Urbanization in Small Cities and Their Significant Implications on Landscape Structures: The Case in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.3. Analysis of Land Use/Cover and Urban Expansion
2.4. Landscape Metrics Analysis
3. Results
3.1. Accuracy Assessment
3.2. Urban Expansion and Its Response to Other Natural Land Cover Patterns
3.3. Magnitude and Rates of Urban Expansion
3.4. Dynamic Change of Landscape Pattern During 1987–2019
3.5. Built-Up Density Analysis
4. Discussion
4.1. Urbanization and Its Influences on the Landscape Compositions
4.2. Urban Landscape Dynamics and Associated Triggers
4.3. Patterns of Urban Spatial Growth
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhatta, B.; Saraswati, S.; Bandyopadhyay, D. Urban Sprawl Measurement from Remote Sensing Data. Appl. Geogr. 2010, 30, 731–740. [Google Scholar] [CrossRef]
- Ewing, R.; Hamidi, S. Compactness versus Sprawl: A Review of Recent Evidence from the United States. J. Plan. Lit. 2015, 30, 413–432. [Google Scholar] [CrossRef]
- Kantakumar, L.N.; Kumar, S.; Schneider, K. Spatiotemporal Urban Expansion in Pune Metropolis, India Using Remote Sensing. Habitat Int. 2016, 51, 11–22. [Google Scholar] [CrossRef]
- Kowalczyka, C.; Kil, J.; Kurowska, K. Dynamics of Development of the Largest Cities—Evidence from Poland. Cities 2019, 89, 26–34. [Google Scholar] [CrossRef]
- Colsaet, A.; Laurans, Y.; Levrel, H. Land Use Policy What Drives Land Take and Urban Land Expansion? A Systematic Review. Land Use Policy 2018, 79, 339–349. [Google Scholar] [CrossRef]
- Mcdonald, R.I.; Weber, K.; Padowski, J.; Flo, M.; Schneider, C.; Green, P.A.; Gleeson, T.; Eckman, S.; Montgomery, M.; Lehner, B.; et al. Water on an Urban Planet: Urbanization and the Reach of Urban Water Infrastructure. Glob. Environ. Chang. 2014, 27, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Ananda, J.; Hampf, B. Measuring Environmentally Sensitive Productivity Growth: An Application to the Urban Water Sector. Ecol. Econ. 2015, 116, 211–219. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A Comparative Study of Urban Expansion in Beijing, Tianjin and Shijiazhuang over the Past Three Decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Peng, J.; Xie, P.; Liu, Y.; Ma, J. Remote Sensing of Environment Urban Thermal Environment Dynamics and Associated Landscape Pattern Factors: A Case Study in the Beijing Metropolitan Region. Remote Sens. Environ. 2016, 173, 145–155. [Google Scholar] [CrossRef]
- Cao, H.; Liu, J.; Chen, J.; Gao, J.; Zhang, W.; Wang, G.; Zhang, W. Spatiotemporal Patterns of Urban Land Use Change in Typical Cities in the Greater Mekong. Remote Sens. 2019, 11, 801. [Google Scholar] [CrossRef] [Green Version]
- Magidi, J.; Ahmed, F. The Egyptian Journal of Remote Sensing and Space Sciences Assessing Urban Sprawl Using Remote Sensing and Landscape Metrics: A Case Study of City of Tshwane, South Africa (1984–2015). Egypt. J. Remote Sens. Sp. Sci. 2018. [Google Scholar] [CrossRef]
- Liu, D.; Chen, N.; Zhang, X.; Wang, C.; Du, W. Annual Large-Scale Urban Land Mapping Based on Landsat Time Series in Google Earth Engine and OpenStreetMap Data: A Case Study in the Middle Yangtze River Basin. ISPRS J. Photogramm. Remote Sens. 2020, 159, 337–351. [Google Scholar] [CrossRef]
