How Industrialization Stage Moderates the Impact of China’s Low-Carbon Pilot Policy?
Abstract
:1. Introduction
2. Policy Background and Construction of a Low-Carbon Development Evaluation Index System
2.1. The Background of LCP
2.2. Construction of Low-Carbon Development Evaluation Index System
3. Research Design
3.1. The Measurement Process of LCDI
- (1)
- Entropy value—CRITICS method to obtain the criterion layer matrix.
- (2)
- Calculation of the weight matrix of the TOPSIS model.
- (3)
- Improved TOPSIS model to measure urban low-carbon development index.
3.2. Industrialization Index Calculation Process and Judgment Criteria for Industrialization Stage
3.3. Construction of the DID Model
3.4. Sample Selection, Data, and Variables
3.4.1. Sample Selection
3.4.2. Data Description
4. Empirical Results
4.1. Parallel Trends Test
4.2. Average and the Marginal Impact of LCP Policy on the LCDI of Cities at Different Stages of Industrialization
4.3. Mechanism Analysis
4.4. Robustness Test
5. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Workman, M.; Dooley, K.; Lomax, G.; Maltby, J.; Darch, G. Decision making in contexts of deep uncertainty-An alternative approach for long-term climate policy. Environ. Sci. Policy 2020, 103, 77–84. [Google Scholar] [CrossRef]
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Price, L.; Yande, D.; Creyts, J.; Khanna, N.; Fridley, D.; Lu, H.; Feng, W.; Liu, X.; Hasanbeigi, A. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030. Appl. Energy 2019, 239, 793–819. [Google Scholar] [CrossRef]
- den Elzen, M.; Fekete, H.; Höhne, N.; Admiraal, A.; Forsell, N.; Hof, A.F.; Olivier, J.G.; Roelfsema, M.; van Soest, H. Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030? Energy Policy 2016, 89, 224–236. [Google Scholar] [CrossRef] [Green Version]
- Lo, K.; Li, H.; Chen, K. Climate experimentation and the limits of top-down control: Local variation of climate pilots in China. J. Environ. Plan. Manag. 2020, 63, 109–126. [Google Scholar] [CrossRef]
- NDRC. Notice of the National Development and Reform Commission on Launching Low Carbon Provinces and Cities Pilot. Available online: http://www.gov.cn/zwgk/2010-08/10/content_1675733.htm (accessed on 10 December 2020).
- NDRC. Notice of the National Development and Reform Commission on Launching the Second Batch of National Low-Carbon Provinces, Regions and Low-Carbon Cities Pilot Work. Available online: http://qhs.ndrc.gov.cn/gzdt/201212/t20121205_517419.html (accessed on 10 December 2020).
- NDRC. Notice of the National Development and Reform Commission on Launching the Third Batch of National Low-Carbon Provinces, Regions and Low-Carbon Cities Pilot Work. Available online: http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170124_836394.html (accessed on 10 December 2020).
- Pal, L.A. Public Policy Analysis: An Introduction; Scarborough: Nelson, ON, Canada, 1992. [Google Scholar]
- Jiagui, C.; Qunhui, H.; Hongwu, Z. The Synthetic Evaluation and Analysis on Regional Industrialization. Econ. Res. J. 2006, 6, 4–15. [Google Scholar]
- Wang, F.; Wu, L.H.; Yang, C. Driving factors for growth of carbon dioxide emissions during economic development in China. Econ. Res. J. 2010, 2, 1. [Google Scholar]
- Zhang, Y.; Xia, Y.; Fan, Y. How CO2 emissions structure evolves with the process of industrialisation. Int. J. Glob. Environ. Issues 2013, 13, 43–63. [Google Scholar] [CrossRef]
- Syrquin, M.; Chenery, H. Three Decades of Industrialization. World Bank Econ. Rev. 1989, 3, 145–181. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Guan, D.; Hubacek, K.; Zheng, B.; Davis, S.J.; Jia, L.; Liu, J.; Liu, Z.; Fromer, N.; Mi, Z. City-level climate change mitigation in China. Sci. Adv. 2018, 4, q390. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liang, S.; Geng, Y.; Xue, B.; Xi, F.; Pan, Y.; Zhang, T.; Fujita, T. Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing. Energy 2012, 37, 245–254. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Chen, S. Reconstruction of sub-industrial statistical data in China (1980–2008). China Econ. Q. 2011, 10, 735–776. [Google Scholar]
- Liu, C.; Zhou, Z.; Liu, Q.; Xie, R.; Zeng, X. Can a low-carbon development path achieve win-win development: Evidence from China’s low-carbon pilot policy. Mitig. Adapt. Strat. Glob. Chang. 2019, 1–21. [Google Scholar] [CrossRef]
