Systematic Mapping of Research on Farm-Level Sustainability in Finfish Aquaculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of Fundamental Concepts
2.1.1. Environmental Sustainability
2.1.2. Economic Sustainability
2.1.3. Social Sustainability
2.2. Systematic Mapping Approach
2.3. Search of Literature
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT Database. Available online: http://www.fao.org/faostat/en/#home (accessed on 28 September 2020).
- Tacon, A.G.J. Trends in Global Aquaculture and Aquafeed Production: 2000–2017. Rev. Fish. Sci. Aquacult. 2020, 28, 43–56. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; p. 244. [Google Scholar]
- UN. Probabilistic Population Projections Based on the World Population Prospects: The 2017 Revision. Available online: https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html (accessed on 28 September 2020).
- Lambooij, E.; Kloosterboer, R.; Gerritzen, M.; Vis, J.D. Head-only electrical stunning and bleeding of African catfish (Clarias gariepinus): Assessment of loss of consciousness. Anim. Welf. 2004, 13, 71–76. [Google Scholar]
- Bergqvist, J.; Gunnarsson, S. Finfish Aquaculture: Animal Welfare, the Environment, and Ethical Implications. J. Agric. Environ. Ethics 2013, 26, 75–99. [Google Scholar] [CrossRef]
- UN. Sustainable Development Goals. Available online: https://www.un.org/development/desa/en/news/sustainable/sustainable-development-goals.html (accessed on 28 September 2020).
- Naylor, R.; Hindar, K.; Fleming, I.A.; Goldburg, R.; Williams, S.; Volpe, J.; Whoriskey, F.; Eagle, J.; Kelso, D.; Mangel, M. Fugitive Salmon: Assessing the Risks of Escaped Fish from Net-Pen Aquaculture. BioScience 2005, 55, 411, 427–437. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Stern, S.; Sonesson, U.; Gunnarsson, S.; Öborn, I.; Kumm, K.I.; Nybrant, T. Sustainable development of food production: A case study on scenarios for pig production. AMBIO 2005, 34, 402–407. [Google Scholar] [CrossRef]
- Scherer, L.; Tomasik, B.; Rueda, O.; Pfister, S. Framework for integrating animal welfare into life cycle sustainability assessment. Int. J. Life Cycle Assess. 2018, 23, 1476–1490. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Fuentes, J.J.; Capobianco, A.; Barbušová, J.; Hutňan, M. Manure from our agricultural animals: A quantitative and qualitative analysis focused on biogas production. Waste Biomass Valorization 2017, 8, 1749–1757. [Google Scholar] [CrossRef]
- Xin, H.; Gates, R.S.; Green, A.R.; Mitloehner, F.M.; Moore, P.A.; Wathes, C.M. Environmental impacts and sustainability of egg production systems. Poultr. Sci. 2011, 90, 263–277. [Google Scholar] [CrossRef]
- Sarikaya, E.; Demirer, G.N. Biogas production from broiler manure, wastewater treatment plant sludge, and greenhouse waste by anaerobic co-digestion. J. Renew. Sustain. Energy 2013, 5. [Google Scholar] [CrossRef]
- Kok, B.; Malcorps, W.; Tlusty, M.F.; Eltholth, M.M.; Auchterlonie, N.A.; Little, D.C.; Harmsen, R.; Newton, R.W.; Davies, S.J. Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species. Aquaculture 2020, 528, 735474. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 999/2001 of the European Parliament and of the CounciL of 22 May 2001 Laying Down Rules for the Prevention, Control and Eradication of Certain Transmissible Spongiform Encephalopathies; European Commission: Brussels, Belgium, 2001; p. 40. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, I.; Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. USA 2009, 106, 15103–15110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunnarsson, S.; Arvidsson Segerkvist, K.; Göransson, L.; Hansson, H.; Sonesson, U. Systematic Mapping of Research on Farm-Level Sustainability in Egg and Chicken Meat Production. Sustainability 2020, 12, 3033. [Google Scholar] [CrossRef] [Green Version]
- Gunnarsson, S.; Arvidsson Segerkvist, K.; Wallgren, T.; Hansson, H.; Sonesson, U. A Systematic Mapping of Research on Sustainability Dimensions at Farm-level in Pig Production. Sustainability 2020, 12, 4352. [Google Scholar] [CrossRef]
- Arvidsson Segerkvist, K.; Hansson, H.; Sonesson, U.; Gunnarsson, S. Research on Environmental, Economic, and Social Sustainability in Dairy Farming: A Systematic Mapping of Current Literature. Sustainability 2020, 12, 5502. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Ayres, R.U.; van den Bergh, J.C.J.M.; Gowdy, J.M. Strong versus weak sustainability: Economics, natural sciences and ‘consilience’. Environ. Ethics 2001, 23, 155–168. [Google Scholar] [CrossRef]
- van den Bergh, J.C.J.M. Externality or sustainability economics? Ecol. Econ. 2010, 69, 2047–2052. [Google Scholar] [CrossRef]
- Montiel, I.; Delgado-Ceballos, J. Defining and Measuring Corporate Sustainability: Are We There Yet? Organ. Environ. 2014, 27, 113–139. [Google Scholar] [CrossRef]
- Alliances, G.S. Global Reporting Initiative. Available online: https://www.globalreporting.org/standards/ (accessed on 28 September 2020).
