Causes and Effects of Mangrove Ecosystem Damage on Carbon Stocks and Absorption in East Java, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Descriptive and Statistical Analysis
3. Results
3.1. Driver
3.2. Pressure
3.3. State
3.4. Impact
3.5. Response
- The influence of variable X1, “Irrational use”, on the X2 variable, “Illegal logging”, obtained a path coefficient of 0.963 with a significance value of 0.000 (p < 0.05). So, a significant positive effect was obtained. It means that the higher the respondent’s perception of variable X1, namely “Irrational use” of mangrove forests, will significantly influence the respondent’s perception of variable X2, namely “Illegal logging”;
- The influence of the X2 variable, “Illegal logging”, on the X3 variable, “Effect of forest damage on carbon sequestration”, obtained a path coefficient of 0.986 with a significance value of 0.000 (p < 0.05). So, a significant positive effect was obtained. It means that the higher the respondent’s perception of variable X2, namely “Illegal logging”, will significantly influence the respondents’ perceptions of variable X3, namely “effect of forest damage on carbon sequestration”;
- The influence of variable X2, “Illegal logging”, on variable X5, “Law enforcement”, obtained a path coefficient of 0.867 with a significance value of 0.000 (p < 0.05). So, a significant positive effect was obtained. It means that the higher the respondent’s perception of the X2 variable, namely “Illegal logging”, will significantly influence the respondent’s perception of the variable X5 “Law enforcement”;
- The influence of the X3 variable, “Effect of forest damage on carbon sequestration”, on the X4 variable, “Weak carbon sequestration”, obtained a path coefficient of 0.927 with a significance value of 0.000 (p < 0.05). So, a significant positive effect was obtained. It means that the higher the respondent is on the X3 variable, namely “Effect of forest damage on carbon sequestration,” will significantly affect the respondent’s perception of the X4, namely “Weak carbon sequestration”.
4. Discussion
- (1)
- The government has the responsibility to guarantee citizens’ rights to a healthy environment. The government must prevent the illegal logging and all other destructive activities of mangroves in the coastal environment;
- (2)
- Utilization and management of natural resources must adhere to sustainable development. Thus, every citizen has the responsibility to preserve mangrove forests, including those responsible for future generations;
- (3)
- Utilization and management techniques for mangrove forests must pay attention to various aspects, including economic, socio-cultural, and bio-geophysical characteristics [45];
- (4)
- The principle of polluting pay must be applied. That means that every person in charge of a business or individuals who cause pollution or damage to mangrove forests must pay a fine;
- (5)
- Every community member must participate in decision-making processes and the protection and management of mangrove forests. Replant needed to increase the density of mangrove and maintain a stable carbon stock and storage. The ecotourism concept is used to protect and manage the mangrove density, species, and areas.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marba, N.; et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Chen, B.; Yu, D.; Tam, N.F.Y.; Ye, Y.; Chen, S. Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environ. Res. Lett. 2016, 11, 124019. [Google Scholar] [CrossRef]
- Kumara, M.P.; Jayatissa, L.P.; Krauss, K.W.; Phillips, D.H.; Huxham, M. High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 2010, 164, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Krauss, K.W.; McKee, K.L.; Lovelock, C.E.; Cahoon, D.R.; Saintilan, N.; Reef, R.; Chen, L. How mangrove forests adjust to rising sea level. New Phytol. 2014, 202, 19–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, H.; Beggins, J.; Duarte, C.M.; Fourqurean, J.W.; Holmer, M.; Marbà, N.; Middelburg, J.J. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles 2010, 24. [Google Scholar] [CrossRef] [Green Version]
