Communicating the Risks and Benefits of Human Urine-Derived Fertilizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Analysis
3. Results
3.1. Comparisons of Communication Strategies
3.2. Moderating Variables: Strategy, Age, and Education Level
3.3. Predictors of HUDF Acceptance
4. Discussion
4.1. The Usefulness of HUDF Risk Communication
4.2. Risk Communication and HUDF Acceptance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frissel, M.J. Cycling of Mineral Nutrients in Agricultural Ecosystems; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Ashley, K.; Cordell, D.; Mavinic, D. A brief history of phosphorus: From the philosopher’s stone to nutrient recovery and reuse. Chemosphere 2011, 84, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Stewart, W.M.; Dibb, D.W.; Johnston, A.E.; Smyth, T.J. The Contribution of Commercial Fertilizer Nutrients to Food Production. Agron. J. 2005, 97, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Energy Environ. 2000, 25, 53–88. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Qu, S.; Zhao, Q.; Zhang, X.; Daigger, G.T.; Newell, J.P.; Miller, S.A.; Johnson, J.X.; Love, N.G.; Zhang, L.; et al. Quantifying the Urban Food–Energy–Water Nexus: The Case of the Detroit Metropolitan Area. Environ. Sci. Technol. 2019, 53, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Kalmykova, Y.; Harder, R.; Borgestedt, H.; Svanäng, I. Pathways and Management of Phosphorus in Urban Areas. J. Ind. Ecol. 2012, 16, 928–939. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Franzén, D.; Malmström, M.E. Anthropogenic phosphorus flows under different scenarios for the city of Stockholm, Sweden. Sci. Total Environ. 2016, 542, 1094–1105. [Google Scholar] [CrossRef] [Green Version]
- Wilsenach, J.; Van Loosdrecht, M. Impact of separate urine collection on wastewater treatment systems. Water Sci. Technol. 2003, 48, 103–110. [Google Scholar] [CrossRef]
- Trimmer, J.T.; Margenot, A.J.; Cusick, R.D.; Guest, J.S. Aligning Product Chemistry and Soil Context for Agronomic Reuse of Human-Derived Resources. Environ. Sci. Technol. 2019, 53, 6501–6510. [Google Scholar] [CrossRef]
- Larsen, T.A.; Peters, I.; Alder, A.; Eggen, R.; Maurer, M.; Muncke, J. Re-engineering the toilet for sustainable wastewater management. Environ. Sci. Technol. 2001, 35, 192A–197A. [Google Scholar] [CrossRef] [Green Version]
- Lind, B.-B.; Ban, Z.; Bydén, S. Volume reduction and concentration of nutrients in human urine. Ecol. Eng. 2001, 16, 561–566. [Google Scholar] [CrossRef]
- Tarpeh, W.A.; Udert, K.M.; Nelson, K.L. Comparing Ion Exchange Adsorbents for Nitrogen Recovery from Source-Separated Urine. Environ. Sci. Technol. 2017, 51, 2373–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christiaens, M.E.R.; Udert, K.M.; Arends, J.B.A.; Huysman, S.; Vanhaecke, L.; McAdam, E.; Rabaey, K. Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants. Water Res. 2019, 150, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simha, P.; Senecal, J.; Nordin, A.; Lalander, C.; Vinnerås, B. Alkaline dehydration of anion–exchanged human urine: Volume reduction, nutrient recovery and process optimisation. Water Res. 2018, 142, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Simha, P.; Lalander, C.; Ramanathan, A.; Vijayalakshmi, C.; McConville, J.R.; Vinnerås, B.; Ganesapillai, M. What do consumers think about recycling human urine as fertiliser? Perceptions and attitudes of a university community in South India. Water Res. 2018, 143, 527–538. [Google Scholar] [CrossRef]
