Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan
Abstract
:1. Introduction
2. Materials and Methods
- Model setup: generalization of research site and input of main parameters for ground surface and drainage systems;
- Model verification: comparison of monitored and simulated water quality for parameter validation;
2.1. Research Site
2.2. SWMM Model Setup
2.2.1. Model Description and Research Site Generalization
2.2.2. Model Parameters
2.3. Model Implementation
2.3.1. Stormwater Sampling and Data Acquisition
2.3.2. Calibration and Validation of Parameters
2.4. Simulation Conditions
2.4.1. Design for Rainstorms with Different Return Periods
2.4.2. Rain Garden Parameters
3. Results
3.1. Parameter Calibration and Validation
3.2. Design Rainstorms with Different Return Periods
3.3. Total Runoff Reduction Ratios with Six Rainfall Return Periods
3.4. Peak Flow Delay Time with Six Rainfall Return Periods
3.5. Contaminant Reduction Rate with Six Rainfall Return Periods
4. Discussion
4.1. Total Runoff Reduction Rate with Six Rainfall Return Periods
4.2. Peak Flow Delay Time with Six Rainfall Return Periods
4.3. Contaminant Reduction with Six Rainfall Return Periods
5. Conclusions
- (1)
- The gardens exhibited a positive runoff control effect. Although the 92.72% impervious ratio limited the settable range of the facilities, an overall runoff reduction rate was apparent (13.78%) with an average rainfall intensity of 28.18 mm/h.
- (2)
- The gardens were a valid option for flood mitigation. There was still a one-minute delay time even for the 100-year return period with an average rainfall intensity of 63.62 mm/h.
- (3)
- The gardens exhibited significant contaminant reduction ratios for the three-year return period in particular (TSS 15.50%, COD 16.17%, TN 17.34%, TP 19.07%).
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hostetler, M.E.; Allen, W.; Meurk, C. Conserving urban biodiversity? Creating green infrastructure is only the first step. Landsc. Urban Plan. 2011, 100, 369–371. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-S.; Choi, D.-H.; Jung, J.-W.; Lee, H.-J.; Lee, H.; Yoon, K.-S.; Cho, K.H. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Res. 2015, 86, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Konrad, C.; Booth, D.B.; Burges, S.J. Effects of urban development in the Puget Lowland, Washington, on interannual streamflow patterns: Consequences for channel form and streambed disturbance. Water Resour. Res. 2005, 41, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban flood risk warning under rapid urbanization. Environ. Res. 2015, 139, 3–10. [Google Scholar] [CrossRef]
- Thorne, C.R.; O’Donnell, E.C.; Ozawa, C.P.; Hamlin, S.; Smith, L.A. Overcoming uncertainty and barriers to adoption of Blue-Green Infrastructure for urban flood risk management. J. Flood Risk Manag. 2018, 11, S960–S972. [Google Scholar] [CrossRef]
- Luo, K.; Hu, X.; Zhengsong, W.; Wu, Z.; Cheng, H.; Hu, Z.; Mazumder, A. Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: A case study in Liangjiang New Area, China. Sci. Total Environ. 2018, 621, 1601–1614. [Google Scholar] [CrossRef]
- Wang, R.; Kalin, L. Combined and synergistic effects of climate change and urbanization on water quality in the Wolf Bay watershed, southern Alabama. J. Environ. Sci. 2018, 64, 107–121. [Google Scholar] [CrossRef]
- Tsuchiya, S. Factualization and Discussion on “Urbanization Rate” in Japan—From the Viewpoint of Regional Economy. Available online: https://www.boj.or.jp/research/wps_rev/wps_2009/data/wp09j04.pdf (accessed on 15 November 2020).
- Shimizu, H. Observation and categorization of land use and population/household change in whole Japanese land by using third standard grid cell data. J. City Plan. Inst. Jpn. 2015, 50. [Google Scholar] [CrossRef]
- Kyoto Regional Meteorological Observatory. Heavy Rain in Kyoto Prefecture from 15 to 17 August 2014. Available online: https://www.jma-net.go.jp/kyoto/2_data/report/doc/kishousokuhou20140818.pdf (accessed on 15 November 2020).