- Sasmito, S.D.; Taillardat, P.; Clendenning, J.N.; Cameron, C.; Friess, D.A.; Murdiyarso, D.; Hutley, L.B. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Glob. Chang. Biol. 2019, 25, 4291–4302. [Google Scholar] [CrossRef]
- Rudianto. Restoration of mangrove ecosystem in coastal village based on co-management. J. Perikan. Univ. Gadjah Mada 2018, 20, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Giesen, W.; Wulffraat, S.; Zieren, M.; Scholten, L. Mangrove Guidebook for Southeast Asia; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2007. [Google Scholar]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Routledge: Abingdon, UK, 2010. [Google Scholar]
- Rudianto, R.; Bengen, D.G. Identification of the types of damage to mangrove forest ecosystems due to human activities in Lowu-Lowu Village, Lea-Lea District, Baubau City. J. Geogr. Educ. Res. 2016, 1, 30–45. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Bunting, P.; Rosenqvist, A.; Lucas, R.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Batubara, R.R.; Jogia, G.E.; Batubara, I.; Audah, K.A.; Nunuk, K.N. Introduction of bioprospecting opportunities for Indonesian mangrove species. IOP Conf. Ser. Earth Environ. Sci. 2018, 183. [Google Scholar] [CrossRef]
- Rahadian, A.; Prasetyo, L.B.; Setiawan, Y.; Wikantika, K. A Historical review of data and information of Indonesian mangroves area. Media Konserv. 2019, 24, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Ilman, M.; Dargusch, P.; Dart, P.; Onrizal, A. historical analysis of the drivers of loss and degradation of Indonesia’s mangroves. Land Use Policy 2016, 54, 448–459. [Google Scholar] [CrossRef]
- Silvius, M.; Steeman, A.; Berczy, E.; Djuharsa, E.; Tanfik, A. The Indonesian wetland inventory. A preliminary compilation of existing information on wetlands of Indonesia; Edwin: Bogor, Indonesia, 1987. [Google Scholar]
- Burbridge, P.R. Management of mangrove exploitation in Indonesia. Appl. Geogr. 1982, 2, 39–54. [Google Scholar] [CrossRef]
- Soegiarto, A.; Sukardjo, S. Utilization of mangrove forest in brackish water culture pond development in Indonesia. J. Penelit. Dan Pengemb. Pertan. 1987, 6, 95–104. [Google Scholar]
- (RePPProT). The Land Resources of Indonesia: A National Overview; Regional Physical Planning Programme for Transmigration: Jakarta, Indonesia, 1990. [Google Scholar]
- Naamin, N. Conversion of mangrove areas to tambaks aquaculture in Indonesia. In Proceedings of the Workshop on the conversion of mangrove areas to aquaculture, Iloilo, Visayas, Philiphines, 24–26 April 1986; pp. 56–71. [Google Scholar]
- Choong, E.T.; Wirakusumah, R.S.; Achmadi, S.S. Mangrove forest resources in Indonesia. For. Ecol. Manag. 1990, 33, 45–47. [Google Scholar] [CrossRef]
- (BIG). Mangrove Geospatial Information of Indonesia; Pusat Pemetaan dan Informasi Tematik; Badan Informasi Geospasial: Bogor, Indonesia, 2012.
- (KLHK). Penghitungan Deforestasi Indonesia Periode 2009–2011 (Calculation of Deforestation of Indonesia for the Period of 2009–2011); Ministry of Forestry, Republic of Indonesia: Jakarta, Indonesia, 2012.
- Susanto, A.; Subarya, C.; Poniman, A. Kebijakan Satu Peta; Momentum Reformasi Penyelenggaraan Informasi Geospasial Nasional. In Proceedings of the Seminar Nasional Geomatika, Bogor, Indonesia, 5 October 2016; pp. 23–34. [Google Scholar]
- Badan Pusat Statistik. East Java Province in Figure 2019; BPS-Statistics of Jawa Timur Province: Jakarta, Indonesia, 2019.
- Badan Pusat Statistik. East Java Province in Figure 2008; BPS-Statistics of Jawa Timur Province: Jakarta, Indonesia, 2008.
- Badan Pusat Statistik. East Java Province in Figure 2012; BPS-Statistics of Jawa Timur Province: Jakarta, Indonesia, 2012.
- Badan Pusat Statistik. East Java Province in Figure 2014; BPS-Statistics of Jawa Timur Province: Jakarta, Indonesia, 2014.