- Greenstone, M.; List, J.A.; Syverson, C. The Effects of Environmental Regulation on the Competitiveness of US Manufacturing; National Bureau of Economic Research: Cambridge, MA, USA, 2012. [Google Scholar] [CrossRef]
- Rogge, K.S.; Schneider, M.; Hoffmann, V.H. The innovation impact of the EU Emission Trading System—Findings of company case studies in the German power sector. Ecol. Econ. 2011, 70, 513–523. [Google Scholar] [CrossRef]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Rassier, D.G.; Earnhart, D. Effects of environmental regulation on actual and expected profitability. Ecol. Econ. 2015, 112, 129–140. [Google Scholar] [CrossRef]
- Skoczkowski, T.; Bielecki, S.; Węglarz, A.; Włodarczak, M.; Gutowski, P. Impact assessment of climate policy on Poland’s power sector. Mitig. Adapt. Strat. Glob. Chang. 2018, 23, 1303–1349. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, Z.; Wu, X.; Nie, X. Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis?—Empirical analysis based on the PSM-DID method. Energy Policy 2019, 129, 930–938. [Google Scholar] [CrossRef]
- Tang, P.; Yang, S.; Shen, J.; Fu, S. Does China’s low-carbon pilot programme really take off? Evidence from land transfer of energy-intensive industry. Energy Policy 2018, 114, 482–491. [Google Scholar] [CrossRef]
- Yu, X.; Shen, M.; Wang, D.; Imwa, B.T. Does the Low-Carbon Pilot Initiative Reduce Carbon Emissions? Evidence from the Application of the Synthetic Control Method in Guangdong Province. Sustainability 2019, 11, 3979. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Qin, M.; Wang, R.; Qi, Y. How does the nested structure affect policy innovation? Empirical research on China’s low carbon pilot cities. Energy Policy 2020, 144, 111695. [Google Scholar] [CrossRef]
- Khanna, N.; Fridley, D.; Hong, L. China’s pilot low-carbon city initiative: A comparative assessment of national goals and local plans. Sustain. Cities Soc. 2014, 12, 110–121. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Q.; He, J.; Qi, Y. Developing low-carbon cities through pilots. Clim. Policy 2015, 15, S81–S103. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Yang, X.; Wang, Y.; Wu, T. A holistic overview of the progress of China’s low-carbon city pilots. Sustain. Cities Soc. 2018, 42, 289–300. [Google Scholar] [CrossRef]
- Cheng, J.; Yi, J.; Dai, S.; Xiong, Y. Can low-carbon city construction facilitate green growth? Evidence from China’s pilot low-carbon city initiative. J. Clean. Prod. 2019, 231, 1158–1170. [Google Scholar] [CrossRef]
- Price, L.; Zhou, N.; Fridley, D.; Ohshita, S.; Lu, H.; Zheng, N.; Fino-Chen, C. Development of a low-carbon indicator system for China. Habitat Int. 2013, 37, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; He, G.; Williams, C.; Fridley, D. ELITE cities: A low-carbon eco-city evaluation tool for China. Ecol. Indic. 2015, 48, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Pan, J. China Green Development Index Report 2012; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Tamanini, J. Do national green reputations matter? The global green economy. In International Place Branding Yearbook 2012; Springer: Berlin/Heidelberg, Germany, 2013; pp. 164–173. [Google Scholar] [CrossRef]
- De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable–smart–resilient–low carbon–eco–knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.T.; Yang, J.; Yan, J.; Lee, C.T.; Hashim, H.; Chen, B. A holistic low carbon city indicator framework for sustainable development. Appl. Energy 2017, 185, 1919–1930. [Google Scholar] [CrossRef]
- Bhada, P.; Hoornweg, D. The Global City Indicators Program: A More Credible Voice for Cities; Directions in Urban Development; World Bank, Urban Development Unit: Washington, DC, USA, 2009. [Google Scholar]
- WBG. Promotion of Clean and Green Cities in China Through International Cooperation Project: Procurement plan (English). Washington, DC, USA. Available online: http://documents.worldbank.org/curated/en/694151469763794676/China-Promotion-of-Clean-and-Green-Cities-in-China-Through-International-Cooperation-Project-procurement-plan (accessed on 10 December 2020).