- Kimura, S.; Ishikawa, Y.; Katada, T.; Asano, K.; Sato, H. The Structural Analysis of Economic Damage of Offices by Flood Disasters in Urban Areas. Doboku Gakkai Ronbunshuu D 2007, 63, 88–100. [Google Scholar] [CrossRef]
- Baba, K.; Matsuura, M.; Shinoda, S.; Hijioka, Y.; Shirai, N.; Tanaka, M. A Policy Recommendation of Climate Change Adaptation in Disaster Risk Reduction Based on Stakeholder Analysis—A Case Study on Urban Flood Damage in Tokyo. J. Jpn. Soc. Civ. Eng. Ser. G Environ. Res. 2012, 68. [Google Scholar] [CrossRef] [Green Version]
- Takeda, M.; Takahashi, T.; Nagao, Y.; Hirayama, Y.; Matsuo, N. The Examination on the Inundation Analysis Model Due to Interior Runoff in Urban Area and Its Application to the Countermeasures in Flood Situation. J. Jpn. Soc. Civ. Eng. Ser. B1 Hydraul. Eng. 2012, 68. [Google Scholar] [CrossRef] [Green Version]
- Kawakubo, S.; Tanaka, M.; Baba, K. Resilience Assessment of Major Japanese Cities Based on Public Statistical Information. Soc. Environ. Sci. Jpn. 2017, 30, 215–224. [Google Scholar] [CrossRef]
- Prince George’s County. Design Manual for Use of Bioretention in Stormwater Management; Watershed Protection Branch: Landover, MD, USA, 1993.
- Dietz, M.E.; Clausen, J.C. A Field Evaluation of Rain Garden Flow and Pollutant Treatment. Water Air Soil Pollut. 2005, 167, 123–138. [Google Scholar] [CrossRef]
- Xiang, L.; Li, J.; Kuang, N.; Che, W.; Li, Y.; Liu, X. Discussion on the design methods of rainwater garden. Water Wastewater Eng. 2008, 34, 47–51. [Google Scholar] [CrossRef]
- EPA. SWMM User’s Manual Version 5.1. Available online: https://www.epa.gov/sites/production/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf (accessed on 15 November 2020).
- Yu, S.L.; Kuo, J.-T.; Fassman, E.A.; Pan, H. Field Test of Grassed-Swale Performance in Removing Runoff Pollution. J. Water Resour. Plan. Manag. 2001, 127, 168–171. [Google Scholar] [CrossRef]
- Hunt, W.F.; Jarrett, A.R.; Smith, J.T.; Sharkey, L.J. Evaluating Bioretention Hydrology and Nutrient Removal at Three Field Sites in North Carolina. J. Irrig. Drain. Eng. 2006, 132, 600–608. [Google Scholar] [CrossRef]
- Guo, C.; Li, J.; Li, H.; Li, Y. Influences of stormwater concentration infiltration on soil nitrogen, phosphorus, TOC and their relations with enzyme activity in rain garden. Chemosphere 2019, 233, 207–215. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. J. Hydrol. 2009, 365, 310–321. [Google Scholar] [CrossRef]
- Chapman, C.; Horner, R.R. Performance Assessment of a Street-Drainage Bioretention System. Water Environ. Res. 2010, 82, 109–119. [Google Scholar] [CrossRef]
- Gülbaz, S.; Kazezyılmaz-Alhan, C.M. Experimental Investigation on Hydrologic Performance of LID with Rainfall-Watershed-Bioretention System. J. Hydrol. Eng. 2017, 22, 4016003. [Google Scholar] [CrossRef]
- Davis, A.P. Field Performance of Bioretention: Water Quality. Environ. Eng. Sci. 2007, 24, 1048–1064. [Google Scholar] [CrossRef]
- Line, D.E.; Hunt, W.F. Performance of a Bioretention Area and a Level Spreader-Grass Filter Strip at Two Highway Sites in North Carolina. J. Irrig. Drain. Eng. 2009, 135, 217–224. [Google Scholar] [CrossRef]
- Li, H.; Davis, A.P. Water Quality Improvement through Reductions of Pollutant Loads Using Bioretention. J. Environ. Eng. 2009, 135, 567–576. [Google Scholar] [CrossRef]