- Badan Pusat Statistik. East Java Province in Figure 2016; BPS-Statistics of Jawa Timur Province: Jakarta, Indonesia, 2016.
- Ministry of Environment and Forestry. Rekalkulasi Penutupan Lahan Indonesia Tahun 2008 (Land Cover Recalculation of Indonesia Year 2008); Directorate of Inventory and Monitoring of Forest Resources, Directorate General of Forestry Planning and Environmental Management, Ministry of Environment and Forestry: Jakarta, Indonesia, 2008.
- Ministry of Environment and Forestry. Rekalkulasi Penutupan Lahan Indonesia Tahun 2012 (Land Cover Recalculation of Indonesia Year 2012); Directorate of Inventory and Monitoring of Forest Resources, Directorate General of Forestry Planning and Environmental Management, Ministry of Environment and Forestry: Jakarta, Indonesia, 2012.
- Ministry of Environment and Forestry. Rekalkulasi Penutupan Lahan Indonesia Tahun 2014 (Land Cover Recalculation of Indonesia Year 2014); Directorate of Inventory and Monitoring of Forest Resources, Directorate General of Forestry Planning and Environmental Management, Ministry of Environment and Forestry: Jakarta, Indonesia, 2014.
- Ministry of Environment and Forestry. Rekalkulasi Penutupan Lahan Indonesia Tahun 2016 (Land Cover Recalculation of Indonesia Year 2016); Directorate of Inventory and Monitoring of Forest Resources, Directorate General of Forestry Planning and Environmental Management, Ministry of Environment and Forestry: Jakarta, Indonesia, 2016.
- Ministry of Environment and Forestry. Rekalkulasi Penutupan Lahan Indonesia Tahun 2019 (Land Cover Recalculation of Indonesia Year 2019); Directorate of Inventory and Monitoring of Forest Resources, Directorate General of Forestry Planning and Environmental Management, Ministry of Environment and Forestry: Jakarta, Indonesia, 2019.
- Nobre, A.M. Scientific approaches to address challenges in coastal management. Mar. Ecol. Prog. Ser. 2011, 434, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Sarmin, N.S.; Mohd Hasmadi, I.; Pakhriazad, H.Z.; Khairil, W.A. The DPSIR framework for causes analysis of mangrove deforestation in Johor, Malaysia. Environ. Nanotechnol. Monit. Manag. 2016, 6, 214–218. [Google Scholar] [CrossRef]
- Adams, J.B.; Rajkaran, A. Changes in mangroves at their southernmost African distribution limit. Estuar. Coast. Shelf Sci. 2020. [Google Scholar] [CrossRef]
- Partovi Fariborz, Y.; Burton, J.; Banerjee, A. Application of Analytical Hierarchy Process in Operations Management. Int. J. Oper. Prod. Manag. 1990, 10, 5–19. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Budianto, A.; Kusdarini, E.; Effendi, S.S.W.; Aziz, M. The Production of Activated Carbon from Indonesian Mangrove Charcoal. IOP Conf. Ser. Mater. Sci. Eng. 2019, 462. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Heriyanto, N.; Subiandono, E. Composition and structure of stands, biomass, and potential carbon content of mangrove forests in Alas Purwo National Park. J. For. Res. Nat. Conserv. 2012, 9, 23–32. [Google Scholar]
- Kridiborworn, P.; Chidthaisong, A.; Yuttitham, M.; Tripetchkul, S. Carbon sequestration by mangrove forest planted specifically for charcoal production in Yeesarn, Samut Songkram. J. Sustain. Energy Environ. 2012, 3, 87–92. [Google Scholar]
