Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk
Abstract
:1. Introduction
2. Purified Silica Extraction from Rice Husk
2.1. Combustion to Remove Organic Contents
2.2. Principle of Chemically Extracting Silica from Rice Husk
2.3. Acid Leaching to Obtain High Purity Silica
2.4. Alkali Extraction to Obtain Silicate
3. Synthesis of Engineered Silica Particles Using Silicate Extracted from Rice Husks
3.1. Simple Precipitation of Silica Particles by the Addition of Acidic Reagents
3.2. Control of Morphological Properties of Silica Particles
3.3. Synthesis of Ordered Porous Silica Particles from Rice Husk
4. Conclusions and Perspectives
- The widely used method for obtaining silica from rice husks is direct combustion. The characteristics of shape, particle size, pore, and uniformity can be controlled by changing the combustion conditions but its changes could be within a narrow range. Therefore, chemical treatment should be followed to synthesize the engineered silica particles.
- The main components of rice husk—cellulose, hemicellulose, lignin and inorganics—can be separated by their thermo-chemical properties.
- Acid leaching using a strong acid solution (e.g., H2SO4, HCl, and HNO3) is effective to produce silica with high purity and surface area. However, these reagents are significantly hazardous to the environment and human life. Therefore, attempts to use environmentally harmless agents, such as citric acid and ionic liquid, have been reported.
- Silica can be extracted from rice husk by solubilizing it in an alkali solution and precipitating in an acidic medium. In general, sodium hydroxide was used to extract silica from rice husk as sodium silicate.
- The development of synthetic methods based on bottom-up processes enables the precise and uniform control of the morphological properties of silica products. These methods generally use a sodium silicate solution extracted from rice husks as a raw material.
- The neutralization of sodium silicate solution using acidic solution (e.g., H2SO4, HCl, HNO3, organic acid) is a common method for the precipitation of silica particles. However, it is still not possible to accurately control the morphological properties of silica.
- The use of (i) organic co-solvents (e.g., ethanol and acetone), (ii) polymer additives (e.g., PEG), and (iii) a water-in-oil emulsion system enables the control of the morphological properties, such as the shape and size, of silica particles.
- Various ordered porous silica particles including MCM-type, SBA-type, and mesocellular foam structure have been successfully obtained from a rice husk-derived silicate solution with additional structure directing agents (e.g., CTAB, Pluronic P-123, etc.).
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 November 2020).
- Bhattacharyya, S.C. Viability of off-grid electricity supply using rice husk: A case study from South Asia. Biomass Bioenergy 2014, 68, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Quispe, I.; Navia, R.; Kahhat, R. Energy potential from rice husk through direct combustion and fast pyrolysis: A review. Waste Manag. 2017, 59, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Asadullah, M. Barriers of commercial power generation using biomass gasification gas: A review. Renew. Sustain. Energy Rev. 2014, 29, 201–215. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Baruah, D. Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability. Renew. Sustain. Energy Rev. 2011, 15, 1885–1892. [Google Scholar] [CrossRef]
- Assanee, N.; Boonwan, C. State of the art of biomass gasification power plants in Thailand. Energy Procedia 2011, 9, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 2016, 53, 1468–1485. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Hurley, K.R.; Haynes, C.L. Critical considerations in the biomedical use of mesoporous silica nanoparticles. J. Phys. Chem. Lett. 2012, 3, 364–374. [Google Scholar] [CrossRef]
