Assessment of the Local Perceptions on the Drivers of Deforestation and Forest Degradation, Agents of Drivers, and Appropriate Activities in Cambodia
Abstract
:1. Introduction
2. Study Methods and Materials
2.1. Overview of Drivers of Deforestation and Forest Degradation
2.2. Description of the Study Area
2.3. Data Collection
2.4. Sampling
2.4.1. Household Surveys
- n = minimum suggested sample size
- N = household population in the ITTO project area (5267 households)
- e = margin of error (5 to 10%)
2.4.2. Focus Group Discussions
2.5. Analysis
3. Results and Discussions
3.1. Respondent’s Profiles
3.2. Drivers of Deforestation and Forest Degradation in the Study Area
3.2.1. Direct Drivers
3.2.2. Indirect Drivers
3.3. Agents of Deforestation and Forest Degradation in the Study Area
3.4. Appropriate REDD+ Activities to Address the Drivers of Deforestation and Forest Degradation
3.5. Sociodemographic Factors Influencing Respondents’ Perception
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bahar, N.H.A.; Lo, M.; Sanjaya, M.; Van Vianen, J.; Alexander, P.; Ickowitz, A.; Sunderland, T. Meeting the food security challenge for nine billion people in 2050: What impact on forests? Glob. Environ. Chang. 2020, 62, 102056. [Google Scholar] [CrossRef]
- Kolovos, K.G.; Kyriakopoulos, G.; Chalikias, M.S. Co-evaluation of basic woodfuel types used as alternative heating sources to existing energy network. J. Environ. Prot. Ecol. 2011, 12, 733–742. [Google Scholar]
- Kyriakopoulos, G.L.; Kolovos, K.G.; Chalikias, M.S. Woodfuels prosperity towards a more sustainable energy production. In Proceedings of the Communications in Computer and Information Science, CCIS, Chennai, India, 23–25 July 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 112, pp. 19–25. [Google Scholar]
- Kyriakopoulos, G.L. European and international policy interventions of implementing the use of wood fuels in bioenergy sector: A trend analysis and a specific wood fuels’ energy application. Int. J. Knowl. Learn. 2010, 6, 43–54. [Google Scholar] [CrossRef]
- Filipa, A.; Id, P.; Santos-Filho, M.; Peres, C.A. Marked decline in forest-dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier. PLoS ONE 2020. [Google Scholar] [CrossRef]
- Semper-pascual, A.; Decarre, J.; Baumann, M.; Busso, J.M.; Camino, M.; Gómez-valencia, B.; Kuemmerle, T. Biodiversity loss in deforestation frontiers: Linking occupancy modelling and physiological stress indicators to understand local extinctions. Biol. Conserv. 2019, 236, 281–288. [Google Scholar] [CrossRef]
- Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl. Acad. Sci. USA 2017, 114, 5775–5777. [Google Scholar] [CrossRef] [Green Version]
- Gomes, V.H.F.; Vieira, I.C.G.; Salomão, R.P.; ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Chang. 2019, 9, 547–553. [Google Scholar] [CrossRef]
- Bebber, D.P.; Butt, N. Tropical protected areas reduced deforestation carbon emissions by one third from 2000 – 2012. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Mac Nally, R.; Thomson, J.R.; Ferraz, S.F.D.B.; Louzada, J.; Oliveira, V.H.F.; et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr. Opin. Environ. Sustain. 2012, 4, 597–603. [Google Scholar] [CrossRef]
- NYDF Assessment Partners. Protecting and Restoring Forests A Story of Large Commitments. Available online: https://forestdeclaration.org/images/uploads/resource/2019NYDFReport.pdf (accessed on 29 October 2020).
- Ty, S.; Sasaki, N.; Ahmad, A.H.; Ahmad, Z.A. REDD Development in Cambodia—REDD Project. Formath 2011, 10, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, A.; Sears, R.R.; Cronkleton, P.; Menton, M.; Pérez-Ojeda del Arco, M. Is small-scale agriculture really the main driver of deforestation in the Peruvian Amazon? Moving beyond the prevailing narrative. Conserv. Lett. 2017, 10, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Van Khuc, Q.; Tran, B.Q.; Meyfroidt, P.; Paschke, M.W. Drivers of deforestation and forest degradation in Vietnam: An exploratory analysis at the national level. For. Policy Econ. 2018, 90, 128–141. [Google Scholar] [CrossRef]
- UNFCCC. Key Decisions Relevant for Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+). Available online: https://unfccc.int/files/land_use_and_climate_change/redd/application/pdf/compilation_redd_decision_booklet_v1.1.pdf (accessed on 29 November 2020).
