Eco-Acoustic Indices to Evaluate Soundscape Degradation Due to Human Intrusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background
2.2. Study Sites
2.3. Recording and Instrument Characteristics
- a low frequency microphone, used to acquire data in the audio range (up to 24 kHz, sampling rate 48 kHz);
- a high frequency microphone, used to acquire data in the audio and ultrasonic range.
2.4. Analysis and Indices Computation
2.5. Cluster Analysis
2.6. Correlation Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Fearn, E.; Redford, K.H. State of the Wild 2008–2009: A Global Portrait of Wildlife, Wildlands, And Oceans; Island Press: Washington, DC, USA, 2008. [Google Scholar]
- Blumstein, D.T.; Mennill, D.J.; Clemins, P.; Girod, L.; Yao, K.; Patricelli, G.; Deppe, J.L.; Krakauer, A.H.; Clark, C.; Cortopassi, K.A.; et al. Acoustic monitoring in terrestrial environments using microphone arrays: Applications, technological considerations and prospectus: Acoustic monitoring. J. Appl. Ecol. 2011, 48, 758–767. [Google Scholar] [CrossRef]
- Furnas, B.; Callas, R.L. Using automated recorders and occupancy models to monitor common forest birds across a large geographic region: Automated Recorders Monitoring Common Birds. J. Wildl. Manag. 2015, 79, 325–337. [Google Scholar] [CrossRef]
- Felisberto, P.; Jesus, S.; Zabel, F.; Santos, R.; Silva, J.; Gobert, S.; Beer, S.; Björk, M.; Mazzuca, S.; Procaccini, G.; et al. Acoustic monitoring of O2 production of a seagrass meadow. J. Exp. Mar. Biol. Ecol. 2015, 464, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Heinicke, S.; Kalan, A.K.; Wagner, O.J.; Mundry, R.; Lukashevich, H.; Kühl, H.S. Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods Ecol. Evol. 2015, 6, 753–763. [Google Scholar] [CrossRef]
- Gibb, R.; Browning, E.; Glover-Kapfer, P.; Jones, K.E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 2018, 10, 169–185. [Google Scholar] [CrossRef] [Green Version]
- Ulloa, J.S.; Gasc, A.; Gaucher, P.; Aubin, T.; Réjou-Méchain, M.; Sueur, J. Screening large audio datasets to determine the time and space distribution of Screaming Piha birds in a tropical forest. Ecol. Inform. 2016, 31, 91–99. [Google Scholar] [CrossRef]
- Fuller, S.; Axel, A.C.; Tucker, D.; Gage, S.H. Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecol. Indic. 2015, 58, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Gasc, A.; Anso, J.; Sueur, J.; Jourdan, H.; Desutter-Grandcolas, L. Cricket calling communities as an indicator of the invasive ant Wasmannia auropunctata in an insular biodiversity hotspot. Biol. Invasions 2018, 20, 1099–1111. [Google Scholar] [CrossRef] [Green Version]
- Pieretti, N.; Farina, A. Application of a recently introduced index for acoustic complexity to an avian soundscape with traffic noise. J. Acoust. Soc. Am. 2013, 134, 891–900. [Google Scholar] [CrossRef]
- Krause, B. Loss of natural soundscapes within the Americas. J. Acoust. Soc. Am. 1999, 106, 2201. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Villanueva-Rivera, L.J.; Dumyahn, S.L.; Farina, A.; Krause, B.L.; Napoletano, B.M.; Gage, S.H.; Pieretti, N. Soundscape ecology: The science of sound in the landscape. Bioscience 2011, 61, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Fang, S.H.; Tsao, Y. Improving biodiversity assessment via unsupervised separation of biological sounds from long-duration recordings. Sci. Rep. 2017, 7, 4547. [Google Scholar] [CrossRef]
- Sueur, J.; Pavoine, S.; Hamerlynck, O.; Duvail, S. Rapid acoustic survey for biodiversity appraisal. PLoS ONE 2008, 3, e4065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieretti, N.; Farina, A.; Morri, D. A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecol. Indic. 2011, 11, 868–873. [Google Scholar] [CrossRef]
- Depraetere, M.; Pavoine, S.; Jiguet, F.; Gasc, A.; Duvail, S.; Sueur, J. Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecol. Indic. 2012, 13, 46–54. [Google Scholar] [CrossRef]