- Lienert, J.; Larsen, T.A. High Acceptance of Urine Source Separation in Seven European Countries: A Review. Environ. Sci. Technol. 2010, 44, 556–566. [Google Scholar] [CrossRef]
- Lienert, J.; Thiemann, K.; Kaufmann-Hayoz, R.; Larsen, T.A. Young users accept NoMix toilets–a questionnaire survey on urine source separating toilets in a college in Switzerland. Water Sci. Technol. 2006, 54, 403–412. [Google Scholar] [CrossRef]
- Lamichhane, K.M.; Babcock, R.W., Jr. Survey of attitudes and perceptions of urine-diverting toilets and human waste recycling in Hawaii. Sci. Total Environ. 2013, 443, 749–756. [Google Scholar] [CrossRef]
- Segrè Cohen, A.; Love, N.G.; Nace, K.K.; Árvai, J. Consumers’ acceptance of agricultural fertilizers derived from diverted and recycled human urine. Environ. Sci. Technol. 2020, 54, 5297–5305. [Google Scholar] [CrossRef]
- Kasperson, R.E.; Kasperson, J.X. The social amplification and attenuation of risk. Ann. Am. Acad. 1996, 545, 95–105. [Google Scholar] [CrossRef]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S. The social amplification of risk: A conceptual framework. Risk Anal. 1987, 8, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Siegrist, M.; Cousin, M.-E.; Kastenholz, H.; Wiek, A. Public acceptance of nanotechnology foods and food packaging: The influence of affect and trust. Appetite 2007, 49, 459–466. [Google Scholar] [CrossRef] [PubMed]
- L’Orange Seigo, S.; Arvai, J.; Dohle, S.; Siegrist, M. Predictors of risk and benefit perception of carbon capture and storage (CCS) in regions with different stages of deployment. Int. J. Greenh. Gas Control 2014, 25, 23–32. [Google Scholar] [CrossRef]
- Visschers, V.H.; Shi, J.; Siegrist, M.; Arvai, J. Beliefs and values explain international differences in perception of solar radiation management: Insights from a cross-country survey. Clim. Chang. 2017, 142, 531–544. [Google Scholar] [CrossRef]
- Fielding, K.S.; Dolnicar, S.; Schultz, T. Public acceptance of recycled water. Int. J. Water Resour. Dev. 2019, 35, 551–586. [Google Scholar] [CrossRef]
- Gamson, W.A.; Modigliani, A. Media discourse and public opinion on nuclear power. Am. J. Sociol. 1989, 95, 1–37. [Google Scholar] [CrossRef]
- Flynn, J.; Kasperson, R.; Kunreuther, H.; Slovic, P. Time to rethink nuclear waste storage. Issues Sci. Technol. 1992, 8, 42–48. [Google Scholar]
- Frewer, L. The public and effective risk communication. Toxicol. Lett. 2004, 149, 391–397. [Google Scholar] [CrossRef]
- Árvai, J. The end of risk communication as we know it. J. Risk Res. 2014, 17, 1245–1249. [Google Scholar] [CrossRef]
- Fischhoff, B. Risk Perception and Communication Unplugged: Twenty Years of Process. Risk Anal. 1995, 15, 137–145. [Google Scholar] [CrossRef]
- Arvai, J.; Campbell-Arvai, V. Risk communication: Insights from the decision sciences. In Effective Risk Communication: Learning from the Past, Charting a Course for the Future; Arvai, J., Rivers, L., Eds.; Taylor & Francis: London, UK, 2013; pp. 234–257. [Google Scholar]
- Morgan, M.G.; Fischhoff, B.; Bostrom, A.; Atman, C.J. Risk Communication: A Mental Models Approach; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Rutsaert, P.; Regan, Á.; Pieniak, Z.; McConnon, Á.; Moss, A.; Wall, P.; Verbeke, W. The use of social media in food risk and benefit communication. Trends Food Sci. Technol. 2013, 30, 84–91. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Barnett, J.; Bigdeli, A.Z.; Sams, S. Social media in emergency management: Twitter as a tool for communicating risks to the public. Technol. Forecast. Soc. Chang. 2016, 111, 86–96. [Google Scholar] [CrossRef] [Green Version]