- Angelsen, A.; Arnesen, O.; Busch, J.; De Gregorio, M.; Hermansen, E.; Mcneill, D.; Ostwald, M.; Savedoff, W.; Seymour, F.; Al Vedeld, P.; et al. REDD+ as Result-based Aid: General Lessons and Bilateral Agreements of Norway. Rev. Dev. Econ. 2017, 21, 237–264. [Google Scholar] [CrossRef] [Green Version]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Jayathilake, H.M.; Prescott, G.W.; Carrasco, L.R.; Rao, M.; Symes, W.S. Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio 2020. [Google Scholar] [CrossRef] [PubMed]
- Agarwal Green, G.; Grove, J.P.; Evans, T.; Schweik, C.; C Agrawal, A.; Nepstad, D.C.; Chhatre, A.; Ahmad, I.H.; Anderson, E.K.; Zerriffi, H.; et al. Drivers of Deforestation and Forest Degradation. Environ. Sci. Policy 2013, 4, 1–4. [Google Scholar] [CrossRef]
- Salvini, G.; Herold, M.; De Sy, V.; Kissinger, G.; Brockhaus, M.; Skutsch, M. How countries link REDD+ interventions to drivers in their readiness plans: Implications for monitoring systems. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef]
- FCPF and UN-REDD. Readiness Preparation Proposal (R-PP) Assessment Note on the Proposed Project with SURINAME for REDD+ Readiness Preparation Support; World Bank (FCPF): Phnom Penh, Cambodia, 2011. [Google Scholar]
- Skutsch, M.; Turnhout, E. Skutsch2020.pdf. World Dev. 2020, 130, 104942. [Google Scholar] [CrossRef]
- Yamane, T. Statistics, an Introductory Analysis, 2nd ed.; Harper & Row: New York, NY, USA, 1967. [Google Scholar]
- Ban, N.C.; Picard, C.R.; Vincent, A.C.J. Comparing and integrating community-based and science-based approaches to prioritizing marine areas for protection. Conserv. Biol. 2009, 23, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Poudel, D.P. Migration, forest management and traditional institutions: Acceptance of and resistance to community forestry models in Nepal. Geoforum 2019, 106, 275–286. [Google Scholar] [CrossRef]
- Engen, S.; Runge, C.; Brown, G.; Fauchald, P.; Nilsen, L.; Hausner, V. Assessing local acceptance of protected area management using public participation GIS (PPGIS). J. Nat. Conserv. 2018, 43, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Salaisook, P.; Faysse, N.; Tsusaka, T.W. Reasons for adoption of sustainable land management practices in a changing context: A mixed approach in Thailand. Land Use Policy 2020, 96, 104676. [Google Scholar] [CrossRef]
- Bhat, C.R.; Srinivasan, S. A multidimensional mixed ordered-response model for analyzing weekend activity participation. Transp. Res. Part B Methodol. 2005, 39, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Khai, T.C.; Mizoue, N.; Kajisa, T.; Ota, T.; Yoshida, S. Stand structure, composition and illegal logging in selectively logged production forests of Myanmar: Comparison of two compartments subject to different cutting frequency. Glob. Ecol. Conserv. 2016, 7, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.; Maslin, M.; Balzter, H.; Sweeting, M. Choose satellites to monitor deforestation. Nature 2013, 496, 293–294. [Google Scholar] [CrossRef] [Green Version]
- Vidal, O.; López-García, J.; Rendón-Salinas, E. Trends in Deforestation and Forest Degradation after a Decade of Monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv. Biol. 2014, 28, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Rudel, T.K.; Sloan, S.; Chazdon, R.; Grau, R. The drivers of tree cover expansion: Global, temperate, and tropical zone analyses. Land Use Policy 2016, 58, 502–513. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; De Almeida, D.R.A.; Vidal, E.; Molin, P.G.; Sontag, V.E.; Souza, S.E.X.F.; Schulze, M.D. Fake legal logging in the brazilian amazon. Sci. Adv. 2018, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Delux, C. Drivers of Deforestation in the Greater Mekong Subregion Cambodia Country Report. Available online: https://www.leafasia.org/sites/default/files/resources/Cambodia%20Final-Revised-Nov2015.pdf (accessed on 21 October 2020).
- Bensel, T. Fuelwood, deforestation, and land degradation: 10 years of evidence from Cebu province, the Philippines. L. Degrad. Dev. 2008, 19, 587–605. [Google Scholar] [CrossRef]
- Ali, J.; Benjaminsen, T.A. Fuelwood, timber and deforestation in the Himalayas: The case of Basho Valley, Baltistan Region, Pakistan. Mt. Res. Dev. 2004, 24, 312–318. [Google Scholar] [CrossRef]
- Davis, K.F.; Yu, K.; Rulli, M.C.; Pichdara, L.; D’Odorico, P. Accelerated deforestation driven by large-scale land acquisitions in Cambodia. Nat. Geosci. 2015, 8, 772–775. [Google Scholar] [CrossRef] [Green Version]
- Sedano, F.; Silva, J.A.; Machoco, R.; Meque, C.H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z.A.; Baule, S.H.; Tucker, C.J. The impact of charcoal production on forest degradation: A case study in Tete, Mozambique. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Sonter, L.J.; Barrett, D.J.; Moran, C.J.; Soares-filho, B.S. Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry. Nat. Clim. Chang. 2015, 5, 359–363. [Google Scholar] [CrossRef]
- Chiteculo, V.; Lojka, B.; Surový, P.; Verner, V.; Panagiotidis, D.; Woitsch, J. Value chain of charcoal production and implications for forest degradation: Case study of Bié Province, Angola. Environments 2018, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Forestry Administration. Cambodia Forestry Outlook Study; Asia-pacific forestry sector outlook study II: Working paper series. Working Paper No. APFSOS II/ WP/ 2010/ 32; FAO: Rome, Italy, 2010. [Google Scholar]