- Liu, Y.; Bralts, V.F.; Engel, B. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. Sci. Total Environ. 2015, 511, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, A.R.; Ismail, Z.; Niksokhan, M.H.; Dayarian, M.A.; Ramli, A.H.; Shirazi, S.M. A Quantity–Quality Model to Assess the Effects of Source Control Stormwater Management on Hydrology and Water Quality at the Catchment Scale. Water 2019, 11, 1415. [Google Scholar] [CrossRef] [Green Version]
- Dagenais, D.; Brisson, J.; Fletcher, T.D. The role of plants in bioretention systems; does the science underpin current guidance? Ecol. Eng. 2018, 120, 532–545. [Google Scholar] [CrossRef]
- Osman, M.; Yusof, K.W.; Takaijudin, H.; Goh, H.; Malek, M.A.; Azizan, N.A.; Ghani, A.A.; Abdurrasheed, A.S. A Review of Nitrogen Removal for Urban Stormwater Runoff in Bioretention System. Sustainability 2019, 11, 5415. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Xiao, J.; Liu, B. Analysis on Rain Garden. J. Anhui Agric. Sci. 2011, 39, 5412–5413. [Google Scholar] [CrossRef]
- Morimoto, Y. Rain Garden Revives the City; Nikkei Business Publication Inc.: Tokyo, Japan, 2017; pp. 134–143. (In Japanese) [Google Scholar]
- Asleson, B.C.; Nestingen, R.S.; Gulliver, J.S.; Hozalski, R.M.; Nieber, J.L. Performance Assessment of Rain Gardens. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1019–1031. [Google Scholar] [CrossRef]
- Good, J.F.; O’Sullivan, A.D.; Wicke, D.; Cochrane, T. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment. Water Sci. Technol. 2012, 65, 2154–2161. [Google Scholar] [CrossRef] [PubMed]
- Komlos, J.; Traver, R.G. Long-Term Orthophosphate Removal in a Field-Scale Storm-Water Bioinfiltration Rain Garden. J. Environ. Eng. 2012, 138, 991–998. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y.; Chen, L. Field Performance of Bioretention Systems for Runoff Quantity Regulation and Pollutant Removal. Water Air Soil Pollut. 2017, 228, 468. [Google Scholar] [CrossRef]
- Hong, J.; Geronimo, F.K.; Choi, H.; Kim, L.-H. Impacts of nonpoint source pollutants on microbial community in rain gardens. Chemosphere 2018, 209, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; Song, Y.H.; Han, H.; Joo, J.G. Modeling the Runoff Reduction Effect of Low Impact Development Installations in an Industrial Area, South Korea. Water 2018, 10, 967. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S.; Shibata, S. Quantitative evaluation about rainwater-runoff characteristics of rain garden. J. Jpn. Soc. Reveg. Technol. 2017, 43, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Yonemura, S.; Hirano, T.; Zhang, L.; Shibata, S. Field evaluation of rain gardens for reducing stormwater runoff. Archit. Inst. Jpn. Acad. Lect. Collect. Summ. 2018, 641–642. [Google Scholar]
- Zhang, L.; Oyake, Y.; Morimoto, Y.; Niwa, H.; Shibata, S. Rainwater storage/infiltration function of rain gardens for management of urban storm runoff in Japan. Landsc. Ecol. Eng. 2019, 15, 421–435. [Google Scholar] [CrossRef]
- Zhang, L.; Oyake, Y.; Morimoto, Y.; Niwa, H.; Shibata, S. Flood mitigation function of rain gardens for management of urban storm runoff in Japan. Landsc. Ecol. Eng. 2020, 16, 223–232. [Google Scholar] [CrossRef]
- Sakamoto, J.; Hara, T. Analysis of the Actual Situation of the Local Civil Engineering Consultant Companies Since the Great East Japan Earthquake: Focusing on the Bid Information of Ministry of Land, Infrastructure, Transport and Tourism, Japan. J. Jpn. Soc. Civ. Eng. Ser. Constr. Manag. 2018, 74. [Google Scholar] [CrossRef]
- EPA. Storm Water Management Model (SWMM). Available online: https://www.epa.gov/water-research/storm-water-management-model-swmm (accessed on 15 November 2020).
