Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Method
2.2.1. SBM Model
2.2.2. Super-SBM Model
2.2.3. Efficiency Decomposition
2.3. Indicator System
- Construction land input indicators: The area of construction land is one of the most important production factors in the study of construction land-use efficiency, and it is used to represent construction land input. The gross investment in fixed assets can comprehensively reflect the scale of investment, investment structure, and development speed, and can be used as a capital investment indicator. The number of secondary and tertiary industry employees represents the labor input of the construction land.
- Construction land output indicators: The output indicators of construction land consist of the economy, society, and environment. GDP is one of the most important macroeconomic indicators, and construction land-use efficiency is closely related to the level of economic development. Therefore, the gross product of secondary and tertiary industries was selected to represent the economic benefits. The average salary of employees is an indicator of the social benefits of construction land, and the green coverage area is an indicator of its environmental benefits.
- Cultivated land input indicators: The sown area of crops and the effective irrigated area represent the comprehensive cultivated land input and irrigated land input, respectively. The total power of the agricultural machinery and the consumption of chemical fertilizers represent the capital investment in cultivated land. The rural population represents the labor input of cultivated land.
- Cultivated land output indicators: The gross agricultural production was selected to measure the economic output of cultivated land.
2.4. Data Sources and Description
3. Results
3.1. Evolution of Construction Land-Use Efficiency over Time
3.1.1. Provincial Level
3.1.2. Regional Level
3.2. Spatial Evolution of the Construction Land-Use Efficiency
3.2.1. Spatial Evolution of the Construction Land Technical Efficiency
3.2.2. Spatial Evolution of the Decomposition Efficiency of Construction Land
3.2.3. Regional Differences
3.3. Evolution of the Cultivated Land-Use Efficiency over Time
3.3.1. Provincial Level
3.3.2. Regional Level
3.4. Spatial Evolution of the Cultivated Land-Use Efficiency
3.4.1. Spatial Evolution of the Cultivated Land Technical Efficiency
3.4.2. Spatial Evolution of Cultivated Land Decomposition Efficiency
3.4.3. Regional Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, S.; Li, Z. Discussion on the Types and Identification Standard of Inefficient Urban Land. Nat. Resour. Econ. China 2020, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Otsuka, K.; Fu, X.; Yan, S. Introduction to symposium: Structural change, industrial upgrading and China’s economic transformation. China Econ. Rev. 2017, 46, S1–S2. [Google Scholar] [CrossRef]
- Liu, X.; Yan, J.; Wang, Q. Practical Dilemma and Rational Choice of Underused Urban Land Readjustment in China. China Land Sci. 2015, 29, 48–54. [Google Scholar]
- Yan, S.; Peng, J.; Wu, Q. Exploring the non-linear effects of city size on urban industrial land use efficiency: A spatial econometric analysis of cities in eastern China. Land Use Pol. 2020, 99, 104944. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, W.; Li, L.; Ye, Y.; Song, X. Urban land use efficiency and improvement potential in China: A stochastic frontier analysis. Land Use Pol. 2020, 99, 105046. [Google Scholar] [CrossRef]