- John, D.R.; Cole, C.A. Age Differences in Information Processing: Understanding Deficits in Young and Elderly Consumers. J. Consum. Res. 1986, 13, 297–315. [Google Scholar] [CrossRef]
- Krouse, H.J. Video modelling to educate patients. J. Adv. Nurs. 2001, 33, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.H.; van der Linden, S.; Ballew, M.T.; Rosenthal, S.A.; Gustafson, A.; Leiserowitz, A. The Experience of Consensus: Video as an Effective Medium to Communicate Scientific Agreement on Climate Change. Sci. Commun. 2019, 41, 659–673. [Google Scholar] [CrossRef]
- Visschers, V.H.M.; Meertens, R.M.; Passchier, W.F.; de Vries, N.K. Audiovisual risk communication unravelled: Effects on gut feelings and cognitive processes. J. Risk Res. 2008, 11, 207–221. [Google Scholar] [CrossRef]
- Campbell-Arvai, V. Visits from the ghost of disturbance past: Information about past disturbance influences lay judgments of ecosystems. J. Environ. Manag. 2019, 232, 438–444. [Google Scholar] [CrossRef]
- Siegrist, M. Factors influencing public acceptance of innovative food technologies and products. Trends Food Sci. Technol. 2008, 19, 603–608. [Google Scholar] [CrossRef]
- Finucane, M.L.; Alhakami, A.; Slovic, P.; Johnson, S.M. The affect heuristic in judgments of risks and benefits. J. Behav. Decis. Mak. 2000, 13, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.S.; Arvai, J.L. When less is more: How affect influences preferences when comparing low and high-risk options. J. Risk Res. 2006, 9, 165–178. [Google Scholar] [CrossRef]
- Curtis, V.; de Barra, M.; Aunger, R. Disgust as an adaptive system for disease avoidance behaviour. Philos. Trans. R. Soc. B: Biol. Sci. 2011, 366, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Rozin, P.; Fallon, A.E. A perspective on disgust. Psychol. Rev. 1987, 94, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, S.C.; Rosa, E.A.; Dan, A.; Dietz, T. The Future of Nuclear Power: Value Orientations and Risk Perception. Risk Anal. 2009, 29, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Stern, P.C.; Dietz, T.; Abel, T.; Guagnano, G.A.; Kalof, L. A value-belief-norm theory of support for social movements: The case of environmentalism. Hum. Ecol. Rev. 1999, 6, 81–97. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Census Bureau 2017 American Community Survey 1-Year Estimates. Available online: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_17_1YR_S0201&prodType=table (accessed on 1 August 2020).
- Ammann, J.; Hartmann, C.; Siegrist, M. Does food disgust sensitivity influence eating behaviour? Experimental validation of the Food Disgust Scale. Food Qual. Prefer. 2018, 68, 411–414. [Google Scholar] [CrossRef]
- De Groot, J.I.; Steg, L. Value orientations to explain beliefs related to environmental significant behavior: How to measure egoistic, altruistic, and biospheric value orientations. Environ. Behav. 2008, 40, 330–354. [Google Scholar] [CrossRef]