- Liu, B.; Li, C.; Cheng, Z.; Hou, Z.; Huang, S.; Lin, J. Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater. Sci. 2016, 4, 890–909. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 2015, 11, 313–327. [Google Scholar] [CrossRef]
- Jung, D.S.; Ryou, M.-H.; Sung, Y.J.; Park, S.B.; Choi, J.W. Recycling rice husks for high-capacity lithium battery anodes. Proc. Natl. Acad. Sci. USA 2013, 110, 12229–12234. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y. Rice husk silica-derived nanomaterials for battery applications: A literature review. J. Agric. Food Chem. 2017, 65, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Kumari, B.; Singh, D. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol. Eng. 2016, 97, 98–105. [Google Scholar] [CrossRef]
- Van Tuan, N.; Ye, G.; Van Breugel, K.; Copuroglu, O. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash. Cem. Concr. Res. 2011, 41, 1104–1111. [Google Scholar] [CrossRef]
- Martirena, F.; Monzó, J. Vegetable ashes as supplementary cementitious materials. Cem. Concr. Res. 2018, 114, 57–64. [Google Scholar] [CrossRef]
- Kang, S.-H.; Hong, S.-G.; Moon, J. The use of rice husk ash as reactive filler in ultra-high performance concrete. Cem. Concr. Res. 2019, 115, 389–400. [Google Scholar] [CrossRef]
- Kang, S.-H.; Kwon, Y.-H.; Hong, S.-G.; Chun, S.; Moon, J. Hydrated lime activation on byproducts for eco-friendly production of structural mortars. J. Clean Prod. 2019, 231, 1389–1398. [Google Scholar] [CrossRef]
- Shen, Y. Rice husk silica derived nanomaterials for sustainable applications. Renew. Sustain. Energy Rev. 2017, 80, 453–466. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwon, J.H.; Lee, J.-W.; Lee, H.-s.; Chang, J.H.; Sang, B.-I. Preparation of high purity silica originated from rice husks by chemically removing metallic impurities. J. Ind. Eng. Chem. 2017, 50, 79–85. [Google Scholar] [CrossRef]
- Fernandes, I.J.; Calheiro, D.; Kieling, A.G.; Moraes, C.A.; Rocha, T.L.; Brehm, F.A.; Modolo, R.C. Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 2016, 165, 351–359. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Subhani, T.; Husain, S.W. Towards tunable size of silica particles from rice husk. J. Non-Cryst. Solids 2015, 429, 61–69. [Google Scholar] [CrossRef]
- Junpen, A.; Pansuk, J.; Kamnoet, O.; Cheewaphongphan, P.; Garivait, S. Emission of air pollutants from rice residue open burning in Thailand, 2018. Atmosphere 2018, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Lasko, K.; Vadrevu, K. Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam. Environ. Pollut. 2018, 236, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Nakata, Y.; Suzuki, M.; Okutani, T.; Kikuchi, M.; Akiyama, T. Preparation and properties of SiO2 from rice hulls. J. Ceram. Soc. Jpn. 1989, 97, 842–849. [Google Scholar] [CrossRef] [Green Version]
- Beidaghy Dizaji, H.; Zeng, T.; Hartmann, I.; Enke, D.; Schliermann, T.; Lenz, V.; Bidabadi, M. Generation of high quality biogenic silica by combustion of rice husk and rice straw combined with pre-and post-treatment strategies—A review. Appl. Sci. 2019, 9, 1083. [Google Scholar] [CrossRef] [Green Version]
- Zareihassangheshlaghi, A.; Beidaghy Dizaji, H.; Zeng, T.; Huth, P.; Ruf, T.; Denecke, R.; Enke, D. Behavior of metal impurities on surface and bulk of biogenic silica from rice husk combustion and the impact on ash-melting tendency. ACS Sustain. Chem. Eng. 2020, 8, 10369–10379. [Google Scholar] [CrossRef]