- Murray, B.C.; Jenkins, W.A.; Sifleet, S.; Pendleton, L.; Baldera, A. Payments for Blue Carbon: Potential for Protecting Threatened Coastal Habitats; Nicholas Institute for Environmental Policy Solutions, Duke University: Durham, NC, USA, 2010. [Google Scholar]
- Primavera, J.H. Mangrove, fishponds, and the quest for sustainability. Science 2005, 310, 57–59. [Google Scholar] [CrossRef] [Green Version]
- Sejati, A.W.; Buchori, I.; Kurniawati, S.; Brana, Y.C.; Fariha, T.I. Quantifying the impact of industrialization on blue carbon storage in the coastal area of Metropolitan Semarang, Indonesia. Appl. Geogr. 2020, 124. [Google Scholar] [CrossRef]
- Slamet, N.S.; Dargusch, P.; Aziz, A.A.; Wadley, D. Mangrove vulnerability and potential carbon stock loss from land reclamation in Jakarta Bay, Indonesia. Ocean Coast. Manag. 2020, 195. [Google Scholar] [CrossRef]
- Turschwell, M.P.; Tulloch, V.J.D.; Sievers, M.; Pearson, R.M.; Andradi-Brown, D.A.; Ahmadia, G.N.; Connolly, R.M.; Bryan-Brown, D.; Lopez-Marcano, S.; Adame, M.F.; et al. Multi-scale estimation of the effects of pressures and drivers on mangrove forest loss globally. Biol. Conserv. 2020, 247. [Google Scholar] [CrossRef]
- Yang, S.; Hu, S.; Wang, S.; Zou, L. Effects of rapid urban land expansion on the spatial direction of residential land prices: Evidence from Wuhan, China. Habitat Int. 2020, 101. [Google Scholar] [CrossRef]
- Yatim, B.B.; Hoi, W.K. The quality of charcoal from various types of wood. Fuel 1987, 66, 1305. [Google Scholar] [CrossRef]
- Sulaiman, B.; Bambang, A.N.; Purnaweni, H.; Lutfi, M.; Mohammed, E.M.A. Coastal community perception of mangrove in Suli Subdistrict, Luwu. J. Pendidik. IPA Indones. 2019, 8, 561–569. [Google Scholar] [CrossRef]
- Aksornkoae, S. Mangroves … Coastal treasure of Thailand. J. R. Inst. Thail. 2012, 4, 59–77. [Google Scholar]
- Kustanti, A.; Nugroho, B.; Darusman, D.; Kusmana, C. Integrated managemeng of mangroves ecosystem in Lampung Mangrove Center (LMC) East Lampung Regency, Indonesia. J. Coast. Dev. 2012, 15, 209–216. [Google Scholar]
- Alemu, I.J.B.; Richards, D.R.; Gaw, L.Y.-F.; Masoudi, M.; Nathan, Y.; Friess, D.A. Identifying spatial patterns and interactions among multiple ecosystem services in an urban mangrove landscape. Ecol. Indic. 2021, 121, 107042. [Google Scholar] [CrossRef]
- Arumugam, M.; Niyomugabo, R.; Dahdouh-Guebas, F.; Hugé, J. The perceptions of stakeholders on current management of mangroves in the Sine-Saloum Delta, Senegal. Estuar. Coast. Shelf Sci. 2020. [Google Scholar] [CrossRef]
- Beymer-Farris, B.A.; Bassett, T.J. The REDD menace: Resurgent protectionism in Tanzania’s mangrove forests. Glob. Environ. Chang. 2012, 22, 332–341. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F.; Hugé, J.; Abuchahla, G.M.O.; Cannicci, S.; Jayatissa, L.P.; Kairo, J.G.; Arachchilage, S.K.; Koedam, N.; Mafaziya Nijamdeen, T.W.G.F.; Mukherjee, N.; et al. Reconciling nature, people and policy in the mangrove social-ecological system through the adaptive cycle heuristic. Estuar. Coast. Shelf Sci. 2020. [Google Scholar] [CrossRef]