- Li, Q.; Hu, S.; Du, G.; Zhang, C.; Liu, Y. Cultivated Land Use Benefits Under State and Collective Agrarian Property Regimes in China. Sustainability 2017, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, Z.G.; Xu, G.L.; Tian, Z.Q. Built-up land efficiency in urban China: Insights from the General Land Use Plan (2006–2020). Habitat Int. 2016, 51, 31–38. [Google Scholar] [CrossRef]
- Duro, J.A.; Lauk, C.; Kastner, T.; Erb, K.-H.; Haberl, H. Global inequalities in food consumption, cropland demand and land-use efficiency: A decomposition analysis. Global Environ. Change 2020, 64, 102124. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J. Sustainable land use management for improving land eco-efficiency: A case study of Hebei, China. Ann. Oper. Res. 2020, 290, 265–277. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X. Static and dynamic cultivated land use efficiency in China: A minimum distance to strong efficient frontier approach. J. Clean. Prod. 2020, 246, 119002. [Google Scholar] [CrossRef]
- Shao, T.; Fan, C.; Fan, Y.; Xu, Q. Land Use Efficiency, Regional Disparities and the requisition-Compensation Balance among Regions. China Econ. Q. 2011, 10, 1087–1104. [Google Scholar]
- Bao, X.; Liu, C.; Zhang, J. Comprehensive appraise to the efficiency of urban land use. Urban Probl. 2009, 4, 46–50. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, H. Research on efficiency of urban construction land and the drive mechanism in the Mid-Yangtze River. Res. Sci. 2015, 37, 1384–1393. [Google Scholar]
- Zhao, W.; Luo, Y.; Wang, L. Factors Influencing the Utilization Efficiency of China’s Construction Lands. Urban Probl. 2016, 2, 4–13. [Google Scholar] [CrossRef]
- Zhan, G. A Study on the Land Use Efficiency and Its Influencing Factors of Urban Construction—Evidence from 13 Cities in Jiangsu Province. East China Econ. Manag. 2017, 31, 11–15. [Google Scholar]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Pol. 2019, 88, 104143. [Google Scholar] [CrossRef]
- Jia, S.; Wang, C.; Li, Y.; Zhang, F.; Liu, W. The urbanization efficiency in Chengdu City: An estimation based on a three-stage DEA model. Phys. Chem. Earth A B C 2017, 101, 59–69. [Google Scholar] [CrossRef]
- Baráth, L.; Fertő, I. Heterogeneous technology, scale of land use and technical efficiency: The case of Hungarian crop farms. Land Use Pol. 2015, 42, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, K. Technical Efficiency in Agriculture Production and its Determinants: An Exploratory Study at the District level. Indian J. Agric. Econ. 2006, 61, 169–184. [Google Scholar]
- Wang, H. Temporal and Spatial Analysis of County Agricultural Efficiency in Anhui Province Based on SSBM-ESDA Model. Econ. Geogr. 2020, 40, 175–183, 222. [Google Scholar] [CrossRef]
- Implementation Opinions of the People’s Government of Shandong Province on Promoting the Economical and Intensive Use of Land. 2020. Available online: http://www.shandong.gov.cn/art/2020/1/15/art_107861_85792.html (accessed on 15 January 2020).
- Wang, W.; Xu, X. Thinkings about the division of Shandong economic region. East China Econ. Manag. 2001, 2, 9–10. [Google Scholar]
- Charnes, A.A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Coelli, T.; Rao, D.S.P.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Springer Science & Business Media: New York, NY, USA, 2005. [Google Scholar]