- Alyosef, H.A.; Eilert, A.; Welscher, J.; Ibrahim, S.S.; Denecke, R.; Schwieger, W.; Enke, D. Characterization of biogenic silica generated by thermo chemical treatment of rice husk. Part. Sci. Technol. 2013, 31, 524–532. [Google Scholar] [CrossRef]
- Pedersen, M.; Meyer, A.S. Lignocellulose pretreatment severity–relating pH to biomatrix opening. New Biotechnol. 2010, 27, 739–750. [Google Scholar] [CrossRef]
- Pedersen, M.; Viksø-Nielsen, A.; Meyer, A.S. Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment. Process Biochem. 2010, 45, 1181–1186. [Google Scholar] [CrossRef]
- Kristensen, J.B.; Thygesen, L.G.; Felby, C.; Jørgensen, H.; Elder, T. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol. Biofuels 2008, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Alexander, G.B.; Heston, W.; Iler, R.K. The solubility of amorphous silica in water. J. Phys. Chem. 1954, 58, 453–455. [Google Scholar] [CrossRef]
- Real, C.; Alcala, M.D.; Criado, J.M. Preparation of silica from rice husks. J. Am. Ceram. Soc. 1996, 79, 2012–2016. [Google Scholar] [CrossRef]
- Liou, T.-H.; Yang, C.-C. Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater. Sci. Eng. B 2011, 176, 521–529. [Google Scholar] [CrossRef]
- Chen, P.; Bie, H.; Bie, R. Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles. Korean J. Chem. Eng. 2018, 35, 1911–1918. [Google Scholar] [CrossRef]
- Chakraverty, A.; Mishra, P.; Banerjee, H. Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica. J. Mater. Sci. 1988, 23, 21–24. [Google Scholar] [CrossRef]
- Vayghan, A.G.; Khaloo, A.; Rajabipour, F. The effects of a hydrochloric acid pre-treatment on the physicochemical properties and pozzolanic performance of rice husk ash. Cem. Concr. Compos. 2013, 39, 131–140. [Google Scholar] [CrossRef]
- Umeda, J.; Kondoh, K. High-purity amorphous silica originated in rice husks via carboxylic acid leaching process. J. Mater. Sci. 2008, 43, 7084–7090. [Google Scholar] [CrossRef]
- Umeda, J.; Kondoh, K. Process optimization to prepare high-purity amorphous silica from rice husks via citric acid leaching treatment. Trans. JWRI 2008, 37, 13–17. [Google Scholar]
- Chen, H.; Wang, W.; Martin, J.C.; Oliphant, A.J.; Doerr, P.A.; Xu, J.F.; DeBorn, K.M.; Chen, C.; Sun, L. Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: A comprehensive utilization of rice husk biomass. ACS Sustain. Chem. Eng. 2013, 1, 254–259. [Google Scholar] [CrossRef]
- Shen, J.; Liu, X.; Zhu, S.; Zhang, H.; Tan, J. Effects of calcination parameters on the silica phase of original and leached rice husk ash. Mater. Lett. 2011, 65, 1179–1183. [Google Scholar] [CrossRef]
- Trinh, L.T.P.; Lee, Y.J.; Lee, J.-W.; Lee, H.-J. Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenergy 2015, 81, 1–8. [Google Scholar] [CrossRef]
- Mochidzuki, K.; Sakoda, A.; Suzuki, M.; Izumi, J.; Tomonaga, N. Structural behavior of rice husk silica in pressurized hot-water treatment processes. Ind. Eng. Chem. Res. 2001, 40, 5705–5709. [Google Scholar] [CrossRef]
- Ahmad Alyosef, H.; Schneider, D.; Wassersleben, S.; Roggendorf, H.; Weiß, M.; Eilert, A.; Denecke, R.; Hartmann, I.; Enke, D. Meso/macroporous silica from miscanthus, cereal remnant pellets, and wheat straw. ACS Sustain. Chem. Eng. 2015, 3, 2012–2021. [Google Scholar] [CrossRef]
- Moroz, I.K.; Maslennikova, G. Thermal transformations of silica. Glass Ceram. 1985, 42, 559–564. [Google Scholar] [CrossRef]
- Kim, T.H.; Ryu, H.J.; Oh, K.K. Improvement of organosolv fractionation performance for rice husk through a low acid-catalyzation. Energies 2019, 12, 1800. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ding, X.; Chen, X.; Ma, Y.; Wang, Z.; Zhao, X. A new method of utilizing rice husk: Consecutively preparing d-xylose, organosolv lignin, ethanol and amorphous superfine silica. J. Hazard. Mater. 2015, 291, 65–73. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr. Build. Mater. 2016, 114, 276–289. [Google Scholar] [CrossRef]
