Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case
Abstract
:1. Introduction
Literature Review
2. Methodology for Assessing the Solar Energy Potential and Assessing the Environmental and Economic Efficiency of Its Use
2.1. Assessment of the Resource Potential of Solar Energy in Azerbaijan
2.2. Ecological-Economic Efficiency of Using Solar Energy in Azerbaijan
I Group | II Group | III Group | IV Group | V Group | VI Group | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Indicator | Thousand km2 | Indicator | Thousand km2 | Indicator | Thousand km2 | Indicator | Thousand km2 | Indicator | Thousand km2 | Indicator | Thousand km2 | |
Number of sunlight hours (hour) | 1800–2000 | 8.358 | 2000–2200 | 26.072 | 2200–2400 | 45.676 | 2400–2600 | 2.790 | 2600–2800 | 2.442 | 2800 and more | 0.844 |
Number of non-sunny days (day) | 10–30 | 1.852 | 30–50 | 14.971 | 50–70 | 63.615 | 70–90 | 13.816 | 90–110 | 2.018 | - | - |
Direct solar radiation incident on a horizontal surface in cloudless weather (W/) | 556–580 | 8.747 | 580–604 | 18.365 | 604–628 | 16.345 | 628–652 | 30.971 | 652–676 | 6.497 | 676–700 | 5.346 |
Direct solar radiation incident on a horizontal surface and partly cloudy (W/) | 194–218 | 1.714 | 218–242 | 34.902 | 242–266 | 29.342 | 266–290 | 14.752 | 290–314 | 2.956 | 314–338 | 2.578 |
Scattered solar radiation in cloudless weather (W/) | 250–274 | 2.314 | 274–298 | 21.710 | 298–322 | 34.410 | 322–346 | 11.420 | 346–370 | 9.788 | 370–394 | 2.364 |
Scattered solar radiation in partly cloudy (W/) | 161–185 | 2.110 | 185–209 | 9.253 | 209–233 | 8.649 | 233–257 | 13.573 | 257–281 | 28.872 | 281–305 | 20.659 |
General solar radiation in cloudless weather (W/) | 806–854 | 6.238 | 854–902 | 21.916 | 902–950 | 37.128 | 950–998 | 11.303 | 998–1046 | 4.653 | 1046–1094 | 1.239 |
General solar radiation in partly cloudy (W/) | 355–403 | 2.904 | 403–451 | 36.674 | 451–499 | 24.490 | 499–547 | 4.896 | 547–595 | 15.766 | 595–643 | 1.541 |
2.3. Market Potential
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- BP Statistical Review of World Energy, 2019, 68th ed. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (accessed on 15 April 2019).
- Smil, V. 21st Century Energy: Some Sobering Thoughts. OECD Obs. 2006. Available online: http://vaclavsmil.com/wp-content/uploads/docs/smil-article-2006-oecd-observer.pdf (accessed on 29 August 2019).
- IEA (2011). Available online: https://www.iea.org/Textbase/npsum/solar2011SUM.pdf (accessed on 1 June 2019).
- ESRTP. European Solar Thermal Technology Platform: “Solar Thermal Vision 2030 Document”. 2006. Available online: http://www.esttp.org (accessed on 15 June 2019).
- Charalambous, P.G.; Maidment, G.G.; Kalogirou, S.A.; Yiakoumetti, K. Photovoltaic thermal (PV/T) collectors: A review. Appl. Therm. Eng. 2007, 27, 275–286. [Google Scholar] [CrossRef] [Green Version]
- ESMAP Reports (2005), Renewable Energy Potential in Selected Countries Volume I: North Africa, Central Europe, and the Former Soviet Union and Volume II: Latin America Final Report. Available online: https://esmap.org/sites/default/files/esmap-files/07005.P044440.Renewable%20Energy%20Potential%20in%20Selected%20Countries%20Volume%20I%20North%20Africa%2C%20Central%20Europe%2C%20and%20the%20Former%20Soviet%20Union%20and%20Volume%20II%20Latin%20America.pdf (accessed on 10 April 2019).
- Juaidi, A.; Montoya, F.G.; Ibrik Imad, H.; Manzano-Agugliaro, F. An overview of renewable energy potential in Palestine. Renew. Sustain. Energy Rev. 2016, 65, 943–960. [Google Scholar] [CrossRef]
- Nassar, Y.F.; Alsadi, S.Y. Assessment of solar energy potential in Gaza Strip-Palestine. Sustain. Energy Technol. Assess. 2019, 31, 318–328. [Google Scholar]
- Alnaser, W.E.; Eliagoubi, B.; Al-Kalak, A.; Trabelsi, H.; Al-Maalej, M.; El-Sayed, H.M.; Alloush, M. First solar radiation atlas for the Arab world. J. Renew. Energy 2004, 29, 1085–1107. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy Technologies: Cost Analysis Series. Volume 1: Power Sector Issue 4/5. 2012. Available online: https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-solar_pv.pdf (accessed on 3 October 2018).
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Energysage. 2019. Available online: https://news.energysage.com/how-much-does-the-average-solar-panel-installation-cost-in-the-u-s/ (accessed on 1 May 2019).