- Vallance, S.; Perkins, H.C.; Dixon, J.E. What is social sustainability? A clarification of concepts. Geoforum 2011, 42, 342–348. [Google Scholar] [CrossRef]
- Snilstveit, B.; Vojtkova, M.; Bhavsar, A.; Stevenson, J.; Gaarder, M. Evidence & Gap Maps: A tool for promoting evidence informed policy and strategic research agendas. J. Clin. Epidemiol. 2016, 79, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An update. Inf. Softw. Technol. 2015, 64, 1–18. [Google Scholar] [CrossRef]
- James, K.L.; Randall, N.P.; Haddaway, N.R. A methodology for systematic mapping in environmental sciences. Environ. Evid. 2016, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Spânu, S.; Florea, M. Analysis of the aquaculture sector at the level of Giurgiu county. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2018, 18, 325–332. [Google Scholar]
- Baldan, D.; Porporato, E.M.D.; Pastres, R.; Brigolin, D. An R package for simulating growth and organic wastage in aquaculture farms in response to environmental conditions and husbandry practices. PLoS ONE 2018, 13, e0195732. [Google Scholar] [CrossRef] [Green Version]
- Brattland, C. Proving Fishers Right. Effects of the Integration of Experience-Based Knowledge in Ecosystem-Based Management. Acta Boreal. 2013, 30, 39–59. [Google Scholar] [CrossRef]
- Bunting, S.W.; Shpigel, M. Evaluating the economic potential of horizontally integrated land-based marine aquaculture. Aquaculture 2009, 294, 43–51. [Google Scholar] [CrossRef]
- Calone, R.; Pennisi, G.; Morgenstern, R.; Sanye-Mengual, E.; Lorleberg, W.; Dapprich, P.; Winkler, P.; Orsini, F.; Gianquinto, G. Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics. Sci. Total Environ. 2019, 687, 759–767. [Google Scholar] [CrossRef]
- Chen, X.; Samson, E.; Tocqueville, A.; Aubin, J. Environmental assessment of trout farming in France by life cycle assessment: Using bootstrapped principal component analysis to better define system classification. J. Clean. Prod. 2015, 87, 87–95. [Google Scholar] [CrossRef]
- Cowx, I.G. Characterisation of inland fisheries in Europe. Fish. Manag. Ecol. 2015, 22, 78–87. [Google Scholar] [CrossRef]
- Fenemor, A.; Deans, N.; Davie, T.; Allen, W.; Dymond, J.; Kilvington, M.; Phillips, C.; Basher, L.; Gillespie, P.; Young, R.; et al. Collaboration and modelling—Tools for integration in the Motueka catchment, New Zealand. Water SA 2008, 34, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Fløysand, A.; Jakobsen, S.-E. Industrial renewal: Narratives in play in the development of green technologies in the Norwegian salmon farming industry. Geogr. J. 2017, 183, 140–151. [Google Scholar] [CrossRef]
- Hamouda, L.; Hipel, K.W.; Marc Kilgour, D.; Noakes, D.J.; Fang, L.; McDaniels, T. The salmon aquaculture conflict in British Columbia: A graph model analysis. Ocean. Coast. Manag. 2005, 48, 571–587. [Google Scholar] [CrossRef]
- Hermansen, Ø.; Heen, K. Norwegian Salmonid Farming and Global Warming: Socioeconomic Impacts. Aquac. Econ. Manag. 2012, 16, 202–221. [Google Scholar] [CrossRef]
- Iagaru, R.; Florescu, N.; Iagaru, P. Strategic management of sustainable development in the countryside of sibiu depression—Basic of environmental protection. Environ. Eng. Manag. J. 2016, 15, 11. [Google Scholar] [CrossRef]
- Lefrançois, P.; Puigagut, J.; Chazarenc, F.; Comeau, Y. Minimizing phosphorus discharge from aquaculture earth ponds by a novel sediment retention system. Aquacult. Eng. 2010, 43, 94–100. [Google Scholar] [CrossRef]
- Otchere, F.A.; Veiga, M.M.; Hinton, J.J.; Farias, R.A.; Hamaguchi, R. Transforming open mining pits into fish farms: Moving towards sustainability. Nat. Resour. Forum 2004, 28, 216–223. [Google Scholar] [CrossRef]