- Geraldo, R.H.; Fernandes, L.F.; Camarini, G. Water treatment sludge and rice husk ash to sustainable geopolymer production. J. Clean. Prod. 2017, 149, 146–155. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Ranjbar, N. Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. J. Build. Eng. 2016, 6, 252–261. [Google Scholar] [CrossRef]
- Jahan, M.S.; Haris, F.; Rahman, M.M.; Samaddar, P.R.; Sutradhar, S. Potassium hydroxide pulping of rice straw in biorefinery initiatives. Bioresour. Technol. 2016, 219, 445–450. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; de Gutiérrez, R.M.; Provis, J.L.; Delvasto, S. Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valoriz. 2012, 3, 99–108. [Google Scholar] [CrossRef]
- Bernal, S.; Rodríguez, E.; Mejía de Gutiérrez, R.; Provis, J.L. Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Mater. Constr. 2015, 65, e049. [Google Scholar] [CrossRef]
- Kamseu, E.; à Moungam, L.B.; Cannio, M.; Billong, N.; Chaysuwan, D.; Melo, U.C.; Leonelli, C. Substitution of sodium silicate with rice husk ash-NaOH solution in metakaolin based geopolymer cement concerning reduction in global warming. J. Clean. Prod. 2017, 142, 3050–3060. [Google Scholar] [CrossRef]
- Mejía, J.; de Gutiérrez, R.M.; Puertas, F. Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Constr. 2013, 63, 361–375. [Google Scholar]
- Mejía, J.M.; de Gutiérrez, R.M.; Montes, C. Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. J. Clean. Prod. 2016, 118, 133–139. [Google Scholar] [CrossRef]
- Bazargan, A.; Wang, Z.; Barford, J.P.; Saleem, J.; McKay, G. Optimization of the removal of lignin and silica from rice husks with alkaline peroxide. J. Clean. Prod. 2020, 260, 120848. [Google Scholar] [CrossRef]
- Soltani, N.; Bahrami, A.; Pech-Canul, M.; González, L. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. 2015, 264, 899–935. [Google Scholar] [CrossRef]
- Muñoz-Aguado, M.-J.; Gregorkiewitz, M. Sol–gel synthesis of microporous amorphous silica from purely inorganic precursors. J. Colloid Interface Sci. 1997, 185, 459–465. [Google Scholar] [CrossRef]
- Schlomach, J.; Kind, M. Investigations on the semi-batch precipitation of silica. J. Colloid Interface Sci. 2004, 277, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, F.; Sanati, A.M.; Maleki, M. Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environ. Stud. Persian Gulf 2015, 2, 56–65. [Google Scholar]
- Kamath, S.R.; Proctor, A. Silica gel from rice hull ash: Preparation and characterization. Cereal Chem. 1998, 75, 484–487. [Google Scholar] [CrossRef]
- Nassar, M.Y.; Ahmed, I.S.; Raya, M.A. A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. J. Mol. Liq. 2019, 282, 251–263. [Google Scholar] [CrossRef]
- Vaibhav, V.; Vijayalakshmi, U.; Roopan, S.M. Agricultural waste as a source for the production of silica nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 139, 515–520. [Google Scholar] [CrossRef]
- Adam, F.; Chew, T.-S.; Andas, J. A simple template-free sol–gel synthesis of spherical nanosilica from agricultural biomass. J. Sol-Gel Sci. Technol. 2011, 59, 580–583. [Google Scholar] [CrossRef]
- Davarpanah, J.; Sayahi, M.H.; Ghahremani, M.; Karkhoei, S. Synthesis and characterization of nano acid catalyst derived from rice husk silica and its application for the synthesis of 3, 4-dihydropyrimidinones/thiones compounds. J. Mol. Struct. 2019, 1181, 546–555. [Google Scholar] [CrossRef]
- Song, S.; Cho, H.-B.; Kim, H.T. Surfactant-free synthesis of high surface area silica nanoparticles derived from rice husks by employing the Taguchi approach. J. Ind. Eng. Chem. 2018, 61, 281–287. [Google Scholar] [CrossRef]