- Dale, V.H.; Efroymson, R.A.; Kline, K.L. The land use-climate change-energy nexus. Landsc. Ecol. 2011, 26, 755–773. [Google Scholar] [CrossRef]
- McCrary, M.D.; McKernan, R.L.; Schreiber, R.L.; Wagner, W.D.; Sciarrotta, T.C. Avian mortality at a solar energy power plant. J. Field Ornithol. 1986, 57, 135–141. [Google Scholar]
- Schreiber, R.K.; Graves, J.H. Power line corridors as possible barriers to the movement of small mammals. Am. Midl. Nat. 1977, 97, 504–508. [Google Scholar] [CrossRef]
- Lopez, A.; Roberts, B.; Heimiller, D.; Blair, N.; Porro, G.U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis; NREL/TP-6A20-51946; NREL: Golden, CO, USA, 2012. Available online: http://www.nrel.gov/docs/fy12osti/51946.pdf (accessed on 12 May 2015).
- Mwanza, M.; Chachak, J.; Çetin, N.S.; Ülgen, K. Assessment of Solar Energy Source Distribution and Potential in Zambia. Period. Eng. Nat. Sci. 2017, 5, 103–116. [Google Scholar] [CrossRef] [Green Version]
- NEA. Nuclear Energy Agency/International Energy Agency/Organization for Economic Cooperation and Development. Projected Costs of Generating Electricity (2005 Update). 2005. Available online: https://www.oecd-nea.org/ndd/pubs/2005/5968-projected-costs.pdf (accessed on 2 September 2019).
- Hu, A.; Levis, S.; Meehl, G.A.; Han, W.; Washington, W.M.; Oleson, K.W.; van Ruijven, B.J.; He, M.; Strand, W.G. Impact of solar panels on global climate. Nature Clim. Chang. 2015. [Google Scholar] [CrossRef]
- PVinsights. 2020. Available online: http://pvinsights.com/RetailerPrice.php (accessed on 27 January 2020).
- SSCAR. State Statistical Committee of Azerbaijan Republic. 2017. Available online: https://www.stat.gov.az/ (accessed on 15 May 2019).
- State Land and Mapping Committee of the Republic of Azerbaijan. Baku Cartography Factory; State Land and Mapping Committee of the Republic of Azerbaijan: Baku, Azerbaijan, 2014; p. 444.
- Gulaliyev, M.G.; Mamedova, G.V. The Functions of Demand and Marginal Costs in the Electricity Sector of Azerbaijan; Vestnik of the Institute of Economics of Russian Academy of Sciences: Moscow, Russia, 2019; Volume 6, pp. 123–139. (in Russian) [Google Scholar]
- Gulaliyev, G.M.; Yuzbashiyeva, G.Z.; Mamedova, G.V.; Abasova, S.T.; Salahov, F.R.; Askerov, R.R. Consumer surplus changing in the transition from state natural monopoly to the competitive market in the electricity sector in the developing countries: Azerbaijan case. Int. J. Energy Econ. Policy 2020, 10, 265–275. [Google Scholar] [CrossRef]
Total Consumption (KWh) | Capacity of a PV Panel (W) | A Mount of Hours of Sunshine (hours) | Technical Potential of PV Panels (KWh) | Requared Number of PV Panels | Total Costs (manat) | Annual Costs for Electricity (manat) | Average Discount | Additional Annual Costs with Discount (manat) | Average Monthly Fee (with discount) (manat) | Average Monthly Fee (without discount) (manat) | |
---|---|---|---|---|---|---|---|---|---|---|---|
115.1–120.0 | 1263 | 250 | 2000 | 500 | 4 | 4054.9 | 88.4 | 12 | 486.6 | 54.1 | 13.5 |
120.1–125.0 | 1316.7 | 250 | 2000 | 500 | 4 | 4178.4 | 92.2 | 12 | 501.4 | 55.7 | 13.9 |
125.1–130.0 | 1370.4 | 250 | 2000 | 500 | 4 | 4301.9 | 95.9 | 12 | 516.2 | 57.4 | 14.3 |
130.1–140.0 | 1451 | 250 | 2000 | 500 | 4 | 4487.3 | 101.6 | 12 | 538.5 | 59.8 | 15.0 |
140.1–150.0 | 1558.5 | 250 | 2000 | 500 | 4 | 4734.6 | 109.1 | 12 | 568.1 | 63.1 | 15.8 |
150.1–160.0 | 1665.9 | 250 | 2000 | 500 | 4 | 4981.6 | 116.6 | 12 | 597.8 | 66.4 | 16.6 |
160.1–180.0 | 1827.1 | 250 | 2000 | 500 | 5 | 5352.3 | 127.9 | 12 | 642.3 | 71.4 | 17.8 |
180.1–200.0 | 2042 | 250 | 2000 | 500 | 5 | 5846.6 | 142.9 | 12 | 701.6 | 78.0 | 19.5 |
200.1 and more | 2417.5 | 250 | 2000 | 500 | 6 | 6710.3 | 169.2 | 12 | 805.2 | 89.5 | 22.4 |
250 and more | 2954.7 | 250 | 2000 | 500 | 7 | 7945.8 | 206.8 | 12 | 953.5 | 105.9 | 26.5 |
300 and more | 4184.6 | 250 | 2000 | 500 | 9 | 10,774.6 | 292.9 | 12 | 1292.9 | 143.7 | 35.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulaliyev, M.G.; Mustafayev, E.R.; Mehdiyeva, G.Y. Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case. Sustainability 2020, 12, 1116. https://doi.org/10.3390/su12031116
Gulaliyev MG, Mustafayev ER, Mehdiyeva GY. Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case. Sustainability. 2020; 12(3):1116. https://doi.org/10.3390/su12031116
Chicago/Turabian StyleGulaliyev, Mayis G., Elchin R. Mustafayev, and Gulsura Y. Mehdiyeva. 2020. "Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case" Sustainability 12, no. 3: 1116. https://doi.org/10.3390/su12031116