An Efficient Deep Learning Based Model to Predict Interest Rate Using Twitter Sentiment
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Sentiment Analysis of Social Media Tweet for Prediction of CC
3.2. Forecasting Models
WT (ϕ(x)) + b − yi ≤ ξ + ε I ∗
εi , ε i ∗ ≥ 0
3.3. Evaluation Metrics
4. Results and Discussion
4.1. Descriptive Statistics
4.2. Unit Root
4.3. Interest Rate Prediction without Sentiment
4.4. Interest Rate Prediction with the Sentiment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- D’Amico, G.; Petroni, F.; Prattico, F. First and second order semi-Markov chains for wind speed modeling. Phys. A Stat. Mech. Its Appl. 2013, 392, 1194–1201. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, G.; Petroni, F.; Prattico, F. Wind speed and energy forecasting at different time scales: A nonparametric approach. Phys. A Stat. Mech. Its Appl. 2014, 406, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, L., Jr.; Bortoluzzo, A.B.; Venezuela, M.K. Not all that glitters is RMT in the forecasting of risk of portfolios in the Brazilian stock market. Phys. A Stat. Mech. Its Appl. 2014, 410, 94–109. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, Y.; Yu, J.; Lai, X.; Peng, Z. Forecasting VaR and ES of stock index portfolio: A Vine copula method. Phys. A Stat. Mech. Its Appl. 2014, 416, 112–124. [Google Scholar] [CrossRef]
- Lv, X.; Shan, X. Modeling natural gas market volatility using GARCH with different distributions. Phys. A Stat. Mech. Its Appl. 2013, 392, 5685–5699. [Google Scholar] [CrossRef]
- Wei, Y. Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models? Phys. A Stat. Mech. Its Appl. 2012, 391, 5546–5556. [Google Scholar] [CrossRef]
- Pincak, R. The string prediction models as invariants of time series in the forex market. Phys. A Stat. Mech. Its Appl. 2013, 392, 6414–6426. [Google Scholar] [CrossRef] [Green Version]
- Binner, J.M.; Tino, P.; Tepper, J.; Anderson, R.; Jones, B.; Kendall, G. Does money matter in inflation forecasting? Phys. A Stat. Mech. Its Appl. 2010, 389, 4793–4808. [Google Scholar] [CrossRef] [Green Version]
- Jilani, T.A.; Burney, S.M.A. A refined fuzzy time series model for stock market forecasting. Phys. A Stat. Mech. Its Appl. 2008, 387, 2857–2862. [Google Scholar] [CrossRef]
- Yamamura, M.; Shoji, I. A nonparametric method of multi-step ahead forecasting in diffusion processes. Phys. A Stat. Mech. Its Appl. 2010, 389, 2408–2415. [Google Scholar] [CrossRef]
- Vasicek, O. An equilibrium characterization of the term structure. J. Financ. Econ. 1977, 5, 177–188. [Google Scholar] [CrossRef]
- Black, F.; Karasinski, P. Bond and option pricing when short rates are lognormal. Financ. Anal. J. 1991, 47, 52–59. [Google Scholar] [CrossRef]
- Dotsey, M. Monetary policy, secrecy, and federal funds rate behavior. J. Monet. Econ. 1987, 20, 463–474. [Google Scholar] [CrossRef] [Green Version]
- Holston, K.; Laubach, T.; Williams, J.C. Measuring the natural rate of interest: International trends and determinants. J. Int. Econ. 2017, 108, S59–S75. [Google Scholar] [CrossRef]
- Streit, R.E.; Borenstein, D. Design and development of a fuzzy agent-based model to measure interest rate expectations. Expert Syst. Appl. 2012, 39, 7391–7402. [Google Scholar] [CrossRef]
- Hong, T.; Han, I. Knowledge-based data mining of news information on the Internet using cognitive maps and neural networks. Expert Syst. Appl. 2002, 23, 1–8. [Google Scholar] [CrossRef]
- Chevalier, J.A.; Mayzlin, D. The effect of word of mouth on sales: Online book reviews. J. Mark. Res. 2006, 43, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Lugmayr, A.; Gossen, G. Evaluation of Methods and Techniques for Language Based Sentiment Analysis for DAX 30 Stock Exchange A First Concept of a †œLUGO†Sentiment Indicator. International SERIES on Information Systems and Management in Creative eMedia (CreMedia) [S.l.], n. 2012/1. August 2013, pp. 69–76. Available online: http://www.ambientmediaassociation.org/Journal/index.php/series/article/view/193 (accessed on 21 February 2020).
- Luo, X.; Zhang, J.; Duan, W. Social media and firm equity value. Inf. Syst. Res. 2013, 24, 146–163. [Google Scholar] [CrossRef] [Green Version]
- Tirunillai, S.; Tellis, G.J. Does chatter really matter? Dynamics of user-generated content and stock performance. Mark. Sci. 2012, 31, 198–215. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.F.A.L.; Claire, Y.C.; Tang, Z. CEO Social Media Presence and Insider Trading Behavior. Available online: https://ssrn.com/abstract (accessed on 15 December 2019).