- Kyoto City Water Supply and Sewage Bureau. Available online: http://www.kyoto-gesuido.jp/SuperaPageWeb.aspx# (accessed on 15 November 2020).
- Zhou, Y.; Yu, M.; Chen, Y. Estimation of Sub-Catchment Width in SWMM. China Water Wastewater 2014, 30, 61–64. [Google Scholar]
- Kyoto City Development Technology Standard. Available online: https://www.city.kyoto.lg.jp/tokei/cmsfiles/contents/0000197/197400/gizyutukizyunn(H280325).pdf (accessed on 15 November 2020).
- Li, Q.; Wang, F.; Yu, Y.; Huang, Z.; Li, M.; Guan, Y. Comprehensive performance evaluation of LID practices for the sponge city construction: A case study in Guangxi, China. J. Environ. Manag. 2019, 231, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Keifer, C.J.; Chu, H.H. Synthetic storm pattern for drainage design. J. Hydraul. Div. 1957, 83, 1–25. [Google Scholar]
- Bai, Y.; Zhao, N.; Zhang, R.; Zeng, X. Storm Water Management of Low Impact Development in Urban Areas Based on SWMM. Water 2018, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Da Silveira, A.L.L. Cumulative equations for continuous time Chicago hyetograph method. RBRH 2016, 21, 646–651. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Z.; Dai, L.; Cao, Q.; Wang, T. Application of Chicago Hyetograph Method in Design of Short Duration Rainstorm Pattern. J. Arid Meteorol. 2017, 35, 1061–1069. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, J.; Zhang, S. Research status of bio-retention technology and discussion on key problems on its domestic application. China Water Wastewater 2010, 24, 20–24. [Google Scholar]
- Schlea, D.; Martin, J.F.; Ward, A.D.; Brown, L.C.; Suter, S.A. Performance and Water Table Responses of Retrofit Rain Gardens. J. Hydrol. Eng. 2014, 19, 05014002. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Li, Y. SWMM-based evaluation of the effect of rain gardens on urbanized areas. Environ. Earth Sci. 2015, 75, 1–14. [Google Scholar] [CrossRef]
- Qin, H.-P.; Li, Z.-X.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, A.P.; Shokouhian, M.; Sharma, H.; Minami, C. Water Quality Improvement through Bioretention Media: Nitrogen and Phosphorus Removal. Water Environ. Res. 2006, 78, 284–293. [Google Scholar] [CrossRef] [PubMed]
Location | Runoff | TSS | TN | TP | COD | Evaluation Methods | Study |
---|---|---|---|---|---|---|---|
North Carolina, USA | 78 | - | 40 | 65 | - | Field sampling and laboratory analysis | [21] |
Xi’an, China | 97 | - | - | - | - | Runoff sampling and laboratory analysis | [22] |
Melbourne, Australia | 33 | - | - | - | - | Field sampling and laboratory analysis | [23] |
Washington, USA | 48–74 | 87–93 | - | 67–83 | - | Event-based, flow-paced composite sampling and laboratory analysis | [24] |