- Azat, S.; Korobeinyk, A.; Moustakas, K.; Inglezakis, V. Sustainable production of pure silica from rice husk waste in Kazakhstan. J. Clean. Prod. 2019, 217, 352–359. [Google Scholar] [CrossRef]
- Nayak, P.; Datta, A. Synthesis of SiO2-nanoparticles from rice husk ash and its comparison with commercial amorphous silica through material characterization. Silicon 2020. [Google Scholar] [CrossRef]
- Ngoc, T.M.; Man, T.M.; Phong, M.T.; Nam, H.M.; Hieu, N.H. Fabrication of tubular ceramic-supported malic acid cross-linked poly (vinyl alcohol)/rice husk ash-silica nanocomposite membranes for ethanol dehydration by pervaporation. Korean J. Chem. Eng. 2019, 36, 584–590. [Google Scholar] [CrossRef]
- Kalapathy, U.; Proctor, A.; Shultz, J. An improved method for production of silica from rice hull ash. Bioresour. Technol. 2002, 85, 285–289. [Google Scholar] [CrossRef]
- Zulkifli, N.S.C.; Ab Rahman, I.; Mohamad, D.; Husein, A. A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram. Int. 2013, 39, 4559–4567. [Google Scholar] [CrossRef]
- Jung, C.Y.; Kim, J.S.; Chang, T.S.; Kim, S.T.; Lim, H.J.; Koo, S.M. One-step synthesis of structurally controlled silicate particles from sodium silicates using a simple precipitation process. Langmuir 2010, 26, 5456–5461. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Zakaria, Y.; Shamsuddin, S.; Hassan, N.F.N. Robust synthesis of mono-dispersed spherical silica nanoparticle from rice husk for high definition latent fingermark development. Arab. J. Chem. 2020, 13, 8119–8132. [Google Scholar] [CrossRef]
- Li, D.; Chen, D.; Zhu, X. Reduction in time required for synthesis of high specific surface area silica from pyrolyzed rice husk by precipitation at low pH. Bioresour. Technol. 2011, 102, 7001–7003. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhu, X. Short-period synthesis of high specific surface area silica from rice husk char. Mater. Lett. 2011, 65, 1528–1530. [Google Scholar] [CrossRef]
- Thuc, C.N.H.; Thuc, H.H. Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res. Lett. 2013, 8, 1–10. [Google Scholar]
- Shahnani, M.; Mohebbi, M.; Mehdi, A.; Ghassempour, A.; Aboul-Enein, H.Y. Silica microspheres from rice husk: A good opportunity for chromatography stationary phase. Ind. Crop. Prod. 2018, 121, 236–240. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, J.H.; Chun, J. Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate. Mater. Lett. 2021, 283, 128765. [Google Scholar] [CrossRef]
- Hasan, R.; Chong, C.; Bukhari, S.; Jusoh, R.; Setiabudi, H. Effective removal of Pb (II) by low-cost fibrous silica KCC-1 synthesized from silica-rich rice husk ash. J. Ind. Eng. Chem. 2019, 75, 262–270. [Google Scholar] [CrossRef]
- Kresge, C.; Leonowicz, M.; Roth, W.J.; Vartuli, J.; Beck, J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Ramalingam, R.J.; Appaturi, J.N.; Pulingam, T.; Al-Lohedan, H.A.; Al-dhayan, D.M. In-situ incorporation of ruthenium/copper nanoparticles in mesoporous silica derived from rice husk ash for catalytic acetylation of glycerol. Renew. Energy 2020, 160, 564–574. [Google Scholar] [CrossRef]
- Jang, H.T.; Park, Y.; Ko, Y.S.; Lee, J.Y.; Margandan, B. Highly siliceous MCM-48 from rice husk ash for CO2 adsorption. Int. J. Greenh. Gas Control 2009, 3, 545–549. [Google Scholar] [CrossRef]
- Bhagiyalakshmi, M.; Yun, L.J.; Anuradha, R.; Jang, H.T. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. J. Hazard. Mater. 2010, 175, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Bhagiyalakshmi, M.; Yun, L.J.; Anuradha, R.; Jang, H.T. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: Their application to CO2 chemisorption. J. Porous Mater. 2010, 17, 475–484. [Google Scholar] [CrossRef]
