** | 0.221 | |
Log Likelihood | −103,681 | |||
N | 255,925 |
Method | Farm Revenue | Farm Productivity | Farm Profit | ||||||
---|---|---|---|---|---|---|---|---|---|
Coefficient | S.E. | Coefficient | S.E. | Coefficient | S.E. | ||||
PSM | 0.712 | *** | 0.008 | 0.634 | *** | 0.006 | 0.680 | *** | 0.008 |
IPW | 0.738 | *** | 0.061 | 0.632 | *** | 0.067 | 0.706 | *** | 0.062 |
IPWRA | 0.744 | *** | 0.061 | 0.642 | *** | 0.067 | 0.714 | *** | 0.065 |
N | 255,925 | 255,925 | 255,925 |
Farm Revenue | ||||||
Disaster-Affected Group | Non-Disaster-Affected Group | |||||
Method | Coefficient | S.E. | Coefficient | S.E. | ||
PSM | 0.695 | *** | 0.022 | 0.738 | *** | 0.008 |
IPW | 0.660 | *** | 0.082 | 0.753 | *** | 0.064 |
IPWRA | 0.650 | *** | 0.090 | 0.761 | *** | 0.063 |
N | 26,766 | 229,159 | ||||
Farm Productivity | ||||||
Disaster-Affected Group | Non-Disaster-Affected Group | |||||
Method | Coefficient | S.E. | Coefficient | S.E. | ||
PSM | 0.541 | *** | 0.018 | 0.661 | *** | 0.007 |
IPW | 0.537 | *** | 0.145 | 0.652 | *** | 0.063 |
IPWRA | 0.548 | *** | 0.144 | 0.662 | *** | 0.063 |
N | 26,766 | 229,159 | ||||
Farm Profit | ||||||
Disaster-Affected Group | Non-Disaster-Affected Group | |||||
Method | Coefficient | S.E. | Coefficient | S.E. | ||
PSM | 0.678 | *** | 0.023 | 0.706 | *** | 0.008 |
IPW | 0.629 | *** | 0.084 | 0.720 | *** | 0.064 |
IPWRA | 0.626 | *** | 0.091 | 0.731 | *** | 0.066 |
N | 26,766 | 229,159 |
Hired Workers | On-Farm Days | Off-Farm Employment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | Coefficient | S.E. | Magnitude #1 | Coefficient | S.E. | Magnitude #1 | Coefficient | S.E. | Magnitude #1 | |||
PSM | 1.947 | *** | 0.081 | 48% | 38.212 | *** | 0.596 | 34% | 0.115 | *** | 0.002 | −55% |
IPW | 2.064 | *** | 0.531 | 51% | 38.930 | *** | 2.520 | 34% | −0.113 | *** | 0.008 | −54% |
IPWRA | 1.948 | *** | 0.649 | 48% | 38.977 | *** | 2.527 | 34% | −0.114 | *** | 0.008 | −54% |
N | 255,925 | 255,925 | 255,925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, P.-A.; Liu, J.-Y.; Sun, L.-C.; Chang, H.-H. Can the Adoption of Protected Cultivation Facilities Affect Farm Sustainability? Sustainability 2020, 12, 9970. https://doi.org/10.3390/su12239970
Liao P-A, Liu J-Y, Sun L-C, Chang H-H. Can the Adoption of Protected Cultivation Facilities Affect Farm Sustainability? Sustainability. 2020; 12(23):9970. https://doi.org/10.3390/su12239970
Chicago/Turabian StyleLiao, Pei-An, Jhih-Yun Liu, Lih-Chyun Sun, and Hung-Hao Chang. 2020. "Can the Adoption of Protected Cultivation Facilities Affect Farm Sustainability?" Sustainability 12, no. 23: 9970. https://doi.org/10.3390/su12239970
APA StyleLiao, P. -A., Liu, J. -Y., Sun, L. -C., & Chang, H. -H. (2020). Can the Adoption of Protected Cultivation Facilities Affect Farm Sustainability? Sustainability, 12(23), 9970. https://doi.org/10.3390/su12239970