- Henley, D. Swidden farming as an agent of environmental change: Ecological myth and historical reality in Indonesia. Environ. Hist. Camb. 2011, 17, 525–554. [Google Scholar] [CrossRef] [Green Version]
- Styger, E.; Rakotondramasy, H.M.; Pfeffer, M.J.; Fernandes, E.C.M.; Bates, D.M. Influence of slash-and-burn farming practices on fallow succession and land degradation in the rainforest region of Madagascar. Agric. Ecosyst. Environ. 2007, 119, 257–269. [Google Scholar] [CrossRef]
- Uitamo, E. Modelling deforestation caused by the expansion of subsistence farming in the Philippines. J. For. Econ. 1999, 5, 99–122. [Google Scholar]
- Moonen, P.C.J.; Verbist, B.; Schaepherders, J.; Meyi, M.B.; Van Rompaey, A.; Muys, B. Actor-based identification of deforestation drivers paves the road to effective REDD+ in DR Congo. Land Use Policy 2016, 58, 123–132. [Google Scholar] [CrossRef]
- Milne, S. Grounding Forest Carbon: Property Relations and Avoided Deforestation in Cambodia. Hum. Ecol. 2012. [Google Scholar] [CrossRef]
- Rudel, T.K.; Defries, R.; Asner, G.P.; Laurance, W.F. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 2009, 23, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Fearnside, P.M. Deforestation in Brazilian Amazonia: History, rates, and consequences. Conserv. Biol. 2005, 19, 680–688. [Google Scholar] [CrossRef]
- Entwisle, B.; Rindfuss, R.R.; Walsh, S.J.; Page, P.H. Population growth and its spatial distribution as factors in the deforestation of Nang Rong, Thailand. Geoforum 2008, 39, 879–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binh, T.N.K.D.; Vromant, N.; Hung, N.T.; Hens, L.; Boon, E.K. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau Peninsula, Vietnam. Environ. Dev. Sustain. 2005, 7, 519–536. [Google Scholar] [CrossRef]
- Purnomo, H.; Shantiko, B.; Sitorus, S.; Gunawan, H.; Achdiawan, R.; Kartodihardjo, H.; Dewayani, A.A. Fire economy and actor network of forest and land fires in Indonesia. For. Policy Econ. 2017, 78, 21–31. [Google Scholar] [CrossRef]
- Kim, S.; Sohn, H.G.; Kim, M.K.; Lee, H. Analysis of the Relationship among Flood Severity, Precipitation, and Deforestation in the Tonle Sap Lake Area, Cambodia Using Multi-Sensor Approach. KSCE J. Civ. Eng. 2019, 23, 1330–1340. [Google Scholar] [CrossRef]
- Souza, C.M.; Siqueira, J.V.; Sales, M.H.; Fonseca, A.V.; Ribeiro, J.G.; Numata, I.; Cochrane, M.A.; Barber, C.P.; Roberts, D.A.; Barlow, J. Ten-year landsat classification of deforestation and forest degradation in the brazilian amazon. Remote Sens. 2013, 5, 5493–5513. [Google Scholar] [CrossRef] [Green Version]
- Silva Junior, C.; Aragão, L.; Fonseca, M.; Almeida, C.; Vedovato, L.; Anderson, L. Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia. Forests 2018, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Adrianto, H.A.; Spracklen, D.V.; Arnold, S.R.; Sitanggang, I.S.; Syaufina, L. Forest and Land Fires Are Mainly Associated with Deforestation in Riau Province, Indonesia. Remote Sens. 2020, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Alisjahbana & Jonah, A.S.; Busch, M.M. Forestry, Forest Fires, and Climate Change in Indonesia. Bull. Indones. Econ. Stud. 2017, 53, 111–136. [Google Scholar] [CrossRef] [Green Version]
- Deklerck, V.; De Mil, T.; Ilondea, B.A.; Nsenga, L.; De Caluwé, C.; Van den Bulcke, J.; Van Acker, J.; Beeckman, H.; Hubau, W. Rate of forest recovery after fire exclusion on anthropogenic savannas in the Democratic Republic of Congo. Biol. Conserv. 2019, 233, 118–130. [Google Scholar] [CrossRef]
- Top, N.; Mizoue, N.; Kai, S. Estimating forest biomass increment based on permanent sample plots in relation to woodfuel consumption: A case study in Kampong Thom Province, Cambodia. J. For. Res. 2004, 9, 117–123. [Google Scholar] [CrossRef]
- San, V.; Spoann, V.; Ly, D.; Chheng, N.V. Fuelwood consumption patterns in Chumriey Mountain, Kampong Chhnang Province, Cambodia. Energy 2012, 44, 335–346. [Google Scholar] [CrossRef]
- Milne, S. Cambodia’s Unofficial Regime of Extraction: Illicit Logging in the Shadow of Transnational Governance and Investment. Crit. Asian Stud. 2015, 47, 200–228. [Google Scholar] [CrossRef]
- Santos de Lima, L.; Merry, F.; Soares-Filho, B.; Oliveira Rodrigues, H.; dos Santos Damaceno, C.; Bauch, M.A. Illegal logging as a disincentive to the establishment of a sustainable forest sector in the Amazon. PLoS ONE 2018, 13, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Degen, B.; Ward, S.E.; Lemes, M.R.; Navarro, C.; Cavers, S.; Sebbenn, A.M. Verifying the geographic origin of mahogany (Swietenia macrophylla King) with DNA-fingerprints. Forensic Sci. Int. Genet. 2013, 7, 55–62. [Google Scholar] [CrossRef]
- Adams, M.A.; Kayira, J.; Tegegne, Y.T.; Gruber, J.S. A comparative analysis of the institutional capacity of FLEGT VPA in Cameroon, the Central African Republic, Ghana, Liberia, and the Republic of the Congo. For. Policy Econ. 2020, 112, 102108. [Google Scholar] [CrossRef]
- Kishor, N.; Lescuyer, G. Controlling illegal logging in domestic and international markets by harnessing multi-level governance opportunities. Int. J. Commons 2012, 6, 255–270. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, B.; Wang, L.; Yang, A.; Yang, H. Eliminating illegal timber consumption or production: Which is the more economical means to reduce illegal logging? Forests 2016, 7, 191. [Google Scholar] [CrossRef] [Green Version]