- Ahmad-Alyosef, H.; Uhlig, H.; Münster, T.; Kloess, G.; Einicke, W.; Gläser, R.; Enke, D. Biogenic silica from rice husk ash–Sustainable sources for the synthesis of value added silica. Chem. Eng. Trans. 2014, 37, 667–672. [Google Scholar]
- Chiarakorn, S.; Areerob, T.; Grisdanurak, N. Influence of functional silanes on hydrophobicity of MCM-41 synthesized from rice husk. Sci. Technol. Adv. Mater. 2007, 8, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Artkla, S.; Kim, W.; Choi, W.; Wittayakun, J. Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica. Appl. Catal. B 2009, 91, 157–164. [Google Scholar] [CrossRef]
- Suyanta, S.; Kuncaka, A. Utilization of rice husk as raw material in synthesis of mesoporous silicates MCM-41. Indones. J. Chem. 2011, 11, 279–284. [Google Scholar] [CrossRef]
- Appaturi, J.N.; Adam, F. A facile and efficient synthesis of styrene carbonate via cycloaddition of CO2 to styrene oxide over ordered mesoporous MCM-41-Imi/Br catalyst. Appl. Catal. B 2013, 136, 150–159. [Google Scholar] [CrossRef]
- Renuka, N.; Praveen, A.; Anas, K. Influence of CTAB molar ratio in tuning the texture of rice husk silica into MCM 41 and SBA-16. Mater. Lett. 2013, 109, 70–73. [Google Scholar] [CrossRef]
- Areerob, T.; Grisdanurak, N.; Chiarakorn, S. Utilization of rice husk silica as adsorbent for BTEX passive air sampler under high humidity condition. Environ. Sci. Pollut. Res. 2016, 23, 5538–5548. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Chen, S.-S.; Nguyen, N.C.; Nguyen, H.T.; Tsai, H.H.; Chang, C.T. Adsorption of methyl blue on mesoporous materials using rice husk ash as silica source. J. Nanosci. Nanotechnol. 2016, 16, 4108–4114. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.A.S.; Sarmento, V.H.; Romão, L.P.; Paranhos, C.M. Adsorption of organic compounds on mesoporous material from rice husk ash (RHA). Biomass Convers. Biorefin. 2020, 10, 1105–1120. [Google Scholar] [CrossRef]
- Purnawira, B.; Purwaningsih, H.; Ervianto, Y.; Pratiwi, V.; Susanti, D.; Rochiem, R.; Purniawan, A. Synthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk. IOP Conf. Ser. Mater. Sci. Eng. 2019, 541, 012018. [Google Scholar] [CrossRef] [Green Version]
- Kamari, S.; Ghorbani, F. Extraction of highly pure silica from rice husk as an agricultural by-product and its application in the production of magnetic mesoporous silica MCM–41. Biomass Convers. Biorefin. 2020. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, V.; Sharma, S. An overview of ordered mesoporous material SBA-15: Synthesis, functionalization and application in oxidation reactions. J. Porous Mater. 2017, 24, 741–749. [Google Scholar] [CrossRef]
- Henao, W.; Jaramillo, L.; López, D.; Romero-Sáez, M.; Buitrago-Sierra, R. Insights into the CO2 capture over amine-functionalized mesoporous silica adsorbents derived from rice husk ash. J. Environ. Chem. Eng. 2020, 8, 104362. [Google Scholar] [CrossRef]
- Chareonpanich, M.; Nanta-Ngern, A.; Limtrakul, J. Short-period synthesis of ordered mesoporous silica SBA-15 using ultrasonic technique. Mater. Lett. 2007, 61, 5153–5156. [Google Scholar] [CrossRef]
- Ho, S.T.; Dinh, Q.K.; Tran, T.H.; Nguyen, H.P.; Nguyen, T.D. One-step synthesis of ordered Sn-substituted SBA-16 mesoporous materials using prepared silica source of rice husk and their selectively catalytic activity. Can. J. Chem. Eng. 2013, 91, 34–46. [Google Scholar] [CrossRef]
- Bhagiyalakshmi, M.; Do Park, S.; Cha, W.S.; Jang, H.T. Development of TREN dendrimers over mesoporous SBA-15 for CO2 adsorption. Appl. Surf. Sci. 2010, 256, 6660–6666. [Google Scholar] [CrossRef]