- Cheng, G. Data Envelopment Analysis: Methods and MaxDEA Software; Intellectual Property Publishing House: Beijing, China, 2014. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. Available online: https://www.sciencedirect.com/science/article/pii/S0377221799004075 (accessed on 13 January 2011). [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. Available online: https://www.sciencedirect.com/science/article/pii/S0377221701003241 (accessed on 13 January 2011).
- Pérez, K.; González-Araya, M.C.; Iriarte, A. Energy and GHG emission efficiency in the Chilean manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes. Energy Econ. 2017, 66, 290–302. [Google Scholar] [CrossRef]
- Jaeger, J.A.G.; Bertiller, R.; Schwick, C.; Cavens, D.; Kienast, F. Urban permeation of landscapes and sprawl per capita: New measures of urban sprawl. Ecol. Indic. 2010, 10, 427–441. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, P.; Wei, Y.; Li, Y.; Zhao, H. Measuring the efficiency and driving factors of urban land use based on the DEA method and the PLS-SEM model—A case study of 35 large and medium-sized cities in China. Sustain. Cities Soc. 2019, 50, 101646. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Q. Measuring the efficiency of urban spatial expansion in 35 large and medium cities in China. Urban Probl. 2013, 10, 8–14. [Google Scholar]
- Yang, Q.; Duan, X.; Ye, L.; Zhang, W. Efficiency Evaluation of City Land Utilization in the Yangtze River Delta Using a SBM-Undesirable Model. Res. Sci. 2014, 36, 712–721. [Google Scholar]
- Barbosa, J.A.; Bragana, L.; Mateus, R. Assessment of Land Use Efficiency Using BSA Tools: Development of a New Index. J. Urban Plan. Dev. 2014, 141, 04014020. [Google Scholar] [CrossRef]
- Wang, H.; Xing, Z.; Su, Z.; Li, D. Evaluation of Total Factor Land Use Efficiency and Its Temporal and Spatial Change Pattern in Guangxi. Acta Agric. Jiangxi 2020, 32, 131–138. [Google Scholar]
- Li, F.; Fu, H. On Urban Land Utilization Efficiency of 17 Cities in Shandong Province—Based on DEA Model, Super-Efficiency Model and Malmquist Index. J. Xihua Univ. 2016, 35, 55–61. [Google Scholar]
- Feng, Y.; Peng, J.; Deng, Z.; Wang, J. Spatial-temporal variation of cultivated land’s utilization efficiency in China based on the dual perspective of non-point source pollution and carbon emission. China Popul. Res. Environ. 2015, 25, 18–25. [Google Scholar]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Chang. 2020, 151, 119874. [Google Scholar] [CrossRef]
- Yang, C.H.; Wu, L.; Lin, H.L. Analysis of total-factor cultivated land efficiency in China’s agriculture. Agric. Econ. 2010, 56, 231–242. [Google Scholar] [CrossRef]
- Yue, L.; Li, W. Cultivated Land’s Utilization Efficiency and Influencing Factors in China Under Environmental Constraints—Based on Global Malmquist-Luenberger Index Method. Agric. Econ. Manag. 2017, 6, 25–35. [Google Scholar]
- Madu, I.A. Spatial Impacts of Rural Population Pressure on Agricultural Land Use in Nigeria. Appl. Spat. Anal. Policy 2012, 5, 123–135. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, D.; Xie, B.; Du, T.; Wang, X. Spatiotemporal pattern evolvement and driving factors of cultivated land utilization efficiency of the major grain producing area in China. Resour. Sci. 2017, 39, 608–619. [Google Scholar]
- Ministry of Land and Resources of the People’s Republic of China. Provisions on Economical and Intensive Use of Land. Ministry of Land and Resources of the People’s Republic of China, Ed.; 2014. Available online: http://www.gov.cn/gongbao/content/2014/content_2736111.htm (accessed on 22 May 2014).