- Padula, D.J.; Madigan, T.L.; Nowak, B.F. Australian farmed Yellowtail Kingfish (Seriola lalandi) and Mulloway (Argyrosomus hololepidotus): Residues of metallic, agricultural and veterinary chemicals, dioxins and polychlorinated biphenyls. Chemosphere 2012, 86, 709–717. [Google Scholar] [CrossRef]
- Rigby, B.; Davis, R.; Bavington, D.; Baird, C. Industrial aquaculture and the politics of resignation. Mar. Policy 2017, 80, 19–27. [Google Scholar] [CrossRef]
- Suryanata, K.; Umemoto, K. Beyond environmental impact: Articulating the “intangibles” in a resource conflict. Geoforum 2005, 36, 750–760. [Google Scholar] [CrossRef]
- Brundtland, G.H. Our Common Future—Call for Action. Environ. Conserv. 1987, 14, 291–294. [Google Scholar] [CrossRef]
- Folke, C.; Kautsky, N. Aquaculture with its environment: Prospects for sustainability. Ocean. Coast. Manag. 1992, 17, 5–24. [Google Scholar] [CrossRef]
- Arvidsson Segerkvist, K.; Hansson, H.; Sonesson, U.; Gunnarsson, S. Research on Environmental, Economic, and Social Sustainability in Dairy Farming: A systematic mapping of current literature on sustainability in beef cattle and sheep farming. Sustainability 2020, unpublished. [Google Scholar]
- Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial Food Animal Production, Antimicrobial Resistance, and Human Health. Annu. Rev. Public Health 2008, 29, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Amador, P.; Duarte, I.M.; da Costa, R.P.R.; Fernandes, R.; Prudencio, C. Characterization of Antibiotic Resistance in Enterobacteriaceae From Agricultural Manure and Soil in Portugal. Soil Sci. 2017, 182, 292–301. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembialkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 22. [Google Scholar] [CrossRef] [Green Version]
- Tudorache, M.; Custura, I.; Van, I.; Miclosanu, E.P.; Vidu, L. Influence of applying broiler welfare laws on unit cost. Sci. Pap. Ser. D Anim. Sci. 2014, 57, 212–215. [Google Scholar]
Sustainability Dimension | Search Terms 1 |
---|---|
Environmental | (“environmental impact assessment” OR (environment* W/2 assessment) OR (environment* W/2 impact) OR (environment* W/2 protection) OR (climate W/1 change*) OR biodiversity OR ecosystem* OR pollution OR deforestation OR eutrophication OR (habitat W/2 destruction) OR (land W/2 degradation) OR (ozone W/2 depletion) OR “acid deposition” OR (odour W/2 emission) OR “air quality” OR “biochemical oxygen demand*” OR “chemical oxygen demand*” OR (nitrogen W/2 balance) OR (nitrogen W/2 cycle) OR (carbon W/2 cycle) OR eco-toxicity OR “carbon footprint” OR LCA OR “life cycle assessment”) |
Economic | ((aquacultur* W/2 development) OR (aquacultur* W/2 production) OR (farm* W/2 comparison*) OR (farm W/2 entrant*) OR (farm W/2 result*) OR (farm W/2 development) OR production OR diversification OR intensification OR “technical efficiency” OR “economic efficiency” OR “eco-efficiency” OR profit OR econom* OR return OR ”economic viability” OR ”economic performance”) |
Social | ((attitude* W/2 work) OR labour OR labor OR (quality W/2 life) OR “living condition*” OR “rural welfare” OR (work* W/2 condition*) OR “rural development” OR “social welfare” OR “social security” OR “social service*” OR “social equity” OR (health W/2 service*) OR “social status” OR (women W/2 status) OR “equal right*” OR equality OR (rural W/2 employment) OR livability OR “health equity” OR “labour rights” OR “labor rights” OR “social justice” OR “social capital” OR (community W/2 development) OR (community W/2 resilience)) |
Paper | Aim | Key Words | ||
---|---|---|---|---|
Social Sustainability | Economic Sustainability | Environmental Sustainability | ||
Baldan et al., 2018 [31] | Modelling to identify areas suitable for aquaculture depending on climate change | Growth | Organic waste load | |