- Leipold, S.; Sotirov, M.; Frei, T.; Winkel, G. Protecting “First world” markets and “Third world” nature: The politics of illegal logging in Australia, the European Union and the United States. Glob. Environ. Chang. 2016, 39, 294–304. [Google Scholar] [CrossRef]
- Anderson, C.M.; Asner, G.P.; Llactayo, W.; Lambin, E.F. Overlapping land allocations reduce deforestation in Peru. Land Use Policy 2018, 79, 174–178. [Google Scholar] [CrossRef]
- Yanai, A.M.; de Alencastro Graça, P.M.L.; Escada, M.I.S.; Ziccardi, L.G.; Fearnside, P.M. Deforestation dynamics in Brazil’s Amazonian settlements: Effects of land-tenure concentration. J. Environ. Manag. 2020, 268. [Google Scholar] [CrossRef] [PubMed]
- Austin, K.G.; González-Roglich, M.; Schaffer-Smith, D.; Schwantes, A.M.; Swenson, J.J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 2017, 12, 054009. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F. Forest transition in Vietnam and displacement of deforestation abroad. Proc. Natl. Acad. Sci. USA 2009, 106, 16139–16144. [Google Scholar] [CrossRef] [Green Version]
- Grogan, K.; Pflugmacher, D.; Hostert, P.; Mertz, O.; Fensholt, R. Unravelling the link between global rubber price and tropical deforestation in Cambodia. Nat. Plants 2019, 5, 47–53. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Khuc, V.; Ellicott, E.A.; De Bremond, A. Archetypical pathways of direct and indirect land-use change caused by Cambodia’s economic land concessions. Ecol. Soc. 2019, 24. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Sasaki, N. Assessment of Drivers of Deforestation and Forest Degradation in Phnom Tbeng Forest Based on Socio-Economic Surveys. J. Environ. Prot. 2014. [Google Scholar] [CrossRef] [Green Version]
- Kong, R.; Diepart, J.C.; Castella, J.C.; Lestrelin, G.; Tivet, F.; Belmain, E.; Bégué, A. Understanding the drivers of deforestation and agricultural transformations in the Northwestern uplands of Cambodia. Appl. Geogr. 2019, 102, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Miranda, J.; Börner, J.; Kalkuhl, M.; Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 2019, 14. [Google Scholar] [CrossRef]
- Perz, S.G.; Arambur’u, C.; Arambur’u, A.; Bremner, J. Population, land use and deforestation in the pan amazon basin: A comparison of brazil, bolivia, colombia, ecuador, per’uper’ per’u and venezuela *. Dev. Sustain. 2005, 7, 23–49. [Google Scholar] [CrossRef] [Green Version]
- Casse, T.; Milhøj, A.; Ranaivoson, S.; Randriamanarivo, J.R. Causes of deforestation in southwestern Madagascar: What do we know? For. Policy Econ. 2004, 6, 33–48. [Google Scholar] [CrossRef]
- Kubitza, C.; Krishna, V.V.; Urban, K.; Alamsyah, Z.; Qaim, M. Land Property Rights, Agricultural Intensification, and Deforestation in Indonesia. Ecol. Econ. 2018, 147, 312–321. [Google Scholar] [CrossRef]
- Dasgupta, S.; Deichmann, U.; Meisner, C.; Wheeler, D. Where is the poverty-environment nexus? Evidence from Cambodia, Lao PDR, and Vietnam. World Dev. 2005, 33, 617–638. [Google Scholar] [CrossRef]
- Scheidel, A.; Farrell, K.N.; Ramos-Martin, J.; Giampietro, M.; Mayumi, K. Land poverty and emerging ruralities in Cambodia: Insights from Kampot province. Environ. Dev. Sustain. 2014, 16, 823–840. [Google Scholar] [CrossRef]
- Beauchamp, E.; Clements, T.; Milner-Gulland, E.J. Exploring trade-offs between development and conservation outcomes in Northern Cambodia. Land Use Policy 2018, 71, 431–444. [Google Scholar] [CrossRef]
- Chhinh, N. Drought, Drought Vulnerability and Adaptation Policy in Cambodia wiith Reference to the Farming Sector. PhD Thesis, Flinders University of South Australia, Adelaide, Australia, 2016. [Google Scholar]
- Chantarat, S.; Oum, S.; Samphantharak, K.; Sann, V. Natural Disasters, Preferences, and Behaviors: Evidence from the 2011 Mega Flood in Cambodia. J. Asian Econ. 2019, 63, 44–74. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, T.T.; Grote, U. Multiple shocks and households’ choice of coping strategies in rural Cambodia. Ecol. Econ. 2020, 167, 106442. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Lamb, D.; Ceccon, E.; Boucher, D.; Herbohn, J.; Strassburg, B.; Edwards, D.P. Using markets to leverage investment in forest and landscape restoration in the tropics. For. Policy Econ. 2017, 85, 103–113. [Google Scholar] [CrossRef]
- Newton, P.; Gomez, A.E.A.; Jung, S.; Kelly, T.; de Alencastro Mendes, T.; Rasmussen, L.V.; dos Reis, J.C.; Rodrigues, R.D.; Tipper, R.; van der Horst, D.; et al. Overcoming barriers to low carbon agriculture and forest restoration in Brazil: The Rural Sustentável project. World Dev. Perspect. 2016, 4, 5–7. [Google Scholar] [CrossRef]
- Sunderlin, W.D. Poverty alleviation through community forestry in Cambodia, Laos, and Vietnam: An assessment of the potential. For. Policy Econ. 2006, 8, 386–396. [Google Scholar] [CrossRef]
- Poffenberger, M. Cambodia ’ s forests and climate change: Mitigating drivers of deforestation. Nat. Resour. Forum 2009, 33, 285–296. [Google Scholar] [CrossRef]
- Mukul, S.A.; Herbohn, J.; Rashid, A.Z.M.M.; Uddin, M.B. Comparing the effectiveness of forest law enforcement and economic incentives to prevent illegal logging in. Int. For. Rev. 2020. [Google Scholar] [CrossRef]