- Glaser, M.; Krause, G.; Oliveira, R.S.; Fontalvo-Herazo, M. Mangroves and People: A Social-Ecological System. In Mangrove Dynamics and Management in North Brazil; Saint-Paul, U., Schneider, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 307–351. [Google Scholar]
- Moschetto, F.A.; Ribeiro, R.B.; De Freitas, D.M. Urban expansion, regeneration and socioenvironmental vulnerability in a mangrove ecosystem at the southeast coastal of São Paulo, Brazil. Ocean Coast. Manag. 2020. [Google Scholar] [CrossRef]
- Onyena, A.P.; Sam, K. A review of the threat of oil exploitation to mangrove ecosystem: Insights from Niger Delta, Nigeria. Glob. Ecol. Conserv. 2020, 22, e00916. [Google Scholar] [CrossRef]
- Ounvichit, T.; Yoddumnern-Attig, B. Community dialogs on the probabilities of community-based mangrove institution. Kasetsart J. Soc. Sci. 2018, 39, 365–373. [Google Scholar] [CrossRef]
- Rasquinha, D.N.; Mishra, D.R. Impact of wood harvesting on mangrove forest structure, composition and biomass dynamics in India. Estuar. Coast. Shelf Sci. 2020, 106974. [Google Scholar] [CrossRef]
- Sharma, S.; MacKenzie, R.A.; Tieng, T.; Soben, K.; Tulyasuwan, N.; Resanond, A.; Blate, G.; Litton, C.M. The impacts of degradation, deforestation and restoration on mangrove ecosystem carbon stocks across Cambodia. Sci. Total Environ. 2020, 706, 135416. [Google Scholar] [CrossRef] [PubMed]
- Triyanti, A.; Bavinck, M.; Gupta, J.; Marfai, M.A. Social capital, interactive governance and coastal protection: The effectiveness of mangrove ecosystem-based strategies in promoting inclusive development in Demak, Indonesia. Ocean Coast. Manag. 2017, 150, 3–11. [Google Scholar] [CrossRef]
- Veettil, B.K.; Ward, R.D.; Quang, N.X.; Trang, N.T.T.; Giang, T.H. Mangroves of Vietnam: Historical development, current state of research and future threats. Estuar. Coast. Shelf Sci. 2019, 218, 212–236. [Google Scholar] [CrossRef]
- Yu, C.; Feng, J.; Liu, K.; Wang, G.; Zhu, Y.; Chen, H.; Guan, D. Changes of ecosystem carbon stock following the plantation of exotic mangrove Sonneratia apetala in Qi’ao Island, China. Sci. Total Environ. 2020, 717, 137142. [Google Scholar] [CrossRef]
- He, Q.; Silliman, B.R. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef]
- Giesen, W. Indonesia’s mangroves: An update on remaining area and main management issues. In Proceedings of the International Seminar on Coastal Zone Management of Small Island Ecosystems, Ambon, Indonesia, 7–10 April 1993. [Google Scholar]
- Bu, H.; Meng, W.; Zhang, Y.; Wan, J. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol. Indic. 2014, 41, 187–197. [Google Scholar] [CrossRef]
- Park, Y.-S.; Kwon, Y.-S.; Hwang, S.-J.; Park, S. Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environ. Model. Softw. 2014, 55, 214–221. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, M.; Zou, J.; Zhu, A.X.; Chen, X.; Mi, Y.; Wang, Y.; Yang, H.; Li, Y. Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China. Sci. Total Environ. 2015, 536, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Michael, E. Analisis Perubahan Hutan Mangrove Menggunakan Citra Landsat 8 (Studi Kasus: Kabupaten Pasuruan dan Kota Probolinggo); Institut Teknologi Nasional: Malang, Indonesia, 2019. [Google Scholar]