- Xinhua News Agency. National New Urbanization Plan (2014–2020). The Central People’s Government of the People’s Republic of China, Ed.; 2014. Available online: http://www.gov.cn/zhengce/2014-03/16/content_2640075.htm (accessed on 16 March 2014).
- Ministry of Land and Resources of the People’s Republic of China. Reply of the Ministry of Natural Resources on the land Conversion and Land Acquisition Plan of the 11th City Including Jinan City. 2018. Available online: http://dnr.shandong.gov.cn/zwgk_324/tdsp/jsydspjg1/201810/t20181026_2481935.html (accessed on 26 October 2018).
- Wang, J.; Sun, G. Shandong Has Achieved a Dynamic Balance of the Total Arable Land for 17 Consecutive Years, Strictly Abiding by the Red Line of Cultivated Land Protection. Available online: http://news.sdchina.com/show/4032040.html (accessed on 22 January 2017).
- Li, Z.; Guan, W.; Zang, L. The Analysis of the Farmland Productivity and its Influencing Factors in Shandong. World Reg. Stud. 2013, 2, 167–175. [Google Scholar]
- Dou, W.; Wang, C.; Wang, Z. A Study on the Utilization Efficiency of Cultivated Land Resources in Shandong Province. J. Environ. Manag. College China 2019, 29, 39–43. [Google Scholar]
- Zhang, X. Urban Land Intensive Utilization Research In Shandong Province. Master’s Thesis, Shandong Normal University, Shandong, China, 28 May 2015. [Google Scholar]
- Zhu, X.; Li, Y.; Zhang, P.; Wei, Y.; Zheng, X.; Xie, L. Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency. Land Use Pol. 2019, 88, 104083. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhou, Y. Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Pol. 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Guan, J.C.; Gao, X. Exploring the h-index at patent level. J. Am. Soc. Inf. Sci. Technol. 2009, 60. [Google Scholar] [CrossRef]
Target Layer | Indicator Layer | Indicators | Unit | References |
---|---|---|---|---|
Construction land | Input index | Area of construction land | hm2 | Jaeger et al. [29], Zhu et al. [30] |
Gross investment in fixed assets | 108 RMB | Chen et al. [7], Wang et al. [31] | ||
Number of secondary and tertiary industry employees | 104 persons | Yang et al. [32] | ||
Output index | Gross product of secondary and tertiary industry | 108 RMB | Barbosa et al. [33] | |
Average salary of employees | RMB | Yang et al. [32] | ||
Green coverage area | hm2 | Wang et al. [34], Li and Fu [35] | ||
Cultivated land | Input index | Sown area of farm crops | 103 hm2 | Feng et al. [36] |
Effective irrigated area | 103 hm2 | Feng et al. [36] | ||
Total power of agricultural machinery | 103 kW | Kuang et al. [37], Yang et al. [38] | ||
Consumption of chemical fertilizers | 103 tons | Yue and Li [39] | ||
Rural population | 104 persons | Made and Ignatius [40] | ||
Output index | Gross agricultural production | 108 RMB | Zhang et al. [41] |
Variables | Median | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|
Area of construction land (hm2) | 16,255.204 | 10,081.686 | 4400.000 | 58,700.000 |
Gross investment in fixed assets (108 RMB) | 1985.516 | 1494.856 | 140.421 | 8391.480 |
Number of secondary and tertiary industry employees (104 persons) | 62.986 | 33.959 | 13.270 | 150.003 |
Gross product of secondary and tertiary industry (108 RMB) | 42,467.524 | 17,880.888 | 11,870.900 | 91,651.000 |