- Akbar, T.A.; Hassan, Q.K.; Ishaq, S.; Batool, M.; Butt, H.J. Investigative Spatial Distribution and Modelling of Existing and Future Urban Land Changes and Its Impact on Urbanization and Economy. Remote Sens. 2019, 11, 105. [Google Scholar] [CrossRef] [Green Version]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A Comparative Analysis of Megacity Expansions in China and the U.S.: Patterns Rates and Driving Forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Terfa, B.K.; Chen, N.; Liu, D.; Zhang, X.; Niyogi, D. Urban Expansion in Ethiopia from 1987 to 2017: Characteristics, Spatial Patterns, and Driving Forces. Sustainability 2019, 11, 2973. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Zhao, S. A Comparative Study of Spatiotemporal Patterns of Urban Expansion in Six Major Cities of the Yangtze River Delta from 1980 to 2015. Ecosyst. Heal. Sustain. 2018, 4, 95–114. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Jain, K. Critical Analysis of Spatial-Temporal Morphological Characteristic of Urban Landscape. Arab. J. Geosci. 2019, 12. [Google Scholar] [CrossRef]
- Dutta, I.; Das, A. Application of Geo-Spatial Indices for Detection of Growth Dynamics and Forms of Expansion in English Bazar Urban Agglomeration, West Bengal. J. Urban Manag. 2019, 8, 288–302. [Google Scholar] [CrossRef]
- Fenta, A.A.; Yasuda, H.; Haregeweyn, N.; Belay, A.S.; Hadush, Z.; Gebremedhin, M.A.; Mekonnen, G. The Dynamics of Urban Expansion and Land Use/Land Cover Changes Using Remote Sensing and Spatial Metrics: The Case of Mekelle City of Northern Ethiopia. Int. J. Remote Sens. 2017, 38, 4107–4129. [Google Scholar] [CrossRef]
- Fahmi, F.Z.; Hudalah, D.; Rahayu, P.; Woltjer, J. Extended Urbanization in Small and Medium-Sized Cities: The Case of Cirebon, Indonesia. Habitat Int. 2014, 42, 1–10. [Google Scholar] [CrossRef]
- Hernández-moreno, Á.; Reyes-paecke, S. The effects of Urban Expansion on Green Infrastructure along an Extended Latitudinal Gradient (23° S–45° S) in Chile over the Last Thirty Years. Land Use Policy 2018, 79, 725–733. [Google Scholar] [CrossRef]
- Felt, C.; Fragkias, M.; Larson, D.; Liao, H.; Lohse, K.A.; Lybecker, D. A Comparative Study of Urban Fragmentation Patterns in Small and Mid-Sized Cities of Idaho. Urban Ecosyst. 2018. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs Population Division. The World’s Cities in 2018—Data Booklet (ST/ESA/ SER.A/417). 2018. Available online: https://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2018_data_booklet.pdf (accessed on 13 January 2019).
- Vanderhaegen, S.; Canters, F. Mapping Urban Form and Function at City Block Level Using Spatial Metrics. Landsc. Urban Plan. 2017, 167, 399–409. [Google Scholar] [CrossRef]
- Xu, G.; Dong, T.; Brandful, P.; Jiao, L.; Sumari, N.S.; Chai, B.; Liu, Y. Urban Expansion and Form Changes across African Cities with a Global Outlook: Spatiotemporal Analysis of Urban Land Densities. J. Clean. Prod. 2019, 224, 802–810. [Google Scholar] [CrossRef]
- Liu, D.; Chen, N. Satellite Monitoring of Urban Land Change in the Middle Yangtze River Basin Urban Agglomeration, China between 2000 and 2016. Remote Sens. 2017, 9, 1086. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Jiao, L.; Xu, G.; Yang, L.; Liu, J. Towards Sustainability? Analyzing Changing Urban Form Patterns in the United States, Europe, and China. Sci. Total Environ. 2019, 671. [Google Scholar] [CrossRef]
- Sapena, M.; Ruiz, L.Á. Analysis of Land Use/Land Cover Spatio-Temporal Metrics and Population Dynamics for Urban Growth Characterization. Comput. Environ. Urban Syst. 2019. [Google Scholar] [CrossRef]
- Viana, C.M.; Oliveira, S.; Oliveira, S.C.; Rocha, J. Land Use/Land Cover Change Detection and Urban Sprawl Analysis. Spat. Model. GIS R Earth Environ. Sci. 2019, 621–651. [Google Scholar] [CrossRef]