Istanbul, Turkey | 23–85 | - | - | - | - | Field sampling and laboratory analysis | [25] |
Maryland, USA | - | 22 | - | 74 | - | Field sampling and laboratory analysis | [26] |
North Carolina, USA | - | 83 | 62 | 48 | - | Refrigerated auto-sampling and laboratory analysis | [27] |
Maryland, USA | - | 93 | - | 90 | - | Refrigerated auto-sampling and laboratory analysis | [28] |
Indiana, USA | 26 | 54 | 34 | 47 | 28 | L-THIA-LID 2.1 model | [29] |
Kuala Lumpur, Malaysia | 23 | 41 | 29 | - | - | Storm Water Management Model (SWMM) | [30] |
Type | Parameter | Source |
---|---|---|
Sub-catchment | Spatial location, area, slope, Impervious ratio | Ministry of Land, Infrastructure, Transport and Tourism, Japan [45]; Google Maps |
Junction | Spatial location, invert elevation, maximum depth | Kyoto City Water Supply and Sewage Bureau [47] |
Conduit | Spatial location, shape, diameter, length | Kyoto City Water Supply and Sewage Bureau [47] |
Outfall | Spatial location, depth | Kyoto City Water Supply and Sewage Bureau [47] |
Parameter | Value | |
---|---|---|
Manning’s n | N-Imperv | 0.01 |
N-Perv | 0.1 | |
Depth of depression storage | Dstore-Imperv | 0.05 (mm) |
Dstore-Perv | 0.05 (mm) | |
Green-Ampt | Suction head | 3.0 (mm) |
Conductivity | 0.5 (mm/h) | |
Initial deficit | 4 | |
Percentage of impervious areas with no depression storage | 25 (%) |
Return Period | 3 a | 5 a | 10 a | 30 a | 50 a | 100 a |
---|---|---|---|---|---|---|
Rainfall intensity formula (Kyoto) |
Return Period | 3 a | 5 a | 10 a | 30 a | 50 a | 100 a |
---|---|---|---|---|---|---|
A | 0.146 | 0.146 | 0.144 | 0.143 | 0.142 | 0.140 |
C | 73.164 | 57.666 | 47.186 | 39.287 | 37.118 | 34.461 |
b | 3.580 | 3.812 | 4.182 | 5.668 | 6.356 | 7.717 |
n | 0.500 | 0.498 | 0.493 | 0.477 | 0.470 | 0.457 |
R2 | 0.997 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 |
Surface | Berm height | Vegetation volume fraction | Surface roughness | Surface slope |
150 mm | 0 | 0 | 0 | |
Soil | Soil thickness | Soil porosity | Field capacity | Wilting point |
700 mm | 0.453 | 0.19 | 0.085 | |
Conductivity | Conductivity slope | Suction head | ||
10.92 mm/h | 50 | 109.2 mm | ||
Storage | Storage thickness | Void ratio | Seepage rate | Storage clogging factor |
300 mm | 0.75 | 10.92 mm/h | 0 | |
Drain | Flow coefficient | Flow exponent | Offset height | |
0 | 0.5 | 6 mm |
Coefficient | TSS | COD | TN | TP | |
---|---|---|---|---|---|
Residential areas | C1 | 53 | 10 | 8 | 0.5 |
C2 | 10 | 10 | 10 | 10 | |
Commercial areas | C1 | 65 | 15 | 9 | 0.7 |
C2 | 10 | 10 | 10 | 10 | |
Industrial areas | C1 | 95 | 20 | 5 | 0.2 |
C2 | 10 | 10 | 10 | 10 |
Coefficient | TSS | COD | TN | TP | |
---|---|---|---|---|---|