- Rodriguez, A.; Gasc, A.; Pavoine, S.; Grandcolas, P.; Gaucher, P.; Sueur, J. Temporal and spatial variability of animal sound within a neotropical forest. Ecol. Inform. 2014, 21, 133–143. [Google Scholar] [CrossRef]
- Farina, A.; Pieretti, N.; Piccioli, L. The soundscape methodology for long-term bird monitoring: A Mediterranean Europe case-study. Ecol. Inform. 2011, 6, 354–363. [Google Scholar] [CrossRef]
- Rankin, L.; Axel, A.C. Biodiversity Assessment in Tropical Biomes using Ecoacoustics: Linking Soundscape to Forest Structure in a Human-dominated Tropical Dry Forest in Southern Madagascar. In Ecoacoustics: The Ecological Role of Sounds; Farina, A., Gage, S., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 129–145. [Google Scholar]
- Burivalova, Z.; Towsey, M.; Boucher, T.; Truskinger, A.; Apelis, C.; Roe, P.; Game, E.T. Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New Guinea. Conserv. Biol. 2017, 32, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Deichmann, J.; Hernández-Serna, A.; Delgado, A.; Campos-Cerqueira, M.; Aide, M. Soundscape analysis and acoustic monitoring document impacts of natural gas exploration on biodiversity in a tropical forest. Ecol. Indic. 2017, 74, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Tucker, D.; Gage, S.H.; Williamson, I.; Fuller, S. Linking ecological condition and the soundscape in fragmented Australian forests. Landsc. Ecol. 2014, 29, 745–758. [Google Scholar] [CrossRef] [Green Version]
- Machado, R.B.; Aguiar, L.M.D.S.; Jones, G. Do acoustic indices reflect the characteristics of bird communities in the savannas of Central Brazil? Landsc. Urban. Plan. 2017, 162, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Mammides, C.; Goodale, E.; Dayananda, S.K.; Kang, L.; Chen, J. Do acoustic indices correlate with bird diversity? Insights from two biodiverse regions in Yunnan Province, south China. Ecol. Indic. 2017, 82, 470–477. [Google Scholar] [CrossRef]
- Ng, M.-L.; Butler, N.; Woods, N. Soundscapes as a surrogate measure of vegetation condition for biodiversity values: A pilot study. Ecol. Indic. 2018, 93, 1070–1080. [Google Scholar] [CrossRef]
- Gasc, A.; Sueur, J.; Jiguet, F.; Devictor, V.; Grandcolas, P.; Burrow, C.; Depraetere, M.; Pavoine, S. Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecol. Indic. 2013, 25, 279–287. [Google Scholar] [CrossRef]
- Pieretti, N.; Duarte, M.; Sousa-Lima, R.; Rodrigues, M.; Young, R.; Farina, A. Determining temporal sampling schemes for passive acoustic studies in different tropical ecosystems. Trop. Conserv. Sci. 2015, 8, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Bormpoudakis, D.; Sueur, J.; Pantis, J.D. Spatial heterogeneity of ambient sound at the habitat type level: Ecological implications and applications. Landsc. Ecol. 2013, 28, 495–506. [Google Scholar] [CrossRef]
- Eldridge, A.; Casey, M.; Moscoso, P.; Peck, M. A new method for ecoacoustics? Toward the extraction and evaluation of ecologically-meaningful soundscape components using sparse coding methods. PeerJ 2016, 4, e2108. [Google Scholar] [CrossRef] [Green Version]
- Browning, E.; Gibb, R.; Glover-Kapfer, P.; Jones, K. Passive acoustic monitoring in ecology and conservation. In WWF Conservation Technology Series 1 (2); WWF-UK: Godalming, UK, 2017. [Google Scholar]
- Llusia, D.; Marquez, R.; Bowker, R. Terrestrial sound monitoring systems, a methodology for quantitative calibration. Bioacoustics 2012, 20, 277–286. [Google Scholar] [CrossRef]
- Bradfer-Lawrence, T.; Gardner, N.; Bunnefeld, L.; Bunnefeld, N.; Willis, S.G.; Dent, D.H. Guidelines for the use of acoustic indices in environmental research. Methods Ecol. Evol. 2019, 10, 1796–1807. [Google Scholar] [CrossRef]
- Benocci, R.; Brambilla, G.; Bisceglie, A.; Zambon, G. Sound ecology indicators applied to urban parks: A preliminary study. Asia-Pac. J. Sci. Technol. 2020, 25, 79. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 1 October 2020).