- Tian, G.; Jiang, J.; Yang, Z.; Zhang, Y. The Urban Growth, Size Distribution and Spatio-Temporal Dynamic Pattern of the Yangtze River Delta Megalopolitan Region, China. Ecol. Model. 2011, 222, 865–878. [Google Scholar] [CrossRef]
- Nor, A.N.M.; Corstanje, R.; Harris, J.A.; Brewer, T. Impact of Rapid Urban Expansion on Green Space Structure. Ecol. Indic. J. 2017, 81, 274–284. [Google Scholar] [CrossRef]
- Akintunde, J.A.; Adzandeh, E.A.; Fabiyi, O.O. Spatio-Temporal Pattern of Urban Growth in Jos Metropolis, Nigeria. Remote Sens. Appl. Soc. Environ. 2016, 4, 44–54. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W. Optimizing Urban Greenspace Spatial Pattern to Mitigate Urban Heat Island Effects: Extending Understanding from Local to the City Scale. Urban For. Urban Green. 2019, 41, 255–263. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi-Year Comparison of the Effects of Spatial Pattern of Urban Green Spaces on Urban Land Surface Temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Yue, W.; Liu, X.; Zhou, Y.; Liu, Y. Impacts of Urban Configuration on Urban Heat Island: An Empirical Study in China Mega-Cities. Sci. Total Environ. 2019, 671, 1036–1046. [Google Scholar] [CrossRef]
- Grigora, G.; Uri, B. Land Use/Land Cover Changes Dynamics and Their Effects on Surface Urban Heat Island in Bucharest, Romania. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 115–126. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land Use Change, Urbanization, and Change in Landscape Pattern in a Metropolitan Area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Pili, S.; Serra, P.; Salvati, L. Landscape and the City: Agro-Forest Systems, Land Fragmentation and the Ecological Network in Rome, Italy. Urban For. Urban Green. 2019, 41, 230–237. [Google Scholar] [CrossRef]
- Sumari, N.S.; Xu, G.; Ujoh, F.; Korah, P.I.; Ebohon, O.J.; Lyimo, N.N. A Geospatial Approach to Sustainable Urban Planning: Lessons for Morogoro Municipal. Sustainability 2019, 11, 6508. [Google Scholar] [CrossRef] [Green Version]
- Haregeweyna, N.; Fikadub, G.; Atsushi, T.; Tsuboa, M.; Meshesha, D.T. The Dynamics of Urban Expansion and Its Impacts on Land Use/Land Cover Change and Small-Scale Farmers Living near the Urban Fringe: A Case Study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Ministry of Urban Development Housing and Construction (MUDHCo). National Report on Housing on Housing and Sustainable Urban Development. 2014. Available online: https://unhabitat.org/wp-content/uploads/2014/07/Ethiopia-National-Report.pdf (accessed on 13 January 2019).
- Zewdie, M.; Worku, H.; Bantider, A. Temporal Dynamics of the Driving Factors of Urban Landscape Change of Addis Ababa during the Past Three Decades. Environ. Manag. 2018, 61, 132–146. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme (UN-Habitat). The State of Addis Ababa 2017: The Addis Ababa We Want; UN-Habitat: Nirobi, Kenya, 2017; Available online: https://unhabitat.org/books/the-state-of-addis-ababa-2017-the-addis-ababa-we-want (accessed on 16 January 2018).
- Shiferaw, A. Productive Capacity and Economic Growth in Ethiopia. United Nations Department of Economic and Social Affairs; Department of Economic & Social Affairs: New York, NY, USA, 2017; Available online: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/publication/CDP_BP34_April_2017.pdf (accessed on 17 February 2019).
- Kassahun, S.; Tiwari, A. Urban Development in Ethiopia: Challenges and Policy Responses Urban Development in Ethiopia. IUP J. Gov. Public Policy 2012, 7, 59–65. Available online: https://www.academia.edu/22427119/Urban_Development_in_Ethiopia_Challenges_and_Policy_Responses (accessed on 11 March 2019).