- Ludwig, S.; Schuelper, N.; Brown, J.; Anders, S.; Raupach, T. How can we teach medical students to choose wisely? A randomised controlled cross-over study of video- versus text-based case scenarios. BMC Med. 2018, 16. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Phillips, M.M.; Lundeberg, M.A.; Koehler, M.J.; Hilden, K.; Dirkin, K.H. If a picture is worth a thousand words is video worth a million? Differences in affective and cognitive processing of video and text cases. J. Comput. High. Educ. 2011, 23, 15–37. [Google Scholar] [CrossRef]
- Musto, M.; Cardinale, D.; Lucia, P.; Faraone, D. Influence of Different Information Presentation Formats on Consumer Acceptability: The Case of Goat Milk Presented as Obtained from Different Rearing Systems. J. Sens. Stud. 2015, 30, 85–97. [Google Scholar] [CrossRef]
- Idriss, N.Z.; Alikhan, A.; Baba, K.; Amstrong, A.W. Online, Video-Based Patient Education Improves Melanoma Awareness: A Randomized Controlled Trial. Telemed. E-Health 2009, 15, 992–997. [Google Scholar] [CrossRef]
- Tarhini, A.; Hone, K.; Liu, X. Measuring the Moderating Effect of Gender and Age on E-Learning Acceptance in England: A Structural Equation Modeling Approach for An Extended Technology Acceptance Model. J. Educ. Comput. Res. 2014, 51, 163–184. [Google Scholar] [CrossRef]
- Thomas; Deary; Kaminski; Stockton; Zueew, D. Patients’ preferences for video cassette recorded information: Effect of age, sex and ethnic group. Eur. J. Cancer Care 1999, 8, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Camp, L.J.; Connelly, K.; Lorenzen-Huber, L. Risk Communication Design: Video vs. Text; Springer: Berlin/Heidelberg, Germany, 2012; pp. 279–298. [Google Scholar]
- Calderon, Y.; Haughey, M.; Bijur, P.E.; Leider, J.; Moreno-Walton, L.; Torres, S.; Gennis, P.; Bauman, L.J. An Educational HIV Pretest Counseling Video Program for Off-Hours Testing in the Emergency Department. Ann. Emerg. Med. 2006, 48, 27.e1. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.W.; Chesson, A.L.; Walker, L.; Arnold, C.L.; Chesson, L.M. Comparing the effectiveness of video and written material for improving knowledge among sleep disorders clinic patients with limited literacy skills. South Med. J. 2000, 93, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Poortvliet, P.M.; Sanders, L.; Weijma, J.; De Vries, J.R. Acceptance of new sanitation: The role of end-users’ pro-environmental personal norms and risk and benefit perceptions. Water Res. 2018, 131, 90–99. [Google Scholar] [CrossRef]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Arning, K.; Ziefle, M. Different Perspectives on Technology Acceptance: The Role of Technology Type and Age; Springer: Berlin/Heidelberg, Germany, 2009; pp. 20–41. [Google Scholar]
- Hauk, N.; Hüffmeier, J.; Krumm, S. Ready to be a Silver Surfer? A Meta-analysis on the Relationship Between Chronological Age and Technology Acceptance. Comput. Hum. Behav. 2018, 84, 304–319. [Google Scholar] [CrossRef]
- Basil, M.; Witte, K. Health risk message design using the extended parallel process model. In Health communication Message Design: Theory and Practice; Cho, H., Ed.; Sage Publications: Thousand Oaks, CA, USA, 2012; pp. 41–58. [Google Scholar]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Rogers, E. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
n | Women | Age (18–29) | Age (30–39) | Age (40–48) | Age (49–59) | Age (60+) | Low Education | Medium Education | High Education | |
---|---|---|---|---|---|---|---|---|---|---|
Control | 510 | 52% | 18% | 18% | 20% | 22% | 22% | 18% | 30% | 52% |
Short video | 503 | 50% | 18% | 19% | 20% | 20% | 23% | 18% | 28% | 54% |