- Seewave: Sound Analysis and Synthesis. Available online: https://cran.r-project.org/web/packages/seewave/index.html (accessed on 9 December 2020).
- Soundecology: Soundscape Ecology. Available online: https://cran.r-project.org/web/packages/soundecology/index.html (accessed on 9 December 2020).
- Grey, J.M.; Gordon, J.W. Perceptual effects of spectral modifications on musical timbres. J. Acoust. Soc. Am. 1978, 63, 1493–1500. [Google Scholar] [CrossRef]
- De Coensel, B.; Botteldooren, D. The quiet rural soundscape and how to characterize it. Acta Acust. United Acust. 2006, 92, 887–897. [Google Scholar]
- Villanueva-Rivera, L.J.; Pijanowski, B.C.; Doucette, J.; Pekin, B. A primer of acoustic analysis for landscape ecologists. Landsc. Ecol. 2011, 26, 1233–1246. [Google Scholar] [CrossRef]
- Spellerberg, I.F.; Fedor, P. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. Rpackage version 2.0–7. 2013. Available online: http://CRAN.R-project.org/package=vegan (accessed on 9 December 2020).
- Gini, C. Variability and Mutability: Contribution to the Study of Statistical Distribution and Relations; Università di Cagliari, Studi Economico-Giuricici della R.: Cagliari, Italy, 1912. [Google Scholar]
- Boelman, N.T.; Asner, G.P.; Hart, P.J.; Martin, R.E. Multi-trophic invasion resistance in hawaii: Bioacoustics, field surveys, and airborne remote sensing. Ecol. Appl. 2007, 17, 2137–2144. [Google Scholar] [CrossRef]
- Kasten, E.P.; Gage, S.H.; Fox, J.; Joo, W. The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecol. Inform. 2012, 12, 50–67. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. A K-means clustering algorithm. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P. Finding Groups in Data (Wiley Series in Probability and Mathematical Statistics); John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Herrero, J.; Valencia, A.; Dopazo, J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 2001, 17, 126–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Package ‘clValid’. Available online: https://cran.r-project.org/web/packages/clValid/clValid.pdf (accessed on 9 December 2020).
- Brock, G.; Pihur, V.; Datta, S.; Datta, S. clValid: An R package for cluster validation. J. Stat. Softw. 2008, 25, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Handl, J.; Knowles, J.; Kell, D.B. Computational cluster validation in post-genomic data analysis. Bioinformatics 2005, 21, 3201–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, J.C. Well separated clusters and fuzzy partitions. J. Cybern. 1974, 4, 95–104. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Datta, S. Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 2003, 19, 459–466. [Google Scholar] [CrossRef]
- Yeung, K.Y.; Haynor, D.R.; Ruzzo, W.L. Validating clustering for gene expression data. Bioinformatics 2001, 17, 309–318. [Google Scholar] [CrossRef]
- Pihur, V.; Datta, S.; Datta, S. Weighted rank aggregation of cluster validation measures: A Monte Carlo cross-entropy approach. Bioinformatics 2007, 23, 1607–1615. [Google Scholar] [CrossRef] [Green Version]
- Sueur, J.; Farina, A.; Gasc, A.; Pieretti, N.; Pavoine, S. Acoustic indices for biodiversity assessment and landscape investigation. Acta Acust. United Acust. 2014, 100, 772–781. [Google Scholar] [CrossRef] [Green Version]
- Asuero, G.; Sayago, A.; Gonzales, A.G. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Farina, A. Soundscape Ecology: Principles, Patterns, Methods and Applications; Springer: Dordrecht, Germany, 2014. [Google Scholar]