Brattland, 2013 [32] | Investigation of effects of fishers’ ecological knowledge and its influence on policy making | Conflicts/decision making fishermen/ aquaculture | Ecological knowledge | |
Bunting & Shpigel, 2009 [33] | Bio-economic modelling of integrated systems | Internal rate of return | ||
Calone et al., 2019 [34] | Improving water management in aquaponics systems | Water usage | ||
Chen et al., 2015 [35] | Environmental assessment through life cycle analysis (LCA) | Production level, feed conversion ratio, oxygen consumption, labour | LCA analysis | |
Cowx, 2015 [36] | Exploration of changes to assist planning and management | Employment, revenue, social benefits | ||
Fenemor et al., 2008 [37] | Modelling tools for integrated catchment management | Job numbers | Gross output | Water flow, nitrogen load, sediment yield, carbon sink rate, nitrogen yield |
Floysand & Jakobsen, 2017 [38] | Investigation of change through technology | Rural development narrative | The global demand narrative | Environmental degradation narrative |
Hamouda et al., 2005 [39] | Examination of strategic conflicts over aquaculture development | Threats to human rights, resource conflicts | Aquaculture expansion | Resource conflict, environmental impact |
Hermansen & Heen, 2012 [40] | Socioeconomic effects of climate change | Management regimes, employment | Productivity index, production growth | |
Iagaru et al., 2015 [41] | Rural development | Promote rural tradition, encouraging entrepreneurship | Diversification of the rural economy | |
Lefrancois et al., 2010 [42] | Reducing phosphorus discharge through a novel sediment retention system | Phosphorus | ||
Otchere et al., 2004 [43] | Investigation of the possibility to use open pits for aquaculture | New income | Economic diversification, income/employment | Low risk of escapes, unclean water |
Padula et al., 2012 [44] | Levels of residues in yellowtail kingfish | Food safety, market access | Various environmental toxins | |
Rigby et al., 2017 [45] | Examination of cycles of growth and crisis within Newfoundland aquaculture | Corporate social responsibility | Genetic pollution, infectious disease | |
Spanu & Florea, 2018 [30] | Review of existing situation in Giurgiu county, Romania | Guaranteed payment, optimal hygiene and control procedures, non-discriminatory treatment to all trading partners, traceability | Biodiversity, ecological aquaculture, balanced exploitation | |
Suryanata & Umemoto, 2005 [46] | Environmental planning | Social and cultural issues (e.g., integrity, communication, values and vision) | Economic issues (e.g., market competition and impact on fish price, local and export market) | Environmental impacts (e.g., impact on coral reefs, bacteria and disease) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunnarsson, S.; Segerkvist, K.A.; Wallgren, T.; Hjelmstedt, P.; Sonesson, U.; Hansson, H. Systematic Mapping of Research on Farm-Level Sustainability in Finfish Aquaculture. Sustainability 2020, 12, 9985. https://doi.org/10.3390/su12239985
Gunnarsson S, Segerkvist KA, Wallgren T, Hjelmstedt P, Sonesson U, Hansson H. Systematic Mapping of Research on Farm-Level Sustainability in Finfish Aquaculture. Sustainability. 2020; 12(23):9985. https://doi.org/10.3390/su12239985
Chicago/Turabian StyleGunnarsson, Stefan, Katarina Arvidsson Segerkvist, Torun Wallgren, Per Hjelmstedt, Ulf Sonesson, and Helena Hansson. 2020. "Systematic Mapping of Research on Farm-Level Sustainability in Finfish Aquaculture" Sustainability 12, no. 23: 9985. https://doi.org/10.3390/su12239985
APA StyleGunnarsson, S., Segerkvist, K. A., Wallgren, T., Hjelmstedt, P., Sonesson, U., & Hansson, H. (2020). Systematic Mapping of Research on Farm-Level Sustainability in Finfish Aquaculture. Sustainability, 12(23), 9985. https://doi.org/10.3390/su12239985