Short text | 515 | 49% | 18% | 19% | 20% | 21% | 21% | 20% | 33% | 47% |
Long video | 506 | 50% | 17% | 20% | 21% | 21% | 22% | 17% | 33% | 50% |
Long text | 443 | 49% | 20% | 19% | 19% | 20% | 21% | 20% | 32% | 50% |
Total | 2477 | 50% | 18% | 19% | 20% | 21% | 21% | 19% | 31% | 51% |
C | ST | LT | SV | LV | F | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SE | SE | SE | SE | SE | ||||||||
Usefulness | 4.94 1,2,3,4 | 0.06 | 5.35 6,7 | 0.05 | 5.36 8,9 | 0.06 | 5.67 | 0.05 | 5.61 | 0.05 | 30.06 | <0.0001 |
Perceived Risk | 3.48 2,3,4 | 0.07 | 3.13 | 0.07 | 3.03 8 | 0.07 | 2.84 | 0.07 | 2.90 | 0.07 | 22.46 | <0.0001 |
Perceived Benefit | 4.24 1,2,3,4 | 0.06 | 4.73 6,7 | 0.06 | 4.87 | 0.07 | 5.11 | 0.06 | 5.05 | 0.06 | 37.15 | <0.0001 |
Acceptability | ||||||||||||
Non-Edible Use | 4.85 1,2,3,4 | 0.06 | 5.19 | 0.06 | 5.22 | 0.06 | 5.46 | 0.06 | 5.41 | 0.05 | 16.90 | <0.0001 |
Human Consumption | 3.97 1,2,3,4 | 0.08 | 4.39 6,7 | 0.08 | 4.62 | 0.08 | 4.96 | 0.07 | 4.91 | 0.07 | 25.83 | <0.0001 |
Step 1 | Step 2 | Step 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | η2 | β | 95% CI | η2 | β | 95% CI | η2 | |
Constant (Control) | 3.88 *** | 3.56; 4.20 | 3.31 *** | 2.76; 3.86 | 1.34 *** | 0.89; 1.78 | |||
Age | 0.00 | −0.00; 0.01 | 0.00 | −0.00 | −0.01; 0.00 | 0.00 | 0.01 ** | 0.00; 0.01 | 0.00 |
Gender (0 = man) | −0.49 *** | −0.63; −0.36 | 0.02 | −0.54 *** | −0.67; −0.40 | 0.03 | −0.24 *** | −0.34; −0.15 | 0.01 |
Education | 0.07 ** | −0.02; 0.11 | 0.00 | 0.04 | −0.01; 0.08 | 0.00 | 0.00 | −0.03; 0.03 | 0.00 |
Altruism | 0.09 | −0.02; 0.20 | 0.00 | −0.03 | −0.10; 0.05 | 0.00 | |||
Egoism | 0.13 *** | 0.05; 0.21 | 0.00 | 0.06 * | 0.01; 0.12 | 0.00 | |||
Biospherism | 0.37 *** | 0.27; 0.46 | 0.02 | 0.05 | −0.01; 0.12 | 0.00 | |||
Food Disgust Sensitivity | −0.33 *** | −0.41; 0.26 | 0.03 | −0.10 *** | −0.16; −0.05 | 0.01 | |||
Perceived Risk | −0.21 *** | −0.24; −0.17 | 0.05 | ||||||
Perceived Benefit | 0.72 *** | 0.68; 0.77 | 0.29 | ||||||
Perceived Naturalness | 0.08 *** | 0.05; 0.12 | 0.01 | ||||||
Long Video | 0.93 *** | 0.72; 1.14 | 0.03 | 0.90 *** | 0.70; 1.10 | 0.03 | 0.18 * | 0.04; 0.32 | 0.00 |
Short Video | 0.98 *** | 0.77; 1.19 | 0.03 | 0.95 *** | 0.75; 1.16 | 0.04 | 0.17 * | 0.03; 0.31 | 0.00 |
Long Text | 0.22 *** | 0.14; 0.29 | 0.01 | 0.21 *** | 0.14; 0.28 | 0.02 | −0.03 | −0.02; 0.08 | 0.00 |
Short Text | 0.43 *** | 0.22; 0.64 | 0.01 | 0.43 *** | 0.23; 0.63 | 0.01 | −0.02 | −0.16; 0.12 | 0.00 |
R2 | 0.07 | 0.14 | 0.60 | ||||||
F | 22.41 | 34.81 | 243.11 | ||||||
(df1, df 2) | (8, 2459) | (12, 2466) | (15, 2448) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segrè Cohen, A.; Love, N.G.; Árvai, J. Communicating the Risks and Benefits of Human Urine-Derived Fertilizer. Sustainability 2020, 12, 9973. https://doi.org/10.3390/su12239973
Segrè Cohen A, Love NG, Árvai J. Communicating the Risks and Benefits of Human Urine-Derived Fertilizer. Sustainability. 2020; 12(23):9973. https://doi.org/10.3390/su12239973
Chicago/Turabian StyleSegrè Cohen, Alex, Nancy G. Love, and Joseph Árvai. 2020. "Communicating the Risks and Benefits of Human Urine-Derived Fertilizer" Sustainability 12, no. 23: 9973. https://doi.org/10.3390/su12239973
APA StyleSegrè Cohen, A., Love, N. G., & Árvai, J. (2020). Communicating the Risks and Benefits of Human Urine-Derived Fertilizer. Sustainability, 12(23), 9973. https://doi.org/10.3390/su12239973