- Nurcahyani, N.F.; Mustafa, L.D.; Elfa, M.P. Analisa perubahan luas dan kerapatan mangrove melalui pengolahan citra satelit Landsat 8. J. JARTEL 2019, 9, 17. [Google Scholar]
- Hidayah, Z.; Wiyanto, D.B. Analisa temporal perubahan luas hutan mangrove di Kabupaten Sidoarjo dengan memanfaatkan data citra satelit. Junal Bumi Lestari 2013, 13, 318–332. [Google Scholar]
- Usmawati, M. Estimation of Carbon Biomass in Mangrove Stem and Leaf Litter at Clungup Beach, Tambakrejo Village, Sumbermanjing Wetan District, Malang Regency. Bachelor’s Thesis, Brawijaya University, Malang, Indonesia, 2015. [Google Scholar]
- Murdiyarso, D.; Purbopuspito, J.; Kauffman, J.B.; Warren, M.W.; Sasmito, S.D.; Donato, D.C.; Manuri, S.; Krisnawati, H.; Taberima, S.; Kurnianto, S. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 2015, 5, 1089–1092. [Google Scholar] [CrossRef]
- Fikri, M.Z. Comparative Analysis of Carbon and Nitrogen Stocks in Sediments in Natural and Artificial Mangrove Forests in Lamongan Regency. Bachelor’s Thesis, Brawijaya University, Malang, Indonesia, 2017. [Google Scholar]
- Rizky, P.N.H. Estimation of Biomass and Carbon Stock in Live Mangrove Vegetation (Live Trees) and Surface Sediment: A Case Study of Mangrove Forest in the Bedul Resort Block, Grajagan Segoro Anak, Alas Purwo National Park (TNAP) Banyuwangi Regency, East Java Province. Bachelor’s Thesis, Brawijaya University, Malang, Indonesia, 2014. [Google Scholar]
- Aldus, W. Study of Carbon Stock and Carbon Dioxide Absorption in Mangrove Ecosystems in Penunggul Village, Pasuruan Regency. Bachelor’s Thesis, Brawijaya University, Malang, Indonesia, 2017. [Google Scholar]
- Adam, B.R. Estimation of Above and Below Ground Carbon Stocks and Mangrove CO2 Uptake Capacity in the Coastal Areas of Lamongan Regency. Bachelor’s Thesis, Brawijaya University, Malang, Indonesia, 2016. [Google Scholar]
- Kauffman, J.; Arifanti, V.; Basuki, I.; Kurnianto, S.; Novita, N.; Murdiyarso, D.; Donato, D.C.; Warren, M.W. Protocols for the Measurement, Monitoring, and Reporting of Structure, Biomass, Carbon Stocks and Greenhouse Gas Emissions in Tropical Peat Swamp Forests; Working Paper; CIFOR: Bogor, Indonesia, 2016. [Google Scholar]
- Nabuurs, G.J.; Masera, O.; Andrasko, K.; Benitez-Ponce, P.; Boer, R.; Dutschke, M.; Elsiddig, E.; Ford-Robertson, J.; Frumhoff, P.; Karjalainen, T.; et al. Forestry. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O., Bosch, P., Dave, R., Meyer, L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Maryantika, N.; Lin, C. Exploring changes of land use and mangrove distribution in the economic area of Sidoarjo District, East Java using multi-temporal Landsat images. Inf. Process. Agric. 2017, 4, 321–332. [Google Scholar] [CrossRef]
- Hidayah, K.B.R.A.; Perdanawati, R.A.; Junaidi, R. Evaluasi perubahan penggunaan lahan pesisir di Kota Pasuruan. In Proceedings of the Prosiding Seminar Nasional Kelautan dan Perikanan IV 2018, Surabaya, Indonesia, 5 September 2018. [Google Scholar]