- Maqsood, H.; Mehmood, I.; Maqsood, M.; Yasir, M.; Afzal, S.; Aadil, F.; Selim, M.M.; Muhammad, K. A local and global event sentiment based efficient stock exchange forecasting using deep learning. Int. J. Inf. Manag. 2020, 50, 432–451. [Google Scholar] [CrossRef]
- Yasir, M.; Durrani, M.Y.; Afzal, S.; Maqsood, M.; Aadil, F.; Mehmood, I.; Rho, S. An intelligent event-sentiment-based daily foreign exchange rate forecasting system. Appl. Sci. 2019, 9, 2980. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.C.; Karolyi, G.A.; Longstaff, F.A.; Sanders, A.B. An empirical comparison of alternative models of the short-term interest rate. J. Financ. 1992, 47, 1209–1227. [Google Scholar] [CrossRef]
- Cox, J.C.; Ingersoll, J.E., Jr.; Ross, S.A. A theory of the term structure of interest rates. In Theory of Valuation; World Scientific: Singapore, 2005; pp. 129–164. [Google Scholar]
- Hamilton, J.D. Rational-expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates. J. Econ. Dyn. Control 1988, 12, 385–423. [Google Scholar] [CrossRef]
- Das, S.R. Mean Rate Shifts and Alternative Models of the Interest Rate: Theory and Evidence; Division of Research, Harvard Business School: Cambridge, MA, USA, 1994. [Google Scholar]
- Naik, V.; Lee, M. The yield curve and bond option prices with discrete shifts in economic regimes (September 1994). Available online: https://ssrn.com/abstract=5684 (accessed on 21 February 2020).
- Pfann, G.A.; Schotman, P.C.; Tschernig, R. Nonlinear interest rate dynamics and implications for the term structure. J. Econom. 1996, 74, 149–176. [Google Scholar] [CrossRef]
- Granger, C.W.; Terasvirta, T. Modelling non-linear economic relationships; Oxford University Press: Oxford, MI, USA, 1993. [Google Scholar]
- Kang, S.Y. An investigation of the use of feedforward neural networks for forecasting. PhD Thesis, Kent State University, Kent, OH, USA, 1992. [Google Scholar]
- Khashei, M.; Hejazi, S.R.; Bijari, M. A new hybrid artificial neural networks and fuzzy regression model for time series forecasting. Fuzzy Sets Syst. 2008, 159, 769–786. [Google Scholar] [CrossRef]
- Estrella, A.; Mishkin, F.S. The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank. Eur. Econ. Rev. 1997, 41, 1375–1401. [Google Scholar] [CrossRef]
- Bernanke, B.S.; Boivin, J.; Eliasz, P. Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. Q. J. Econ. 2005, 120, 387–422. [Google Scholar]
- Ang, A.; Piazzesi, M.; Wei, M. What does the yield curve tell us about GDP growth? J. Econom. 2006, 131, 359–403. [Google Scholar] [CrossRef] [Green Version]
- Diebold, F.X.; Li, C. Forecasting the term structure of government bond yields. J. Econom. 2006, 130, 337–364. [Google Scholar] [CrossRef] [Green Version]
- Estrella, A.; Hardouvelis, G.A. The term structure as a predictor of real economic activity. J. Financ. 1991, 46, 555–576. [Google Scholar] [CrossRef]
- Estrella, A.; Trubin, M. The yield curve as a leading indicator: Some practical issues. Curr. Issues Econ. Financ. 2006, 12, 1–7. [Google Scholar]
- Estrella, A.; Rodrigues, A.P.; Schich, S. How stable is the predictive power of the yield curve? Evidence from Germany and the United States. Rev. Econ. Stat. 2003, 85, 629–644. [Google Scholar] [CrossRef] [Green Version]
- McCulloch, J.H. Measuring the term structure of interest rates. J. Bus. 1971, 44, 19–31. [Google Scholar] [CrossRef]
- Nelson, C.R.; Siegel, A.F. Parsimonious modeling of yield curves. J. Bus. 1987, 473–489. [Google Scholar] [CrossRef]
- Svensson, L.E. Estimating and Interpreting forward Interest Rates: Sweden 1992–1994; National Bureau of Economic Research: Cambridge, MA, USA, 1994; pp. 898–2937. [Google Scholar]
- Cox, J.C.; Ingersol, J.; Ross, R. An equilibrium characterization theory of the term structure. Econometrica 1985, 53, 385–407. [Google Scholar] [CrossRef]
- Ho, T.; Lee, S. Term structure movements and pricing of interest rate claims. J. Fi-Nance 1986, 41, 1011–1029. [Google Scholar] [CrossRef]