- Azizalrahman, H. Towards a generic multi-criteria evaluation model for low carbon cities. Sustain. Cities Soc. 2018, 39, 275–282. [Google Scholar] [CrossRef]
- Yatsalo, B.; Korobov, A.; Martínez, L. Fuzzy multi-criteria acceptability analysis: A new approach to multi-criteria decision analysis under fuzzy environment. Expert Syst. Appl. 2017, 84, 262–271. [Google Scholar] [CrossRef]
- Jia, J.; Fan, Y.; Guo, X. The low carbon development (LCD) levels’ evaluation of the world’s 47 countries (areas) by combining the FAHP with the TOPSIS method. Expert Syst. Appl. 2012, 39, 6628–6640. [Google Scholar] [CrossRef]
- Dai, C.; Cheng, F.; Liu, S.; Tang, M.; Zheng, H.; Wang, Y. Low-Carbon Campus Evaluation Model and its Applications Based on Fuzzy Comprehensive Analytic Hierarchy Process. In International Conference on Management Science and Engineering Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 741–752. [Google Scholar] [CrossRef]
- Huang, Q. China’s Industrialization Process; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Orley Ashenfelter, D.C. Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs. Rev. Econ. Stat. 1985, 67, 648–660. [Google Scholar] [CrossRef]
- Kudamatsu, M. Has Democratization Reduced Infant Mortality in Sub-Saharan Africa? Evidence from Micro Data. J. Eur. Econ. Assoc. 2012, 10, 1294–1317. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Xiaobo, Z. China Innovation and Entrepreneurship Index; Peking University Open Research Data Platform: Beijing, China, 2019. [Google Scholar]
- Wang, Q.; Su, M. The effects of urbanization and industrialization on decoupling economic growth from carbon emission—A case study of China. Sustain. Cities Soc. 2019, 51, 101758. [Google Scholar] [CrossRef]
- Ya, Z.; Yuli, S.; Guosheng, L.; Dabo, G. Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Appl. Energy 2018, 228, 1683–1692. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, G.; Uddin, M.K.; Guo, S. Environmental regulation, Foreign investment behavior, and carbon emissions for 30 provinces in China. J. Clean. Prod. 2020, 248, 119208. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar] [CrossRef] [Green Version]
- Thompson, H. The applied theory of energy substitution in production. Energy Econ. 2006, 28, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, X.; Wei, Q.; Zhang, B. Authoritarian environmentalism and environmental policy implementation in China. Resour. Conserv. Recycl. 2019, 145, 86–93. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. Energy policies for managing China’s carbon emission. Renew. Sustain. Energy Rev. 2015, 50, 470–479. [Google Scholar] [CrossRef]
- Cai, X.; Lu, Y.; Wu, M.; Yu, L. Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China. J. Dev. Econ. 2016, 123, 73–85. [Google Scholar] [CrossRef]
Criterion | Indicator | Effect | Unit | Data Source |
---|---|---|---|---|
Macro system | Total Energy Consumption of Industrial Enterprises (A1) | − | MtCO2 | Statistical Yearbook of 120 cities |
Total carbon emissions of industrial enterprises (A2) | − | million tons of standard coal | CEADs database | |
Carbon emissions per unit of industrial value-added (constant price in 2010) (A3) | − | tCO2/RMB | CEADs database | |
Energy system | Coal consumption as a percentage of total fossil energy consumption (B1) | − | % | Statistical Yearbook of 120 cities |
Natural gas consumption as a proportion of fossil energy consumption (B2) | + | % | Statistical Yearbook of 120 cities | |
Energy consumption reduction rate per unit of GDP (B3) | + | % | Statistical Yearbook of 120 cities | |