- Nigatu, W.; Dick, Ø.B.; Tveite, H. Landscape Mapping to Quantify Degree-of-Freedom, Degree-of-Sprawl, and Degree-of-Goodness of Urban Growth in Hawassa, Ethiopia. Environ. Nat. Resour. Res. 2014, 4, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.; Worku, H. Quantification of the Land Use/Land Cover Dynamics and the Degree of Urban Growth Goodness for Sustainable Urban Land Use Planning in Addis Ababa and the Surrounding Oromia Special Zone. J. Urban Manag. 2018. [Google Scholar] [CrossRef]
- Tadesse, E.; Imana, G. Prospects and Challenges of Urbanization on the Livelihood of Farming Community Surrounding Finfinne. Am. Res. J. Humanit. Soc. Sci. I 2017, 3, 1–15. [Google Scholar]
- Fonseka, H.P.U.; Zhang, H.; Sun, Y.; Su, H.; Lin, H.; Lin, Y. Urbanization and Its Impacts on Land Surface Temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to 2016. Remote Sens. 2019, 11, 957. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Zhao, S.; Zhu, C. The Grain for Green Project Induced Land Cover Change in the Loess Plateau: A Case Study with Ansai County, Shanxi Province, China. Ecol. Indic. 2012, 23, 88–94. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, D.; Zhu, C.; Qu, W.; Zhao, J.; Sun, Y. Rates and Patterns of Urban Expansion in China’s 32 Major Cities over the Past Three Decades. Landsc. Ecol. 2015, 30, 1541–1559. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer Software Program. 2015. Available online: https://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf (accessed on 21 May 2018).
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying Spatiotemporal Patterns of Urbanization: The Case of the Two Fastest Growing Metropolitan Regions in the United States. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the Spatial Configuration of Trees on Urban Heat Mitigation: A Comparative Study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Rempel, R.S.; Kaukinen, D.; Carr, A.P. Patch Analyst and Patch Grid; Centre for Northern Forest Ecosystem Research; Ontario Ministry of Natural Resources: Thunder Bay, ON, Canada, 2012. Available online: http://www.cnfer.on.ca/SEP/patchanalyst/ (accessed on 24 October 2018).
- Zhang, S.; York, A.M.; Boone, C.G.; Shrestha, M. Methodological Advances in the Spatial Analysis of Land Fragmentation. Prof. Geogr. 2013, 65, 512–526. [Google Scholar] [CrossRef]
- Díaz-palacios-sisternes, S.; Ayuga, F.; García, A.I. A Method for Detecting and Describing Land Use Transformations: An Examination of Madrid’s Southern Urban—Rural Gradient between 1990 and 2006. Cities 2014. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, S. Spatiotemporal Dynamics of Urban Expansion in 13 Cities across the Jing-Jin-Ji Urban Agglomeration from 1978 to 2015. Ecol. Indic. 2018, 87, 302–313. [Google Scholar] [CrossRef]
- Sahana, M.; Hong, H.; Sajjad, H. Analyzing Urban Spatial Patterns and Trend of Urban Growth Using Urban Sprawl Matrix: A Study on Kolkata Urban Agglomeration, India. Sci. Total Environ. 2018, 628–629, 1557–1566. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L. Urban Land Density Function: A New Method to Characterize Urban Expansion. Landsc. Urban Plan. 2015, 139, 26–39. [Google Scholar] [CrossRef]