- Gavin, M.C.; Solomon, J.N.; Blank, S.G. Measuring and Monitoring Illegal Use of Natural Resources. Conserv. Biol. 2009, 24, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Van Der Ploeg, J.; Van Weerd, M.; Masipiqueña, A.B.; Gerard, A. Illegal Logging in the Northern Sierra Madre Natural Park, the Philippines. Conserv. Soc. 2011, 9, 202–215. [Google Scholar] [CrossRef]
- Van Heeswijk, L.; Turnhout, E. Forest Policy and Economics The discursive structure of FLEGT ( Forest Law Enforcement, Governance and Trade): The negotiation and interpretation of legality in the EU and Indonesia. For. Policy Econ. 2013, 32, 6–13. [Google Scholar] [CrossRef]
- Shiferaw, B.; Hellin, J.; Muricho, G. Improving market access and agricultural productivity growth in Africa: What role for producer organizations and collective action institutions? Food Secur. 2011, 475–489. [Google Scholar] [CrossRef]
- Muhanji, G.; Roothaert, R.L.; Webo, C.; Stanley, M.; Muhanji, G.; Roothaert, R.L.; Webo, C.; Stanley, M.; Muhanji, G.; Roothaert, R.L.; et al. African indigenous vegetable enterprises and market access for small-scale farmers in East Africa African indigenous vegetable enterprises and market access for small-scale farmers in East Africa. Int. J. Agric. Sustain. 2011, 5903. [Google Scholar] [CrossRef] [Green Version]
- Kry, S.; Sasaki, N.; Datta, A.; Abe, I.; Ken, S.; Tsusaka, T.W. Assessment of the changing levels of livelihood assets in the Kampong Phluk community with implications for community-based ecotourism. Tour. Manag. Perspect. 2020, 34, 100664. [Google Scholar] [CrossRef]
- Macqueen, D. Forest Connect: Reducing Poverty and Deforestation Through Support to Community Forest Enterprises. Int. For. Rev. 2016. [Google Scholar] [CrossRef]
- Pagdee, A.; Kim, Y.; Daugherty, P.J.; Kim, Y. What Makes Community Forest Management Successful: A Meta-Study From Community Forests Throughout the World What Makes Community Forest Management Successful: A Meta-Study From Community Forests Throughout the World. Soc. Nat. Resour. 2007, 19, 33–52. [Google Scholar] [CrossRef]
- Klooster, D.; Masera, O. Community forest management in Mexico: Carbon mitigation and biodiversity conservation through rural development. Glob. Environ. Chang. 2000, 10, 259–272. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-ali, L.M.; Healey, J.R.; Jones, J.P.G.; Teri, M. Does Community Forest Management Provide Global Environmental Benefits and Improve Local Welfare? Front Does community forest management provide global environmental benefits and improve local welfare? Front. Ecol. Environ. 2012. [Google Scholar] [CrossRef]
- Tacconi, L. National and International Policies to Control Illegal Forest Activities. Available online: https://www.semanticscholar.org/paper/National-and-International-Policies-to-Control-and-Tacconi/1da410d76153a26d7425708893772e7974ddd034 (accessed on 29 November 2020).
- Larson, A.M.; Petkova, E. An Introduction to Forest Governance, People and REDD+ in Latin America: Obstacles and Opportunities. Forests 2011, 2, 86–111. [Google Scholar] [CrossRef]
- Nurrochmat, D.R.; Massijaya, M.Y.; Jaya, I.N.S.; Abdulah, L.; Ekayani, M.; Astuti, E.W.; Erbaugh, J.T. Promoting community forestry to reduce deforestation surrounding Gunung Rinjani National Park in Central Lombok, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 285. [Google Scholar] [CrossRef]
- Dinh, H.; Smith, C.; Herbohn, J. What drives the success of reforestation projects in tropical developing countries? The case of the Philippines. Glob. Environ. Chang. 2014, 24, 334–348. [Google Scholar] [CrossRef]
- Godoy, R.; Groff, S.; O’Neill, K. The Role of Ed ucation in Neotropical Deforestation: Househ old Evidence from Am erin dian s in Hon duras. Hum. Ecol. 1998, 26, 649–675. [Google Scholar] [CrossRef]
- Wannasai, N.; Shrestha, R.P. Role of land tenure security and farm household characteristics on land use change in the Prasae Watershed, Thailand. Land Use Policy 2008, 25, 214–224. [Google Scholar] [CrossRef]
- Corbera, E.; Estrada, M.; May, P.; Navarro, G.; Pacheco, P. Rights to Land, Forests and Carbon in REDD+: Insights from Mexico, Brazil and Costa Rica. Forests 2011, 2, 301–342. [Google Scholar] [CrossRef] [Green Version]
- Robinson, B.E.; Holland, M.B.; Naughton-treves, L. Does secure land tenure save forests? A meta-analysis of the relationship between land tenure and tropical deforestation. Glob. Environ. Chang. 2014, 29, 281–293. [Google Scholar] [CrossRef]
- Binswanger-Mkhize, H.P.; Savastano, S. Agricultural intensification: The status in six African countries. Food Policy 2017, 67, 26–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelps, J.; Roman, L.; Webb, E.L.; Pin, L.; Pascual, U. Agricultural intensi fi cation escalates future conservation costs. PNAS 2013, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, J.; Ngoma, H.; Mason, N.M.; Barrett, C.B. Does smallholder maize intensi fi cation reduce deforestation? Evidence from Zambia. Glob. Environ. Chang. 2020, 63, 102127. [Google Scholar] [CrossRef]
- Edwards, D.P.; Fisher, B.; Boyd, E. Protecting degraded rainforests: Enhancement of forest carbon stocks under REDD +. Conserv. Lett. 2010, 3, 313–316. [Google Scholar] [CrossRef]