Residential areas | S1 | 0.007 | 0.0035 | 0.002 | 0.001 |
S2 | 1.5 | 1.5 | 1.5 | 1.5 | |
Commercial areas | S1 | 0.008 | 0.004 | 0.003 | 0.002 |
S2 | 1.7 | 1.7 | 1.7 | 1.7 | |
Industrial areas | S1 | 0.009 | 0.005 | 0.004 | 0.003 |
S2 | 1.8 | 1.8 | 1.8 | 1.8 |
TSS | COD | TN | TP | ||
---|---|---|---|---|---|
R1 | R2 | 0.8499 | 0.7363 | 0.8266 | 0.7652 |
NSE | 0.6448 | 0.6237 | 0.7768 | 0.7539 | |
R2 | R2 | 0.8386 | 0.7815 | 0.8053 | 0.8466 |
NSE | 0.6613 | 0.6637 | 0.7963 | 0.8205 | |
C1 | R2 | 0.8601 | 0.8802 | 0.8506 | 0.8132 |
NSE | 0.6309 | 0.6062 | 0.8141 | 0.6496 | |
C2 | R2 | 0.8318 | 0.7252 | 0.7198 | 0.7721 |
NSE | 0.7267 | 0.6211 | 0.6180 | 0.6376 | |
N1 | R2 | 0.8667 | 0.7101 | 0.8065 | 0.6645 |
NSE | 0.6272 | 0.6147 | 0.6273 | 0.6581 | |
N2 | R2 | 0.8474 | 0.7116 | 0.8523 | 0.8065 |
NSE | 0.6271 | 0.6565 | 0.7008 | 0.8011 |
Return Period (a) | Without Rain Gardens (106 L) | With Rain Gardens (106 L) | Reduction Ratio (%) |
---|---|---|---|
3 | 337.76 | 291.20 | 13.78 |
5 | 394.07 | 340.00 | 13.72 |
10 | 465.14 | 401.52 | 13.68 |
30 | 606.27 | 523.48 | 13.66 |
50 | 676.57 | 584.49 | 13.61 |
100 | 770.33 | 677.09 | 12.11 |
Return Period (a) | Average Hours of Peak Flow Without RG (min) | Average Hours of Peak Flow with RG (min) | Average Peak Flow Delay Time (min) | Total Flooding Nodes (Without RG) | Total Flooding Nodes (with RG) | Flooding Nodes Reduction |
---|---|---|---|---|---|---|
3 | 0:47 | 0:48 | 1 | 485 | 421 | 64 |
5 | 0:47 | 0:48 | 1 | 576 | 489 | 87 |
10 | 0:46 | 0:47 | 1 | 639 | 576 | 63 |
30 | 0:45 | 0:46 | 1 | 662 | 643 | 19 |
50 | 0:44 | 0:45 | 1 | 656 | 640 | 16 |
100 | 0:42 | 0:43 | 1 | 638 | 632 | 6 |
Return Period (a) | TSS (Kg/Kg) | COD (Kg/Kg) | TN (Kg/Kg) | TP (Kg/Kg) |
---|---|---|---|---|
3 | 15.50 | 16.17 | 17.34 | 19.07 |
5 | 15.29 | 15.66 | 16.57 | 18.17 |
10 | 15.11 | 15.27 | 15.91 | 17.25 |
30 | 14.96 | 14.87 | 15.18 | 16.02 |
50 | 14.96 | 14.78 | 14.99 | 15.65 |
100 | 13.00 | 12.90 | 12.83 | 14.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Ye, Z.; Shibata, S. Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan. Sustainability 2020, 12, 9982. https://doi.org/10.3390/su12239982
Zhang L, Ye Z, Shibata S. Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan. Sustainability. 2020; 12(23):9982. https://doi.org/10.3390/su12239982
Chicago/Turabian StyleZhang, Linying, Zehao Ye, and Shozo Shibata. 2020. "Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan" Sustainability 12, no. 23: 9982. https://doi.org/10.3390/su12239982
APA StyleZhang, L., Ye, Z., & Shibata, S. (2020). Assessment of Rain Garden Effects for the Management of Urban Storm Runoff in Japan. Sustainability, 12(23), 9982. https://doi.org/10.3390/su12239982