- Sueur, J.; Aubin, T.; Simonis, C. Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics 2008, 18, 213–226. [Google Scholar] [CrossRef]
Site | Code Name | Description by the Operator | Birds’ Chorus | Road Traffic Type | |
---|---|---|---|---|---|
Distance | Duration | ||||
A | file 1 | Dominant traffic noise, presence of bird vocalization | 1 | 4 | 1 |
file 2 | Dominant traffic noise, presence of bird vocalization, motorbike pass-by | 1 | 3 | 1 | |
file 3 | Dominant traffic noise, presence of bird vocalization, airplane fight-over, footsteps | 2 | 1 | 1 | |
file 4 | Dominant traffic noise, presence of bird vocalization, faint sirens | 1 | 2 | 1 | |
file 5 | Dominant traffic noise, presence of bird vocalization, a bird species very close | 1 | 4 | 1 | |
B | file 6 | Many bird species | 1 | 4 | 0 |
file 7 | Many bird species | 1 | 4 | 0 | |
file 8 | Many bird species (less vigorous singing) | 1 | 4 | 0 | |
file 9 | Many bird species | 1 | 4 | 0 | |
file 10 | Many bird species | 1 | 4 | 0 | |
C | file 11 | Traffic noise, many bird species vocalization | 1 | 4 | 1 |
file 12 | Traffic noise and traffic noise background, bird vocalization | 1 | 4 | 2 | |
file 13 | Traffic noise and traffic noise background, bird vocalization | 1 | 4 | 2 | |
file 14 | Traffic noise and traffic noise background, bird vocalization | 2 | 4 | 2 | |
file 15 | Traffic noise and traffic noise background, bird vocalization | 2 | 4 | 2 | |
D | file 16 | Traffic noise (multi pass-by), bird vocalization | 2 | 3 | 2 |
file 17 | Traffic noise with two pass-by, bird vocalization | 1 | 4 | 2 | |
file 18 | Traffic noise (multi pass-by), bird vocalization | 2 | 4 | 2 | |
file 19 | Traffic noise (multi pass-by), bird vocalization | 1 | 4 | 2 | |
file 20 | Traffic noise (multi pass-by), bird vocalization, church bells | 1 | 4 | 2 |
Site | Code Name | Day | Start Time (hh:mm) | End Time (hh:mm) | Weather Conditions |
---|---|---|---|---|---|
A | file 1 | 2nd May 2019 | 07:00 | 07:01 | cloud cover no rain |
file 2 | 08:00 | 08:01 | |||
file 3 | 09:00 | 09:01 | |||
file 4 | 10:00 | 10:01 | |||
file 5 | 11:00 | 11:01 | |||
B | file 6 | 3rd May 2016 | 07:00 | 07:01 | partly cover no rain |
file 7 | 08:00 | 08:01 | |||
file 8 | 09:00 | 09:01 | |||
file 9 | 10:00 | 10:01 | |||
file 10 | 11:00 | 11:01 | |||
C | file 11 | 07:00 | 07:01 | ||
file 12 | 08:00 | 08:01 | |||
file 13 | 09:00 | 09:01 | |||
file 14 | 10:00 | 10:01 | |||
file 15 | 11:00 | 11:01 | |||
D | file 16 | 07:00 | 07:01 | ||
file 17 | 08:00 | 08:01 | |||
file 18 | 09:00 | 09:01 | |||
file 19 | 10:00 | 10:01 | |||
file 20 | 11:00 | 11:01 |
Ranking of Solutions from the Optimal One (1) | |||||
---|---|---|---|---|---|
Indices | 1 | 2 | 3 | 4 | 5 |
DSC | DIANA | PAM | SOTA | kmeans | hierarchical |
ACI | DIANA | kmeans | AGNES | SOTA | hierarchical |
ADI | DIANA | PAM | SOTA | kmeans | hierarchical |
NDSI | DIANA | PAM | SOTA | kmeans | hierarchical |
Site | Code Name | Comments | DSC Cluster | ACI Cluster | ADI Cluster |
---|---|---|---|---|---|
A | file 1 | Dominant traffic noise, presence of bird vocalization | 1 | 1 | 1 |
file 2 | Dominant traffic noise, presence of bird vocalization, motorbike pass-by | 1 | 1 | 2 | |
file 3 | Dominant traffic noise, presence of bird vocalization, airplane fight-over, footsteps | 1 | 1 | 1 | |
file 4 | Dominant traffic noise, presence of bird vocalization, faint sirens | 1 | 1 | 2 | |
file 5 | Dominant traffic noise, presence of bird vocalization, a bird species very close | 2 | 1 | 2 | |
B | file 6 | Many bird species | 1 | 2 | 1 |
file 7 | Many bird species | 1 | 2 | 1 | |