- Basak, S. Empowering Women through Gender. North Asian Int. Res. J. Soc. Sci. Humanit. 2017, 3, 44–50. [Google Scholar]
- Vasundhara, S. Importance of Gender Sensitization. Int. J. Multidiscip. Curr. 2020, 2, 120–125. [Google Scholar]
Within the Forest Sector | Outside the Forest Sector |
---|---|
Direct Drivers | |
|
|
Indirect drivers | |
|
|
Community Forest | Sample Size | Percentage (%) |
---|---|---|
1. Veal O Khdey | 31 | 14.4 |
2. Prey Cheam Smach | 31 | 14.4 |
3. Prey Naktala | 32 | 14.9 |
4. Prey Kbal Daun Tey | 30 | 14.0 |
5. Prey Kbal Ou Kror Nhak | 32 | 14.9 |
6. Beong Rolom | 28 | 13.0 |
7. Andoung Pring | 31 | 14.4 |
Total (n) after removing the invalid entries | 215 | 100 |
Community Forest | Number of Participants | Number of Female Participants |
---|---|---|
Prey Cheam Smach | 18 | 12 |
Prey Naktala | 18 | 6 |
Prey Kbal Ou Kror Nhak | 19 | 13 |
Prey Kbal Daun Tey | 17 | 8 |
Total | 72 | 39 |
Sociodemographic Profile Variable | Category or Level | Frequency (%) | Mean (SD) |
---|---|---|---|
Gender of respondent * | Male | 32.6 | |
Female | 67.4 | ||
Age of respondent (years) | 18–30 | 23.7 | 42.3 (14.3) |
31–40 | 28.8 | ||
41–50 | 17.2 | ||
51–60 | 17.7 | ||
>60 | 12.6 | ||
Marital status of respondent | Single | 0.5 | NA |
Married | 88.8 | ||
Divorced | 2.8 | ||
Other | 7.9 | ||
Household size (headcount) | Less than 4 | 21.9 | 4.8 (1.6) |
4–7 | 70.2 | ||
More than 7 | 7.9 | ||
Level of education of respondent | No education | 26.5 | NA |
Informal education at pagoda | 1.9 | ||
Literacy class | 2.8 | ||
Primary school | 38.1 | ||
Secondary school | 21.4 | ||
High school | 7.0 | ||
Diploma, vocational Education | 0.5 | ||
College or higher | 1.9 | ||
Duration of residency of respondent (years) | 1–10 | 15.4 | 32.9 (18.4) |
11–20 | 14.4 | ||
21–30 | 16.7 | ||
>30 | 53.5 | ||
Primary occupation of respondent | Farmer | 80.5 | NA |
Labor worker | 8.4 | ||
Businessperson | 5.1 | ||
Government officer | 0.9 | ||
NTFPs collector | 0.9 | ||
Rancher | 0.5 | ||
Other | 3.7 | ||
Duration with primary occupation (years) | 1–10 | 54.9 | 16.4 (14.0) |
11–20 | 15.8 | ||
21–30 | 10.7 | ||
>30 | 18.6 | ||
Household income from primary occupation (USD/year) | <500 | 28.4 | 1266.3 (1604.8) |
500–1000 | 39.1 | ||
1001–2000 | 15.8 | ||
>2000 | 16.7 | ||
Household income from other occupations (USD/year) | <500 | 61.4 | 790.7 (1181.2) |
500–1000 | 9.3 | ||
1001–2000 | 21.9 | ||
>2000 | 7.4 | ||
Community forest by respondent | Member | 68.8 | NA |
Non member | 31.2 | ||
Participation in forest management committee by respondent | Participant | 43.7 | NA |
Non participant | 56.3 |
Direct Driver | Mean Score (SD) | Median Score | |
---|---|---|---|
N1 | Illegal logging/unauthorized forest encroachment | 4.53 (0.60) | 5 |
N2 | Commercial wood production | 4.20 (0.71) | 4 |
N3 | Land clearing for commercial agriculture | 4.19 (1.15) | 5 |
N4 | Charcoal production | 3.60 (1.12) | 4 |
N5 | Land clearance for subsistence agriculture | 3.54 (0.75) | 4 |
N6 | New settlements/migration | 3.43 (0.81) | 3 |
N7 | Natural disaster (flood, storm) | 3.31 (0.91) | 3 |
N8 | Human induced forest fire | 3.25 (0.96) | 3 |
N9 | Fuelwood (domestic usage or local consumption) | 3.21 (0.77) | 3 |
Indirect Drivers | Mean Score (SD) | Median Score | |
---|---|---|---|
P1 | Limitation in law enforcement | 4.33 (0.54) | 4 |
P2 | Demand for timber | 4.15 (0.68) | 4 |
P3 | Land tenure and rights issue | 3.72 (0.78) | 4 |
P4 | Population growth | 3.47 (0.73) | 3 |
P5 | Fertile land availability limitation | 2.94 (0.97) | 3 |
P6 | Road construction | 2.79 (0.84) | 3 |
P7 | Shifting cultivation | 2.73 (0.94) | 3 |
P8 | Public service | 2.32 (0.89) | 2 |
P9 | Mining | 1.95 (0.83) | 2 |
P10 | Livestock grazing | 1.85 (0.69) | 2 |
P11 | Hydropower development | 1.60 (0.63) | 2 |
Rank | Agents | Frequency of Response (% of Households) in Relation to Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), Strongly Agree (5) | Average Score (SD) | Median Score | ||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | ||||
1 | Furniture makers | 0.0 | 1.9 | 10.7 | 57.2 | 30.2 | 4.16 (0.68) | 4 |
2 | Medium and large-scale agricultural investors | 0.0 | 19.1 | 4.7 | 34.9 | 41.4 | 3.99 (1.11) | 4 |
3 | Charcoal makers | 1.4 | 27.0 | 7.4 | 44.2 | 20.0 | 3.54 (1.13) | 4 |
4 | Migrants | 0.5 | 10.7 | 42.8 | 42.3 | 3.7 | 3.38 (0.74) | 3 |
5 | Firewood collectors | 0.5 | 20.0 | 39.1 | 35.8 | 4.7 | 3.24 (0.84) | 3 |
6 | Subsistence farmers | 4.7 | 17.2 | 38.1 | 39.5 | 0.5 | 3.14 (0.87) | 3 |
7 | Shifting cultivators | 11.6 | 23.3 | 46.1 | 17.7 | 1.4 | 2.74 (0.93) | 3 |
8 | Infrastructural developers | 8.8 | 38.6 | 30.7 | 21.9 | 0.0 | 2.66 (0.92) | 3 |
9 | Mining investors | 23.3 | 43.3 | 7.9 | 21.4 | 4.2 | 2.40 (1.18) | 2 |
10 | Hydropower establishers | 27.9 | 42.8 | 7.4 | 19.1 | 2.8 | 2.26 (1.14) | 2 |
11 | Ranchers | 30.7 | 54.4 | 12.1 | 2.8 | 0.0 | 1.87 (0.72) | 2 |
Agents | Activities |
---|---|
Furniture makers | - Fell trees in huge amount for commercial wood products - Trigger illegal logging from local people |
Medium- and large-scale agricultural investors | - Convert forest land to agricultural land |
Charcoal makers | - Produce charcoal |
Land migrants | - Clear forest for land settlement - Clear forest for agricultural land - Trigger local people to clear forest land and sell to them |
Firewood collectors | - Collect wood for domestic use |