power consumption reduction rate per unit of GDP (B4) | + | % | Statistical Yearbook of 120 cities | |
water consumption reduction rate per unit of GDP (B5) | + | % | China Urban and Rural Construction Statistical Yearbook | |
Industrial system | The proportion of tertiary industry to GDP (C1) | + | % | China City Statistical Yearbook |
The proportion of industrial added value to GDP (C2) | − | % | China City Statistical Yearbook | |
Energy consumption reduction rate per unit of industrial added-value (C3) | + | % | Statistical Yearbook of 120 cities | |
Environmental system | PM10 annual average concentration (D1) | − | μg/m3 | Bulletin of Environmental Quality in 120 Cities |
Industrial sulfur dioxide emissions per unit of industrial value-added (D2) | − | ton/RMB | China City Statistical Yearbook | |
Industrial wastewater discharged per unit of industrial added-value (D3) | − | ton/RMB | China City Statistical Yearbook | |
Sewage treatment rate (D4) | + | % | China City Statistical Yearbook | |
Land system | Green area per capita (E1) | + | m2/person | China City Statistical Yearbook |
The green coverage rate of urban built-up area (E2) | + | % | China City Statistical Yearbook | |
Forest coverage (E3) | + | % | Statistical Yearbook of 120 cities | |
Rate of decline in construction area per unit of GDP (E4) | + | % | China Urban and Rural Construction Statistical Yearbook | |
Living system | Annual per capita production of urban household waste (F1) | − | kg/person/year | China Urban and Rural Construction Statistical Yearbook |
Urban water consumption per capita (F2) | − | L/person | China Urban and Rural Construction Statistical Yearbook | |
Annual electricity consumption per capita for urban residents (F3) | − | Kwh/person | China City Statistical Yearbook | |
Urban per capita living construction area (F4) | + | m2/person | China Regional Statistical Yearbook | |
Number of buses owned by ten thousand people (F5) | + | Vehicles/104person | China City Statistical Yearbook |
Indicators | Industrialization Stage | ||
---|---|---|---|
(I_INDEX = 2) | (I_INDEX = 3) | (I_INDEX = 4) | |
PRGDP (2010USD) | min12 = 1654 max12 = 3308 | min13 = 3308 max13 = 6615 | min14 = 6615 max14 = 12398 |
IR (%) | min22 = 33 max22 = 20 | min23 = 20 max23 = 10 | |
MR (%) | min32 = 20 max32 = 40 | min33 = 40 max33 = 50 | min34 = 50 max34 = 60 |
URBAN (%) | min42 = 30 max42 = 50 | min43 = 50 max43 = 60 | min44 = 60 max44 = 75 |
ER (%) | min52 = 60 max52 = 45 | min53 = 45 max53 = 30 | min54 = 30 max54 = 10 |
Variable | Definition | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
C | Carbon emissions of urban industrial enterprises in million tons of CO2 | 48.51 | 55.87 | 0.12 | 396.74 |
LDCI | Low-carbon development index measured by Equations (1)–(9) | 0.49 | 0.06 | 0.36 | 0.66 |
I_INDEX | Industrialization index measured by Equations (10) and (11) | 67.54 | 20.17 | 13.53 | 100 |
I_STAGE | Stage of industrialization judged by Industrialization index (I) | 2.53 | 0.50 | 2 | 3 |
FDI | Openness level indicated by total FDI in ten billion U.S. dollars | 10.99 | 15.83 | 0 | 112.16 |
RD | Enterprise technology innovation indicated by innovation index | 67.93 | 24.98 | 1.37 | 99.66 |
PERGDP | Level of economic development measured by per capita GDP in ten thousand U.S. dollars | 7324.38 | 4632.87 | 1314.29 | 43755 |
IR | The added value of the primary industry as a proportion of GDP | 9.25 | 6.14 | 0.79 | 32.5 |