- Hapsari, W.F. Pemetaan Dinamika Mangrove di Kabupaten Lamongan dengan Data Inderaja. Bachelor’s Thesis, Airlangga University, Surabaya, Indonesia, 2019. [Google Scholar]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
Original Sample (O) | Standard Error (STERR) | T Statistics (O/STERR) | P-value | Remarks | |
---|---|---|---|---|---|
X1.1 ← X1 | 0.818 | 0.018 | 46.457 | 0.000 | Valid |
X1.2 ← X1 | 0.571 | 0.030 | 18.868 | 0.000 | Valid |
X1.4 ← X1 | 0.841 | 0.008 | 100.795 | 0.000 | Valid |
X1.6 ← X1 | 0.763 | 0.018 | 42.154 | 0.000 | Valid |
X1.7 ← X1 | 0.818 | 0.018 | 46.457 | 0.000 | Valid |
X2.1 ← X2 | 0.681 | 0.030 | 22.578 | 0.000 | Valid |
X2.3 ← X2 | 0.945 | 0.004 | 241.598 | 0.000 | Valid |
X2.7 ← X2 | 0.677 | 0.026 | 26.079 | 0.000 | Valid |
X3.2 ← X3 | 0.945 | 0.003 | 372.005 | 0.000 | Valid |
X3.4 ← X3 | 0.945 | 0.003 | 372.005 | 0.000 | Valid |
X3.6 ← X3 | 0.583 | 0.029 | 19.884 | 0.000 | Valid |
X3.7 ← X3 | 0.775 | 0.022 | 36.018 | 0.000 | Valid |
X4.2 ← X4 | 0.980 | 0.001 | 1062.247 | 0.000 | Valid |
X4.4 ← X4 | 0.980 | 0.001 | 1062.247 | 0.000 | Valid |
X4.5 ← X4 | 0.728 | 0.032 | 22.770 | 0.000 | Valid |
X5.2 ← X5 | 0.930 | 0.006 | 154.808 | 0.000 | Valid |
X5.3 ← X5 | 0.688 | 0.022 | 30.944 | 0.000 | Valid |
X5.4 ← X5 | 0.686 | 0.022 | 31.376 | 0.000 | Valid |
Discriminant Validity | Constructive Reliability | |||||||
---|---|---|---|---|---|---|---|---|
AVE Roots | X1 | X2 | X3 | X4 | X5 | Composite Reliability | Cronbach’s Alpha | |
X1 | 0.769 | 1.000 | 0.564 | 0.613 | 0.605 | 0.638 | 0.877 | 0.822 |
X2 | 0.778 | 0.563 | 1.000 | 0.686 | 0.659 | 0.667 | 0.817 | 0.652 |
X3 | 0.826 | 0.613 | 0.686 | 1.000 | 0.627 | 0.634 | 0.892 | 0.839 |
X4 | 0.904 | 0.605 | 0.659 | 0.627 | 1.000 | 0.618 | 0.929 | 0.884 |
X5 | 0.777 | 0.638 | 0.667 | 0.634 | 0.618 | 1.000 | 0.817 | 0.652 |
Original Sample (O) | Standard Error (STERR) | T Statistics (O/STERR) | P-value | Remarks | |
---|---|---|---|---|---|
X1 → X2 | 0.963 | 0.003 | 347.960 | 0.000 | Significant |
X2 → X3 | 0.986 | 0.001 | 1272.164 | 0.000 | Significant |
X2 → X5 | 0.867 | 0.012 | 70.959 | 0.000 | Significant |
X3 → X4 | 0.927 | 0.002 | 424.362 | 0.000 | Significant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudianto, R.; Bengen, D.G.; Kurniawan, F. Causes and Effects of Mangrove Ecosystem Damage on Carbon Stocks and Absorption in East Java, Indonesia. Sustainability 2020, 12, 10319. https://doi.org/10.3390/su122410319
Rudianto R, Bengen DG, Kurniawan F. Causes and Effects of Mangrove Ecosystem Damage on Carbon Stocks and Absorption in East Java, Indonesia. Sustainability. 2020; 12(24):10319. https://doi.org/10.3390/su122410319
Chicago/Turabian StyleRudianto, Rudianto, Dietriech G. Bengen, and Fery Kurniawan. 2020. "Causes and Effects of Mangrove Ecosystem Damage on Carbon Stocks and Absorption in East Java, Indonesia" Sustainability 12, no. 24: 10319. https://doi.org/10.3390/su122410319
APA StyleRudianto, R., Bengen, D. G., & Kurniawan, F. (2020). Causes and Effects of Mangrove Ecosystem Damage on Carbon Stocks and Absorption in East Java, Indonesia. Sustainability, 12(24), 10319. https://doi.org/10.3390/su122410319