- Enaruvbe, G.O.; Atafo, O.P. Land Cover Transition and Fragmentation of River Ogba Catchment in Benin City, Nigeria. Sustain. Cities Soc. 2018, 45, 70–78. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Palmas-perez, S.; Dobbs, C.; Gezan, S.; Hernandez, J. Spatio-Temporal Changes in Structure for a Mediterranean Urban Forest: Santiago, Chile 2002 to 2014. Forests 2016, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Nitschke, C.; Kendal, D. Assessing the Drivers Shaping Global Patterns of Urban Vegetation Landscape Structure. Sci. Total Environ. 2017, 592, 171–177. [Google Scholar] [CrossRef]
- Anees, M.M.; Shafa, S.; Joshi, P.K. Characterizing Urban Area Dynamics in Historic City of Kurukshetra, India, Using Remote Sensing and Spatial Metric Tools. Geocarto Int. 2018, 34, 1584–1607. [Google Scholar] [CrossRef]
- Girma, Y.; Terefe, H.; Pauleit, S.; Kindu, M. Urban Green Infrastructure Planning in Ethiopia: The Case of Emerging Towns of Oromia Special Zone Surrounding Finfinne. J. Urban Manag. 2019, 8, 75–88. [Google Scholar] [CrossRef]
Town | Latitude - Longitude | Population (2017)a | Elevation (m.a.s.l.b) | Mean-Temperature (°C)c |
---|---|---|---|---|
Burayu | 9°01’00’’- 9°06’00’’N, 38°35’30’’- 38°42’00’’ E | 92,331 | 2712 | 14.7 |
Sululta | 9°06’00’’- 9°12’00’’N, 38°42’00’’- 38°47’00’’E | 55,358 | 2730 | 15 |
Lege-Tafo | 9°01’30" - 9°07’30"N, 38°51’00’’- 38°57’00’’E | 27,636 | 2453 | 15.6 |
Sebeta | 8°52’30’’- 8°59’30’’N, 38°34’00’’- 38°42’30’’E | 167,127 | 2346 | 17 |
Gelan | 8°47’30’’- 8°53’00’’N, 38°47’00’’- 38°53’00’’E | 59,817 | 2215 | 18.5 |
Dukem | 8°45’30’’- 8°50’30’’N, 38°51’30’’- 38°56’00’’E | 40,180 | 2059 | 19.5 |
LULC Classes | Description |
---|---|
Urban/built-up areas: | Residential, commercial, industrial, transportation, services, communication, and utilities. |
Agricultural areas: | Cropland, horticultural farms, irrigation farms, and other agronomic regions. |
Vegetation cover: | Land covered by forest patches, woodland, shrubs, scattered trees mixed with grass, and perennial crops. |
Water bodies: | Lakes, rivers, and ponds. |
Grass: | Herbaceous cover with a minor proportion of trees and shrubs, lawns, parks, and grasses mixed with shrubs and scrubs. |
Landscape Metrics | Abbreviation | Unit | Description |
---|---|---|---|
Urban land percentage | UA | % | The proportion of the landscape occupied by urban patch in the buffers |
Number of patches | NP | number | The total number of urban patches in the landscape |
Mean patch size | MPS | ha | Mean urban patch size |
Edge density | ED | m/ha | The total length of all edge segments per hectare urban patches |
Mean nearest neighbor distance | MNN | m | Urban patch edge-to-edge distance |
Class | 1987 | 1999 | 2019 | |||
---|---|---|---|---|---|---|
Producers Accuracy | Users Accuracy | Producers Accuracy | Users Accuracy | Producers Accuracy | Users Accuracy | |
Agricultural land | 86.76 | 77.63 | 79.14 | 84.87 | 82.72 | 88.86 |
Built-up area | 84.51 | 91.60 | 89.39 | 87.41 | 92.44 | 84.18 |
Vegetation | 88.46 | 85.82 | 90.48 | 92.12 | 91.15 | 84.16 |
Water body | 100.00 | 100.00 | 99.23 | 100.00 | 99.50 | 100.00 |
Grassland | 80.00 | 85.50 | 84.13 | 76.81 | 82.80 | 89.87 |
Overall Accuracy | 87.88 | 88.18 | 89.4 | |||
Overall Kappa | 0.85 | 0.85 | 0.88 |
Classes | Burayu | Sebeta | Lege-Tafo | Sululta | Dekem | Gelan | Total Changes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1987 | 1999 | 2019 | 1987 | 1999 | 2019 | 1987 | 1999 | 2019 | 1987 | 1999 | 2019 | 1987 | 1999 | 2019 | 1987 | 1999 | 2019 | 1987–2019 | |
Built-up | 1.25 | 1.88 | 32.34 | 1.66 | 2.45 | 34.50 | 0.09 | 0.14 | 18.88 | 0.21 | 0.29 | 12.06 | 0.39 | 0.42 | 21.38 | 0.13 | 0.24 | 12.20 | 127.63 |