Subsistent farmers | - Clear forest land for growing crop |
Agents | Reason |
---|---|
Shifting cultivator | No more practice in the region |
Infrastructural developers | No effect on forests since the road was built or repaired on the existing road |
Mining investors | No mining activity in the region |
Hydropower establishers | No hydropower development in the region |
Livestock raisers | Local people raised animals in very small numbers such as chickens and cows |
Rank | Activity | Frequency of Response (% of Households) in Relation to Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), Strongly Agree (5) | Average Score (SD) | Median Score | ||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | ||||
1 | Sufficient farmland for family | 0.0 | 0.0 | 9.3 | 31.2 | 59.5 | 4.50 (0.66) | 5 |
2 | Financial incentives for agriculture | 0.0 | 0.9 | 7.4 | 35.4 | 56.3 | 4.47 (0.68) | 5 |
3 | Law enforcement on illegal logging | 0.0 | 0.0 | 4.2 | 51.6 | 44.2 | 4.40 (0.57) | 4 |
4 | Improve market access for agricultural products | 0.0 | 2.3 | 2.3 | 54.4 | 40.9 | 4.34 (0.64) | 4 |
5 | Community forest management | 0.0 | 0.5 | 3.3 | 67.9 | 28.4 | 4.24 (0.53) | 4 |
6 | Policy and governance reform | 0.0 | 0.9 | 8.4 | 61.9 | 28.8 | 4.19 (0.61) | 4 |
7 | Reforestation/tree plantation | 0.0 | 1.9 | 9.8 | 60.9 | 27.4 | 4.14 (0.66) | 4 |
8 | Environmental education on forest management | 0.5 | 1.9 | 7.9 | 62.8 | 27.0 | 4.14 (0.67) | 4 |
9 | Land tenure and rights | 1.4 | 0.5 | 8.4 | 67.4 | 22.3 | 4.09 (0.67) | 4 |
10 | Agricultural intensification | 0.0 | 0.5 | 12.6 | 71.6 | 15.4 | 4.02 (0.55) | 4 |
11 | Restoration of degraded forests | 0.0 | 0.9 | 17.2 | 60.9 | 20.9 | 4.02 (0.65) | 4 |
12 | Good land use planning | 0.0 | 4.7 | 12.6 | 76.3 | 6.5 | 3.85 (0.60) | 4 |
13 | Environmental and social impact assessment for development proposal | 1.4 | 3.3 | 15.8 | 73.0 | 6.5 | 3.80 (0.66) | 4 |
14 | Fuelwood efficient cookstoves and rooftop solar power | 0.0 | 0.5 | 26.5 | 67.0 | 6.1 | 3.79 (0.55) | 4 |
15 | Build infrastructure for local employment | 1.4 | 5.1 | 22.8 | 62.3 | 8.4 | 3.71 (0.75) | 4 |
16 | Create alternative income opportunities | 1.9 | 7.9 | 23.7 | 60.0 | 6.5 | 3.61 (0.80) | 4 |
17 | Agroforestry | 1.4 | 4.2 | 34.9 | 51.6 | 7.9 | 3.60 (0.75) | 4 |
18 | Livestock rangeland management | 11.6 | 9.8 | 29.3 | 36.3 | 13.0 | 3.29 (1.17) | 3 |
Activity | Drivers | ||||||||
---|---|---|---|---|---|---|---|---|---|
Illegal Logging | Commercial Wood Products | Land Clearance for Commercial Cultivation | Charcoal Production | Land Clearance for Subsistence Cultivation | New Settlements/ Migration | Natural Disaster | Human-Induced Forest Fire | Fuelwood | |
Sufficient farmland for family | √ | ||||||||
Financial incentives for agriculture | √ | ||||||||
Law enforcement against illegal logging | √ | √ | √ | ||||||
Improved market access for agricultural products | √ | ||||||||
Community forest management | √ | ||||||||
Policy and governance reform | |||||||||
Reforestation/tree plantation | √ | √ | √ | √ | |||||
Environmental education on forest management | √ | √ | √ | √ | |||||
Land tenure and rights | √ | √ | |||||||
Agricultural intensification | √ | √ | |||||||
Restoration of degraded forests | √ | √ | √ | √ |
Activities | Characteristics | Application to Study Area and Challenges |
---|---|---|
1. Good land use planning | Land use for sustainable use of the natural resource | Local people had less knowledge about the importance of good land use planning. |
2. Environmental and social impact assessment for development proposals | The assessment on the impact of project development on environment and society | It is practiced in the region; however, economic development variables are often the criteria to consider to make the proposal accepted. |
3. Fuelwood-efficient cookstoves and rooftop solar power | Reduce the fuelwood demand for cooking energy and other purposes | Local people were not aware about the efficient cookstoves as they still used the traditional 3-stone cookstove. Solar is still unthinkable to the locals. |
4. Build infrastructure (schools, hospitals, tourist centers) and employ local people | Build schools, hospitals or tourist centers, then hire local people to work | Requires funds for development. Need to have a solid plan and long-term investment. |
5. Create alternative income opportunities such as eco-tourism, aquaculture, handicrafts, and souvenirs | - Promote ecotourism in the region - Create income from aquaculture, handcrafts, and souvenirs | - Takes time to promote ecotourism and build the reputation of ecotourism. - Lack of staff with skills in tourism. - Lack of support from local people in making handicrafts (there used to be a handicraft store in Kbal Doun Tey community where local people used to make handicrafts, but it was not long until it closed). |
6. Agroforestry | - Trees or shrubs are grown around or on the same land as agricultural crops and/or animals | - Not suitable in the study area. |
7. Livestock/rangeland management | - Management of the land for animal raising especially the land that can provide forage | - Not a problem for forest loss in the study area since only less than 1% of respondents were livestock raisers. |