MR | Urban manufacturing development level measured by ratio of manufacturing value-added to value-added of goods-producing sectors | 57.92 | 16.34 | 0.6 | 91.53 |
URBAN | The urban spatial structure measured by the proportion of urban permanent residents in the total population | 56.47 | 13.66 | 21 | 94.7 |
ER | The urban employment structure measured by the ratio of the number of employees in the primary industry to the total number of employees | 26.74 | 16.61 | 0.04 | 88.9 |
I | The added value of the secondary industry as a proportion of GDP | 50.16 | 8.11 | 27.87 | 82.08 |
S | The added value of the tertiary industry as a proportion of GDP | 40.69 | 8.29 | 16.75 | 70.22 |
Variables | I_STAGE = 2 | I_STAGE = 3 | All Sample |
---|---|---|---|
4 years before the policy implement × Treatedit | −0.0018 (0.043) | 0.048 (0.046) | −0.027 (0.032) |
3 years before the policy implement × Treatedit | −0.035 (0.044) | 0.008 (0.045) | −0.013 (0.032) |
2 years before the policy implement × Treatedit | 0.022 (0.043) | −0.01 (0.045) | 0.005 (0.032) |
1 year before the policy implement × Treatedit | −0.045 (0.043) | −0.018 (0.045) | −0.03 (0.032) |
year of the policy implement × Treatedit | −0.05 (0.043) | −0.013 (0.045) | −0.03 (0.032) |
1 year after the policy implement × Treatedit | −0.045 (0.043) | 0.008 ** (0.045) | −0.018 (0.031) |
2 years after the policy implement × Treatedit | −0.003 (0.043) | 0.014 (0.045) | 0.025 (0.032) |
3 years after the policy implement × Treatedit | −0.054 (0.043) | 0.028 (0.045) | −0.011 (0.031) |
4 years after the policy implement × Treatedit | 0.009 ** (0.043) | 0.040 (0.045) | 0.016 (0.032) |
5 years after the policy implement × Treatedit | 0.002 (0.043) | 0.049 (0.045) | 0.027 (0.032) |
LNI_INDEX | −0.064 ** (0.06) | −0.02 *** (0.1) | −0.028 ** (0.041) |
LNRD | 0.002 * (0.016) | 0.018 ** (0.06) | 0.006 * (0.016) |
LNFDI | 0.015 (0.01) | 0.009 *** (0.01) | 0.015 *** (0.07) |
R-squared | 0.50 | 0.30 | 0.38 |
No. of Obs. | 420 | 470 | 89 |
Time fixed effect | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes |
Variables | I_STAGE = 2 | I_STAGE = 3 | ||||||
---|---|---|---|---|---|---|---|---|
Average | Marginal | Average | Marginal | |||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
DIFF(Treati t × T) | −0.007 * (0.019) | −0.007 * (0.019) | 0.041 ** (0.02) | 0.041 ** (0.02) | ||||
Treatit × T × year2013 | −0.032 (0.033) | −0.024 (0.033) | 0.014 ** (0.035) | 0.014 ** (0.035) | ||||
Treatit × T × year2014 | −0.016 (0.033) | −0.025 (0.033) | 0.06 *** (0.035) | 0.054 *** (0.035) | ||||
Treatit × T × year2015 | −0.039 * (0.033) | −0.032 * (0.033) | 0.038 (0.035) | 0.035 (0.035) | ||||
Treatit × T × year2016 | 0.0024 * (0.033) | 0.013 * (0.033) | 0.048 (0.035) | 0.047 (0.035) | ||||
Treatit × T × year2017 | 0.014 ** (0.033) | 0.023 ** (0.033) | 0.046 (0.035) | 0.056 (0.035) | ||||
LNI_INDEX | −0.016 ** (0.057) | −0.013 ** (0.058) | −0.028 ** (0.1) | −0.022 ** (0.1) | ||||
LNRD | 0.003 ** (0.016) | 0.0018 ** (0.016) | 0.021 ** (0.06) | 0.019 ** (0.06) | ||||
LNFDI | 0.016 (0.01) | 0.016 (0.01) | 0.008 ** (0.01) | 0.008 ** (0.01) | ||||
CONS | −0.721 ** (0.12) | −0.520 *** (0.20) | −0.721 *** (0.013) | −0.505 ** (0.21) | −0.731 *** (0.013) | −0.715 ** (0.45) | 0.731 *** (0.013) | −0.735 ** (0.45) |
R-squared | 0.48 | 0.49 | 0.48 | 0.50 | 0.30 | 0.29 | 0.30 | 0.30 |
No.of Obs. | 420 | 420 | 420 | 420 | 470 | 470 | 470 | 470 |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
I_STAGE = 2 | I_STAGE = 3 | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
I_INDEX | RD | FDI | I_INDEX | RD | FDI | |