- Pimprom, S.; Sriboonkham, K.; Dittanet, P.; Föttinger, K.; Rupprechter, G.; Kongkachuichay, P. Synthesis of copper–nickel/SBA-15 from rice husk ash catalyst for dimethyl carbonate production from methanol and carbon dioxide. J. Ind. Eng. Chem. 2015, 31, 156–166. [Google Scholar] [CrossRef]
- Chun, J.; Gu, Y.M.; Hwang, J.; Oh, K.K.; Lee, J.H. Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk. J. Ind. Eng. Chem. 2020, 81, 135–143. [Google Scholar] [CrossRef]
- Kim, S.-S.; Pauly, T.R.; Pinnavaia, T.J. Non-ionic surfactant assembly of ordered, very large pore molecular sieve silicas from water soluble silicates. Chem. Commun. 2000, 1661–1662. [Google Scholar] [CrossRef]
- Boissière, C.; Martines, M.A.; Tokumoto, M.; Larbot, A.; Prouzet, E. Mechanisms of pore size control in MSU-X mesoporous silica. Chem. Mater. 2003, 15, 509–515. [Google Scholar] [CrossRef]
- Wajima, T.; Kiguchi, O.; Sugawara, K.; Sugawara, T. Synthesis of zeolite-A using silica from rice husk ash. J. Chem. Eng. Jpn. 2009, 42, s61–s66. [Google Scholar] [CrossRef] [Green Version]
- Wittayakun, J.; Khemthong, P.; Prayoonpokarach, S. Synthesis and characterization of zeolite NaY from rice husk silica. Korean J. Chem. Eng. 2008, 25, 861–864. [Google Scholar] [CrossRef]
- Mohamed, R.; Mkhalid, I.; Barakat, M. Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. Arab. J. Chem. 2015, 8, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Vempati, R.K.; Borade, R.; Hegde, R.S.; Komarneni, S. Template free ZSM-5 from siliceous rice hull ash with varying C contents. Microporous Mesoporous Mater. 2006, 93, 134–140. [Google Scholar] [CrossRef]
- Loiha, S.; Prayoonpokarach, S.; Songsiriritthigun, P.; Wittayakun, J. Synthesis of zeolite beta with pretreated rice husk silica and its transformation to ZSM-12. Mater. Chem. Phys. 2009, 115, 637–640. [Google Scholar] [CrossRef]
- Wang, H.P.; Lin, K.S.; Huang, Y.; Li, M.; Tsaur, L. Synthesis of zeolite ZSM-48 from rice husk ash. J. Hazard. Mater. 1998, 58, 147–152. [Google Scholar] [CrossRef]
- Ng, E.-P.; Lim, G.K.; Khoo, G.-L.; Tan, K.-H.; Ooi, B.S.; Adam, F.; Ling, T.C.; Wong, K.-L. Synthesis of colloidal stable Linde Type J (LTJ) zeolite nanocrystals from rice husk silica and their catalytic performance in Knoevenagel reaction. Mater. Chem. Phys. 2015, 155, 30–35. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, P.; Shao, Q. Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Mater. 2014, 188, 46–76. [Google Scholar] [CrossRef]
Silica Type | Pore Diameter (nm) | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Ref. |
---|---|---|---|---|
MCM-41 | 2.9 | 800 | 0.93 | [86] |
2.86 | 943 | – | [87] | |
3.54 | 1101 | 0.96 | [83] | |
3.51 | 1099 | 0.96 | [84] | |
3.28 | 903 | – | [88] | |
2.3 | 1115 | 0.92 | [89] | |
3.6 | 602 | 0.49 | [90] | |
2.8–3.1 | 545–1210 | 0.36–1.00 | [85] | |
2.92 | 797 | 0.57 | [91] | |
3.16 | 1347 | 0.906 | [92] | |
3.8 | 500.5 | 0.45 | [93] | |
3.0–3.4 | 552–769 | 1.025–1.167 | [94] | |
2.71 | 972.5 | 0.87 | [95] | |
2.3 | 1115 | 0.92 | [81] | |
MCM-48 | 4.02 | 1024 | 2.58 | [82] |
3.89 | 1124 | 0.98 | [83] | |
2.6 | 1059 | 0.68 | [84] | |
2.5 | 815 | 0.75 | [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chun, J.; Lee, J.H. Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk. Sustainability 2020, 12, 10683. https://doi.org/10.3390/su122410683
Chun J, Lee JH. Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk. Sustainability. 2020; 12(24):10683. https://doi.org/10.3390/su122410683
Chicago/Turabian StyleChun, Jinyoung, and Jin Hyung Lee. 2020. "Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk" Sustainability 12, no. 24: 10683. https://doi.org/10.3390/su122410683
APA StyleChun, J., & Lee, J. H. (2020). Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk. Sustainability, 12(24), 10683. https://doi.org/10.3390/su122410683