Sociodemographic Factors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Women (1 if so) | Age (Years) | Married (1 If So) | HH Size (Headcount) | Secondary School (1 If Completed) | Residency Duration (Years) | Farmer (1 If So) | Occupation Duration (Years) | Ln Income (Ln (USD/Annum)) | CF Member (1 If So) | CFM Participant (1 IF So) | ||
Direct drivers | ||||||||||||
1 | Illegal logging/unauthorized forest encroachment | ++ | +++ | − − − | ||||||||
2 | Commercial wood production | − − − | + | ++ | +++ | − − − | ||||||
3 | Land clearing for commercial agriculture | − − − | +++ | − − − | ||||||||
4 | Charcoal production | − | ++ | − − | − − | |||||||
5 | Land clearance for subsistence agriculture | + | − | |||||||||
6 | New settlements/Migration | − − − | − − | + | +++ | |||||||
7 | Natural disaster (flood, storm) | + | ||||||||||
8 | Human-induced forest fire | + | + | − − − | ||||||||
9 | Fuelwood (domestic usage or local consumption) | + | + | − − | ||||||||
Indirect drivers | ||||||||||||
1 | Limitation in law enforcement | − − − | + | +++ | − − − | |||||||
2 | Demand for timber | + | +++ | +++ | − − | |||||||
3 | Land tenure and rights issue | + | ++ | |||||||||
4 | Population growth | − − − | − − | +++ | − − | |||||||
5 | Fertile land availability limitation | − − − | + | − − − | +++ | − − | ||||||
6 | Road construction | − | ||||||||||
7 | Shifting cultivation | ++ | − − | +++ | − − − | − − − | − − − | ++ | ||||
8 | Public service | − − − | ||||||||||
9 | Mining | − − | +++ | − − − | ++ | |||||||
10 | Livestock grazing | − − − | +++ | |||||||||
11 | Hydropower development | + | − − − | + |
Sociodemographic Factors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Women (1 If So) | Age (Years) | Married (1 If So) | HH Size (Headcount) | Primary School (1 If Completed) | Residency Duration (Years) | Farmer (1 If So) | Occupation Duration (Years) | Ln Income (Ln (USD/Annum)) | CF Member (1 If So) | CFM Participant (1 If So) | ||
Agents | ||||||||||||
1 | Furniture makers | − − | − − | +++ | +++ | − − − | ||||||
2 | Medium and large-scale agricultural investors | − − − | + | + | +++ | − − − | ||||||
3 | Charcoal makers | |||||||||||
4 | Migrants | − | − | − | +++ | − − − | ||||||
5 | Fire wood collectors | − − | ++ | − | ||||||||
6 | Subsistence farmers | ++ | + | |||||||||
7 | Shifting cultivators | ++ | − − | − − − | − − − | +++ | ||||||
8 | Infrastructural developers | − − − | − | |||||||||
9 | Mining investors | − − | + | − | ||||||||
10 | Hydropower establishers | − | + | − − | ||||||||
11 | Ranchers | − − − | +++ |
Sociodemographic Factors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Women (1 If So) | Age (Years) | Married (1 If So) | HH Size (Headcount) | Primary School (1 If Completed) | Residency Duration (Years) | Farmer (1 If So) | Occupation Duration (Years) | Ln Income (Ln (USD/Annum)) | CF Member (1 If So) | CFM Participant (1 If So) | ||
Activities | ||||||||||||
1 | Sufficient farmland for family | +++ | − | ++ | ||||||||
2 | Financial incentives for agriculture | ++ | ++ | ++ | ||||||||
3 | Law enforcement against illegal logging | − − − | +++ | +++ | − − − | |||||||
4 | Improved market access for agriculture products | ++ | + | |||||||||
5 | Community forest management | − | ++ | +++ | − − − | |||||||
6 | Policy and governance reform | ++ | ++ | − − | + | − − | ||||||
7 | Reforestation/tree plantation | ++ | +++ | |||||||||
8 | Environmental education on forest management | +++ | − − − | |||||||||
9 | Land tenure and rights | − | + | + | ++ | − − − | ||||||
10 | Agricultural intensification | ++ | ||||||||||
11 | Restoration of degraded forests | + | + | + | +++ | − − | ||||||
12 | Good land use planning | +++ | +++ | |||||||||
13 | Environmental and social impact assessment for development proposal | − − | − − | ++ | +++ | − | + | |||||
14 | Fuelwood efficient cookstoves and rooftop solar power | − − | − − | ++ | +++ | − | + | |||||
15 | Build infrastructure for local employment | ++ | − − − | |||||||||
16 | Create alternative income opportunities | − − − | +++ | |||||||||
17 | Agroforestry | − − | ||||||||||
18 | Livestock rangeland management | + | + | + | +++ | − − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ken, S.; Sasaki, N.; Entani, T.; Ma, H.O.; Thuch, P.; Tsusaka, T.W. Assessment of the Local Perceptions on the Drivers of Deforestation and Forest Degradation, Agents of Drivers, and Appropriate Activities in Cambodia. Sustainability 2020, 12, 9987. https://doi.org/10.3390/su12239987
Ken S, Sasaki N, Entani T, Ma HO, Thuch P, Tsusaka TW. Assessment of the Local Perceptions on the Drivers of Deforestation and Forest Degradation, Agents of Drivers, and Appropriate Activities in Cambodia. Sustainability. 2020; 12(23):9987. https://doi.org/10.3390/su12239987
Chicago/Turabian StyleKen, Sereyrotha, Nophea Sasaki, Tomoe Entani, Hwan Ok Ma, Phalla Thuch, and Takuji W. Tsusaka. 2020. "Assessment of the Local Perceptions on the Drivers of Deforestation and Forest Degradation, Agents of Drivers, and Appropriate Activities in Cambodia" Sustainability 12, no. 23: 9987. https://doi.org/10.3390/su12239987
APA StyleKen, S., Sasaki, N., Entani, T., Ma, H. O., Thuch, P., & Tsusaka, T. W. (2020). Assessment of the Local Perceptions on the Drivers of Deforestation and Forest Degradation, Agents of Drivers, and Appropriate Activities in Cambodia. Sustainability, 12(23), 9987. https://doi.org/10.3390/su12239987