Average salary of employees (RMB) | 2790.339 | 1938.628 | 272.430 | 11,614.610 |
Green coverage area (hm2) | 7872.787 | 6042.112 | 875.000 | 39,229.000 |
Sown area of farm crops (103 hm2) | 661.846 | 381.988 | 76.428 | 1552.827 |
Effective irrigated area (103 hm2) | 294.872 | 157.317 | 36.660 | 646.470 |
Total power of agricultural machinery (103 kW) | 6727.192 | 3817.246 | 847.346 | 15,228.871 |
Consumption of chemical fertilizers (103 tons) | 828.085 | 429.447 | 119.022 | 1674.992 |
Rural population (104 persons) | 292.314 | 175.437 | 50.030 | 824.732 |
Gross agricultural production (108 RMB) | 234.760 | 127.887 | 24.810 | 573.955 |
Region | 2006 | 2009 | 2012 | 2015 | 2018 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TE | PTE | SE | TE | PTE | SE | TE | PTE | SE | TE | PTE | SE | TE | PTE | SE | |
Qingdao | 1.025 | 1.231 | 0.833 | 0.550 | 1.253 | 0.439 | 1.006 | 1.365 | 0.737 | 1.025 | 1.419 | 0.722 | 0.436 | 1.400 | 0.312 |
Yantai | 0.487 | 0.712 | 0.684 | 0.469 | 0.790 | 0.594 | 0.573 | 0.782 | 0.733 | 0.671 | 1.008 | 0.665 | 0.501 | 1.017 | 0.493 |
Weifang | 0.480 | 0.536 | 0.896 | 0.640 | 1.002 | 0.639 | 0.552 | 0.683 | 0.807 | 0.704 | 1.031 | 0.683 | 1.016 | 1.032 | 0.984 |
Weihai | 0.718 | 0.721 | 0.997 | 0.602 | 0.710 | 0.848 | 0.772 | 0.798 | 0.967 | 0.702 | 0.789 | 0.889 | 0.559 | 0.628 | 0.890 |
Rizhao | 0.801 | 0.802 | 0.998 | 0.754 | 0.764 | 0.988 | 1.045 | 1.059 | 0.986 | 1.021 | 1.026 | 0.995 | 0.680 | 0.697 | 0.976 |
Eastern Average | 0.702 | 0.800 | 0.882 | 0.603 | 0.904 | 0.701 | 0.789 | 0.937 | 0.846 | 0.825 | 1.055 | 0.791 | 0.638 | 0.955 | 0.731 |
Jinan | 0.380 | 0.698 | 0.544 | 0.406 | 1.013 | 0.401 | 0.524 | 1.078 | 0.486 | 0.677 | 1.100 | 0.615 | 0.442 | 1.028 | 0.430 |
Zibo | 1.200 | 1.280 | 0.937 | 1.198 | 1.260 | 0.951 | 1.151 | 1.168 | 0.986 | 1.059 | 1.078 | 0.982 | 0.578 | 1.034 | 0.558 |
Dongying | 1.155 | 1.235 | 0.935 | 1.134 | 1.193 | 0.950 | 1.140 | 1.205 | 0.946 | 1.208 | 1.260 | 0.958 | 1.147 | 1.224 | 0.937 |
Taian | 0.545 | 0.571 | 0.953 | 0.579 | 0.619 | 0.935 | 0.693 | 0.699 | 0.992 | 0.677 | 0.689 | 0.982 | 0.567 | 0.590 | 0.960 |
Laiwu | 1.299 | 1.465 | 0.886 | 1.312 | 1.794 | 0.731 | 1.277 | 1.522 | 0.839 | 1.628 | 1.883 | 0.865 | 1.528 | 1.963 | 0.778 |
Linyi | 0.606 | 0.623 | 0.973 | 0.603 | 0.754 | 0.800 | 0.763 | 0.808 | 0.943 | 0.656 | 0.746 | 0.879 | 0.539 | 0.645 | 0.836 |
Midland Average | 0.864 | 0.979 | 0.871 | 0.872 | 1.105 | 0.795 | 0.925 | 1.080 | 0.866 | 0.984 | 1.126 | 0.880 | 0.800 | 1.081 | 0.750 |
Zaozhuang | 0.520 | 0.528 | 0.983 | 0.660 | 0.693 | 0.953 | 0.751 | 0.779 | 0.964 | 0.791 | 0.822 | 0.962 | 0.715 | 0.739 | 0.967 |
Jining | 1.150 | 1.158 | 0.993 | 1.031 | 1.032 | 0.999 | 0.757 | 0.757 | 1.000 | 0.666 | 0.724 | 0.920 | 0.521 | 0.595 | 0.875 |
Dezhou | 0.801 | 1.137 | 0.705 | 0.706 | 1.018 | 0.693 | 0.714 | 0.717 | 0.996 | 0.692 | 0.726 | 0.953 | 0.549 | 0.578 | 0.950 |
Liaocheng | 0.635 | 0.724 | 0.877 | 0.758 | 1.055 | 0.718 | 1.053 | 1.152 | 0.914 | 0.772 | 1.040 | 0.742 | 1.016 | 1.072 | 0.948 |
Binzhou | 0.353 | 0.405 | 0.872 | 0.387 | 0.459 | 0.844 | 0.596 | 0.607 | 0.982 | 0.821 | 0.856 | 0.959 | 0.644 | 0.670 | 0.962 |
Heze | 0.502 | 1.000 | 0.502 | 0.640 | 0.665 | 0.962 | 1.161 | 1.193 | 0.973 | 1.161 | 1.192 | 0.974 | 1.038 | 1.055 | 0.984 |
Western Average | 0.660 | 0.825 | 0.822 | 0.697 | 0.820 | 0.862 | 0.839 | 0.867 | 0.971 | 0.817 | 0.893 | 0.918 | 0.747 | 0.785 | 0.948 1 |