Agriculture | 15.73 | 22.89 | 17.47 | 50.50 | 52.27 | 33.88 | 14.39 | 29.29 | 23.61 | 10.24 | 10.75 | 8.88 | 34.36 | 34.02 | 13.87 | 63.51 | 63.58 | 50.03 | −41.00 |
Vegetation | 41.83 | 34.06 | 21.11 | 17.79 | 16.90 | 10.91 | 4.29 | 3.35 | 1.99 | 13.31 | 9.36 | 6.42 | 0.57 | 1.30 | 0.83 | 3.72 | 3.21 | 3.36 | −36.90 |
Grass | 41.05 | 23.44 | 11.18 | 13.97 | 12.28 | 4.62 | 31.42 | 17.41 | 5.70 | 19.52 | 22.78 | 15.61 | 0.82 | 0.40 | 0.06 | 0.88 | 1.21 | 2.65 | −67.84 |
Water | 1.06 | 1.06 | 1.06 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Total | 83.34 | 83.34 | 83.34 | 103.78 | 103.78 | 103.78 | 50.18 | 50.18 | 50.18 | 62.85 | 62.85 | 62.85 | 36.14 | 36.14 | 36.14 | 68.24 | 68.24 | 68.24 |
Classes | Burayu | Sebeta | Lege-Tafo | Sululta | Dukem | Gelan | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1987–1999 | 1999–2019 | 1987–1999 | 1999–2019 | 1987–1999 | 1999–2019 | 1987–2019 | 1999–2019 | 1987–1999 | 1999–2019 | 1987–1999 | 1999–2019 | 1987–2019 | |
Built-up | 50.5 | 1616.9 | 47.6 | 1306.9 | 59.8 | 13434.8 | 40.3 | 3958.3 | 0.3 | 5390.7 | 90.5 | 2153.7 | 3421.7 |
Agriculture | 45.5 | −23.7 | 3.5 | −35.2 | 103.6 | −19.4 | 5.0 | 17.34 | −2.4 | −58.6 | 0.1 | −20.9 | −21.7 |
Vegetation | −18.6 | −38.0 | −5.0 | −35.4 | −22.0 | −40.6 | −29.7 | −31.4 | 11.3 | −81.4 | −13.7 | 4.5 | −45.3 |
Grass | −42.9 | −52.3 | −12.0 | −62.4 | −44.6 | −67.2 | 16.7 | −31.47 | −4.0 | −42.0 | 36.8 | 120.1 | −63.0 |
Water | 0.0 | 0.0 |
Town | AI(ha/year) | Urban Expansion Rate (AER) ( % per year ) | ||||
---|---|---|---|---|---|---|
1987–1999 | 1999–2019 | 1987–2019 | 1987–1999 | 1999–2019 | 1987–2019 | |
Burayu | 5.27 | 152.30 | 97.15 | 4.20 | 81.01 | 77.73 |
Sebeta | 6.59 | 160.25 | 102.63 | 3.97 | 65.41 | 61.82 |
Lege-Tafo | 0.44 | 93.70 | 58.73 | 4.63 | 669.29 | 652.43 |
Sululta | 0.71 | 58.85 | 37.02 | 3.17 | 202.93 | 176.34 |
Gelan | 0.29 | 104.80 | 65.60 | 0.64 | 249.52 | 168.19 |
Dukem | 0.96 | 59.80 | 37.72 | 7.05 | 249.17 | 290.14 |
Total | 14.26 | 629.70 | 398.85 | 3.78 | 116.18 | 106.93 |
Classes | Burayu | Sebeta | Lege-Tafo | Sululta | Dekem | Gelan |
---|---|---|---|---|---|---|
Built-up | 2487.20 | 1978.31 | 20877.78 | 5642.86 | 9284.62 | 9284.62 |
Agriculture | 11.06 | −32.91 | 64.07 | −13.28 | −21.23 | −21.23 |
Vegetation | −49.53 | −38.67 | −53.61 | −51.77 | −9.68 | −9.68 |
Grass | −72.76 | −66.93 | −81.86 | −20.03 | 201.14 | 201.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terfa, B.K.; Chen, N.; Zhang, X.; Niyogi, D. Urbanization in Small Cities and Their Significant Implications on Landscape Structures: The Case in Ethiopia. Sustainability 2020, 12, 1235. https://doi.org/10.3390/su12031235
Terfa BK, Chen N, Zhang X, Niyogi D. Urbanization in Small Cities and Their Significant Implications on Landscape Structures: The Case in Ethiopia. Sustainability. 2020; 12(3):1235. https://doi.org/10.3390/su12031235
Chicago/Turabian StyleTerfa, Berhanu Keno, Nengcheng Chen, Xiang Zhang, and Dev Niyogi. 2020. "Urbanization in Small Cities and Their Significant Implications on Landscape Structures: The Case in Ethiopia" Sustainability 12, no. 3: 1235. https://doi.org/10.3390/su12031235
APA StyleTerfa, B. K., Chen, N., Zhang, X., & Niyogi, D. (2020). Urbanization in Small Cities and Their Significant Implications on Landscape Structures: The Case in Ethiopia. Sustainability, 12(3), 1235. https://doi.org/10.3390/su12031235