DIFF(Treatit × T) | −1.53 * (0.8) | 0.571 * (2.32) | −1.61 ** (0.55) | −0.63 * (0.76) | 1.15 * (0.93) | 3.66 *** (1.38) |
CONS | 38.03 *** (0.54) | 52.9 *** (1.56) | 2.41 *** (0.37) | 73.92 ** (0.51) | 79.84 *** (0.62) | 11.16 *** (0.92) |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.34 | 0.12 | 0.32 | 0.24 | 0.30 | 0.21 |
No.of Obs. | 420 | 420 | 420 | 470 | 470 | 470 |
Period 1 | Period 2 | Period 3 | Period 4 | Period 5 | Period 6 | Period 7 | Period 8 | |
---|---|---|---|---|---|---|---|---|
2008–2013 | 2008–2014 | 2008–2015 | 2008–2016 | 2009–2017 | 2010–2017 | 2011–2017 | 2012–2017 | |
DIFF(Treatit × T) | −0.02 (0.03) | −0.022 * (0.02) | −0.031 * (0.02) | −0.012 * (0.02) | −0.022 * (0.02) | −0.012 * (0.02) | −0.008 * (0.02) | −0.003 * (0.02) |
LNI_INDEX | −0.1 ** (0.07) | −0.07 *** (0.07) | −0.05 ** (0.07) | −0.04 ** (0.06) | −0.06 ** (0.07) | −0.09 ** (0.09) | −0.01 ** (0.02) | −0.009 ** (0.11) |
LNRD | 0.03 *** (0.02) | 0.01 ** (0.02) | 0.01 ** (0.02) | 0.001 * (0.02) | 0.001 ** (0.02) | 0.003 ** (0.02) | 0.01 ** (0.02) | 0.002 ** (0.02) |
LNFDI | 0.003 (0.01) | 0.002 * (0.01) | 0.02 (0.01) | 0.02 * (0.01) | 0.02 * (0.01) | 0.02 * (0.01) | 0.02 (0.01) | 0.02 (0.01) |
CONS | −0.27 (0.26) | −0.44 * (0.25) | −0.52 * (0.24) | −0.59 ** (0.22) | −0.52 ** (0.25) | −0.41 (0.32) | −0.79 ** (0.37) | −0.83 ** (0.43) |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.29 | 0.24 | 0.30 | 0.39 | 0.53 | 0.58 | 0.64 | 0.61 |
No.of Obs. | 255 | 295 | 335 | 375 | 380 | 340 | 300 | 260 |
Period 1 | Period 2 | Period 3 | Period 4 | Period 5 | Period 6 | Period 7 | Period 8 | |
---|---|---|---|---|---|---|---|---|
2008–2013 | 2008–2014 | 2008–2015 | 2008–2016 | 2009–2017 | 2010–2017 | 2011–2017 | 2012–2017 | |
DIFF(Treatit × T) | 0.014 ** (0.03) | 0.035 * (0.03) | 0.039 * (0.02) | 0.039 * (0.02) | 0.040 ** (0.02) | 0.047 ** (0.02) | 0.049 * (0.03) | 0.049 * (0.03) |
LNI_INDEX | −0.19 * (0.19) | −0.14 ** (0.17) | −0.07 ** (0.13) | −0.007 * (0.11) | −0.018 * (0.11) | −0.097 * (0.12) | −0.088 * (0.14) | −0.047 * (0.15) |
LNRD | 0.03 ** (0.07) | 0.06 *** (0.06) | 0.02 ** (0.06) | 0.03 ** (0.06) | 0.05 * (0.06) | 0.04 ** (0.07) | 0.07 ** (0.08) | 0.09 * (0.08) |
LNFDI | 0.003 ** (0.02) | 0.003 * (0.02) | 0.008 * (0.01) | 0.005 * (0.01) | 0.009 ** (0.01) | 0.01 ** (0.01) | 0.007 ** (0.01) | 0.001 * (0.01) |
CONS | −1.69 ** (0.80) | −1.59 * (0.73) | −1.11 * (0.58) | −0.92 * (0.51) | −0.89 * (0.52) | −0.52 (0.59) | −0.77 (0.66) | −0.91 (0.74) |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
R-squared | 0.17 | 0.17 | 0.24 | 0.27 | 0.32 | 0.36 | 0.39 | 0.28 |
No.of Obs. | 275 | 325 | 370 | 415 | 410 | 365 | 320 | 275 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Wu, Q.; Cheng, J.; Tang, P.; Li, S.; Mei, Y. How Industrialization Stage Moderates the Impact of China’s Low-Carbon Pilot Policy? Sustainability 2020, 12, 10577. https://doi.org/10.3390/su122410577
Sun Q, Wu Q, Cheng J, Tang P, Li S, Mei Y. How Industrialization Stage Moderates the Impact of China’s Low-Carbon Pilot Policy? Sustainability. 2020; 12(24):10577. https://doi.org/10.3390/su122410577
Chicago/Turabian StyleSun, Qi, Qiaosheng Wu, Jinhua Cheng, Pengcheng Tang, Siyao Li, and Yantuo Mei. 2020. "How Industrialization Stage Moderates the Impact of China’s Low-Carbon Pilot Policy?" Sustainability 12, no. 24: 10577. https://doi.org/10.3390/su122410577
APA StyleSun, Q., Wu, Q., Cheng, J., Tang, P., Li, S., & Mei, Y. (2020). How Industrialization Stage Moderates the Impact of China’s Low-Carbon Pilot Policy? Sustainability, 12(24), 10577. https://doi.org/10.3390/su122410577