file 8 | Many bird species (less vigorous singing) | 1 | 1 | 1 | |
file 9 | Many bird species | 1 | 2 | 1 | |
file 10 | Many bird species | 1 | 2 | 1 | |
C | file 11 | Traffic noise, many bird species vocalization | 2 | 1 | 1 |
file 12 | Traffic noise and traffic noise background, bird vocalization | 1 | 1 | 1 | |
file 13 | Traffic noise and traffic noise background, bird vocalization | 2 | 1 | 1 | |
file 14 | Traffic noise and traffic noise background, bird vocalization | 2 | 1 | 1 | |
file 15 | Traffic noise and traffic noise background, bird vocalization | 1 | 1 | 1 | |
D | file 16 | Traffic noise (multi pass-by), bird vocalization | 1 | 1 | 1 |
file 17 | Traffic noise with two pass-by, bird vocalization | 1 | 2 | 1 | |
file 18 | Traffic noise (multi pass-by), bird vocalization | 1 | 1 | 1 | |
file 19 | Traffic noise (multi pass-by), bird vocalization | 1 | 2 | 1 | |
file 20 | Traffic noise (multi pass-by), bird vocalization, church bells | 1 | 1 | 1 |
Site | Code Name | Comments | Cluster Membership | ||
---|---|---|---|---|---|
2 Clusters DIANA | 4 Clusters Hierarchical | 7 Clusters k-Means | |||
A | file 1 | Dominant traffic noise, presence of bird vocalization | 1 | 1 | 7 |
file 2 | Dominant traffic noise, presence of bird vocalization, motorbike pass-by | 1 | 1 | 7 | |
file 3 | Dominant traffic noise, presence of bird vocalization, airplane fight-over, footsteps | 1 | 1 | 7 | |
file 4 | Dominant traffic noise, presence of bird vocalization, faint sirens | 1 | 1 | 7 | |
file 5 | Dominant traffic noise, presence of bird vocalization, a bird species very close | 1 | 2 | 1 | |
B | file 6 | Many bird species | 2 | 3 | 2 |
file 7 | Many bird species | 2 | 3 | 6 | |
file 8 | Many bird species (less vigorous singing) | 2 | 3 | 6 | |
file 9 | Many bird species | 2 | 3 | 6 | |
file 10 | Many bird species | 2 | 3 | 2 | |
C | file 11 | Traffic noise, many bird species vocalization | 1 | 2 | 1 |
file 12 | Traffic noise and traffic noise background, bird vocalization | 1 | 4 | 4 | |
file 13 | Traffic noise and traffic noise background, bird vocalization | 1 | 4 | 5 | |
file 14 | Traffic noise and traffic noise background, bird vocalization | 1 | 4 | 3 | |
file 15 | Traffic noise and traffic noise background, bird vocalization | 1 | 1 | 7 | |
D | file 16 | Traffic noise (multi pass-by), bird vocalization | 1 | 4 | 5 |
file 17 | Traffic noise with two pass-by, bird vocalization | 2 | 3 | 2 | |
file 18 | Traffic noise (multi pass-by), bird vocalization | 1 | 4 | 4 | |
file 19 | Traffic noise (multi pass-by), bird vocalization | 1 | 4 | 4 | |
file 20 | Traffic noise (multi pass-by), bird vocalization, church bells | 1 | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benocci, R.; Brambilla, G.; Bisceglie, A.; Zambon, G. Eco-Acoustic Indices to Evaluate Soundscape Degradation Due to Human Intrusion. Sustainability 2020, 12, 10455. https://doi.org/10.3390/su122410455
Benocci R, Brambilla G, Bisceglie A, Zambon G. Eco-Acoustic Indices to Evaluate Soundscape Degradation Due to Human Intrusion. Sustainability. 2020; 12(24):10455. https://doi.org/10.3390/su122410455
Chicago/Turabian StyleBenocci, Roberto, Giovanni Brambilla, Alessandro Bisceglie, and Giovanni Zambon. 2020. "Eco-Acoustic Indices to Evaluate Soundscape Degradation Due to Human Intrusion" Sustainability 12, no. 24: 10455. https://doi.org/10.3390/su122410455
APA StyleBenocci, R., Brambilla, G., Bisceglie, A., & Zambon, G. (2020). Eco-Acoustic Indices to Evaluate Soundscape Degradation Due to Human Intrusion. Sustainability, 12(24), 10455. https://doi.org/10.3390/su122410455