Region. | 2006 | 2009 | 2012 | 2015 | 2018 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TE | PTE | SE | TE | PTE | SE | TE | PTE | SE | TE | PTE | SE | TE | PTE | SE | |
Qingdao | 0.753 | 0.753 | 1.000 | 0.707 | 0.707 | 1.000 | 0.707 | 0.708 | 0.999 | 0.818 | 0.827 | 0.988 | 0.645 | 0.813 | 0.793 |
Yantai | 1.083 | 1.129 | 0.959 | 1.048 | 1.091 | 0.960 | 1.025 | 1.100 | 0.932 | 1.107 | 1.151 | 0.962 | 1.017 | 1.233 | 0.825 |
Weifang | 0.812 | 1.232 | 0.659 | 0.783 | 1.141 | 0.686 | 0.746 | 1.110 | 0.672 | 0.800 | 0.858 | 0.933 | 0.646 | 1.018 | 0.635 |
Weihai | 0.578 | 0.617 | 0.937 | 0.564 | 0.594 | 0.950 | 0.541 | 0.546 | 0.990 | 0.683 | 0.687 | 0.995 | 0.431 | 0.451 | 0.954 |
Rizhao | 0.701 | 0.738 | 0.949 | 0.672 | 0.696 | 0.966 | 0.618 | 0.622 | 0.993 | 0.737 | 0.748 | 0.985 | 0.583 | 0.654 | 0.890 |
Eastern Average | 0.785 | 0.894 | 0.901 | 0.755 | 0.846 | 0.912 | 0.727 | 0.817 | 0.917 | 0.829 | 0.854 | 0.973 | 0.664 | 0.834 | 0.820 |
Jinan | 1.121 | 1.125 | 0.997 | 1.268 | 1.270 | 0.998 | 1.207 | 1.225 | 0.985 | 1.079 | 1.080 | 0.999 | 1.005 | 1.045 | 0.962 |
Zibo | 1.041 | 1.045 | 0.997 | 1.029 | 1.067 | 0.965 | 1.014 | 1.053 | 0.963 | 1.023 | 1.044 | 0.980 | 0.841 | 1.053 | 0.799 |
Dongying | 0.707 | 1.018 | 0.695 | 0.607 | 0.650 | 0.933 | 0.539 | 0.550 | 0.980 | 0.670 | 1.026 | 0.653 | 0.531 | 0.568 | 0.935 |
Taian | 0.844 | 0.853 | 0.989 | 1.016 | 1.017 | 1.000 | 0.775 | 0.808 | 0.959 | 0.825 | 0.832 | 0.993 | 0.782 | 1.046 | 0.748 |
Laiwu | 0.830 | 2.586 | 0.321 | 1.016 | 2.763 | 0.368 | 1.094 | 2.879 | 0.380 | 1.076 | 2.744 | 0.392 | 1.206 | 2.771 | 0.435 |
Linyi | 0.743 | 1.018 | 0.730 | 0.722 | 1.002 | 0.720 | 0.635 | 0.721 | 0.880 | 0.706 | 0.746 | 0.946 | 0.539 | 0.706 | 0.764 |
Midland Average | 0.881 | 1.274 | 0.788 | 0.943 | 1.295 | 0.831 | 0.877 | 1.206 | 0.858 | 0.897 | 1.245 | 0.827 | 0.818 | 1.198 | 0.774 |
Zaozhuang | 1.031 | 1.039 | 0.992 | 1.035 | 1.041 | 0.994 | 1.002 | 1.005 | 0.998 | 0.844 | 0.845 | 0.999 | 0.627 | 0.755 | 0.830 |
Jining | 0.771 | 1.003 | 0.769 | 0.885 | 1.089 | 0.813 | 0.807 | 1.096 | 0.737 | 1.008 | 1.139 | 0.885 | 0.692 | 1.065 | 0.650 |
Dezhou | 0.617 | 0.624 | 0.989 | 0.581 | 0.612 | 0.948 | 0.517 | 0.517 | 1.000 | 0.617 | 0.619 | 0.996 | 0.450 | 0.546 | 0.824 |
Liaocheng | 0.666 | 0.682 | 0.977 | 0.711 | 0.820 | 0.867 | 0.666 | 0.761 | 0.875 | 0.753 | 0.779 | 0.966 | 0.520 | 0.646 | 0.806 |
Binzhou | 0.688 | 0.690 | 0.997 | 0.677 | 0.684 | 0.991 | 0.649 | 0.651 | 0.997 | 0.680 | 0.682 | 0.998 | 0.498 | 0.589 | 0.846 |
Heze | 0.597 | 0.670 | 0.891 | 0.497 | 0.545 | 0.911 | 0.412 | 0.412 | 1.000 | 0.409 | 0.409 | 1.000 | 0.357 | 0.451 | 0.791 |
Western Average | 0.728 | 0.785 | 0.936 | 0.731 | 0.799 | 0.921 | 0.676 | 0.740 | 0.934 | 0.719 | 0.746 | 0.974 | 0.524 | 0.675 | 0.791 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Wang, X. Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model. Sustainability 2020, 12, 10618. https://doi.org/10.3390/su122410618
Pang Y, Wang X. Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model. Sustainability. 2020; 12(24):10618. https://doi.org/10.3390/su122410618
Chicago/Turabian StylePang, Yayuan, and Xinjun Wang. 2020. "Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model" Sustainability 12, no. 24: 10618. https://doi.org/10.3390/su122410618
APA StylePang, Y., & Wang, X. (2020). Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model. Sustainability, 12(24), 10618. https://doi.org/10.3390/su122410618