- Hull, J.; White, A. Pricing interest-rate-derivative securities. Rev. Financ. Stud. 1990, 3, 573–592. [Google Scholar] [CrossRef]
- Jacovides, A. Forecasting Interest Rates from the Term Structure: Support Vector Machines Vs Neural Networks. MSc Thesis, University of Nottingham, Nottingham, UK, 2008. [Google Scholar]
- Kim, S.H.; Noh, H.J. Predictability of interest rates using data mining tools: A comparative analysis of Korea and the US. Expert Syst. Appl. 1997, 13, 85–95. [Google Scholar] [CrossRef]
- Oh, K.J.; Han, I. Using change-point detection to support artificial neural networks for interest rates forecasting. Expert Syst. Appl. 2000, 19, 105–115. [Google Scholar] [CrossRef]
- Vela, D. Forecasting Latin-American yield curves: An artificial neural network approach; Banco de la República Colombia: Bogotá, Colombia, 2013. [Google Scholar]
- Zimmermann, H.-G.; Tietz, C.; Grothmann, R. Yield curve forecasting by error correction neural networks and partial learning. In Proceedings of the ESANN, Bruges, Belgium, 24–26 April 2002; pp. 407–412. [Google Scholar]
- Enke, D.; Thawornwong, S. The use of data mining and neural networks for forecasting stock market returns. Expert Syst. Appl. 2005, 29, 927–940. [Google Scholar] [CrossRef]
- Zubiaga, A. A longitudinal assessment of the persistence of twitter datasets. J. Assoc. Inf. Sci. Technol. 2018, 69, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.G.; Huang, R.D. Following the pied piper: Do individual returns herd around the market? Financ. Anal. J. 1995, 51, 31–37. [Google Scholar] [CrossRef]
- Sousa, J.C.; Jorge, H.M.; Neves, L.P. Short-term load forecasting based on support vector regression and load profiling. Int. J. Energy Res. 2014, 38, 350–362. [Google Scholar] [CrossRef]
- Nazir, F.; Majeed, M.N.; Ghazanfar, M.A.; Maqsood, M. Mispronunciation Detection Using Deep Convolutional Neural Network Features and Transfer Learning-Based Model for Arabic Phonemes. IEEE Access 2019, 7, 52589–52608. [Google Scholar] [CrossRef]
- Balcilar, M.; Demirer, R.; Ulussever, T. Does speculation in the oil market drive investor herding in net exporting nations? 2016, pp. 2–34. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2756997 (accessed on 21 February 2020).
- Economou, F.; Kostakis, A.; Philippas, N. Cross-country effects in herding behaviour: Evidence from four south European markets. J. Int. Financ. Mark. Inst. Money 2011, 21, 443–460. [Google Scholar] [CrossRef]
Countries | Variables | Range of Data | |
---|---|---|---|
Start | End | ||
UK, Turkey, Mexico, China, Hong Kong | Interest rate | 1 January 2010 | 23 October 2019 |
Exchange rate | 1 January 2010 | 23 October 2019 |
Events | Number of Tweets | Events | Number of Tweets |
---|---|---|---|
Gaza under Attack (2014) | 2,886,322 | Mexican Election 2012 | 191,788 |
Brexit (2016) | 1,826,290 | US Election 2012 | 1,740,258 |
Hong Kong Protest (2014) | 1,188,372 | Refugees Welcome 2015 | 1,743,153 |
China | Hong Kong | Mexico | Turkey | UK | |
---|---|---|---|---|---|
Mean | 5.192 | 0.961 | 4.962 | 8.925 | 0.499 |
Median | 5.310 | 0.500 | 4.500 | 7.500 | 0.500 |
Std. Dev | 0.834 | 0.739 | 1.698 | 5.349 | 0.125 |
JB | 309.467 *** | 860.188 *** | 304.860 *** | 2739.973 *** | 108.597*** |
Pro | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Obs | 2733 | 2559 | 2548 | 2486 | 2558 |
Country | ADF Test Stat | Critical Value (5%) | ||
---|---|---|---|---|
Level | 1st Difference | |||
China | Interest Rate | −0.118 | −50.341 *** | −2.863 |
Exchange Rate | −1.798 | −12.635 *** | −2.863 | |
Hong Kong | Interest Rate | −0.624 | −50.635 *** | −2.863 |
Exchange Rate | −2.056 | −9.687 *** | −2.863 | |
Turkey | Interest Rate | −0.849 | −31.252 *** | −2.863 |
Exchange Rate | −1.568 | −4.552 *** | −2.863 | |
Mexico | Interest Rate | −0.836 | −50.512 *** | −2.863 |
Exchange Rate | −0.368 | −24.369 *** | −2.863 | |
UK | Interest Rate | −1.151 | −50.524 *** | −2.863 |
Exchange Rate | −1.765 | −14.256 *** | −2.863 |
Without Sentiment | Absolute Error (AE) | Root Mean Squared Error (RMSE) | ||||
---|---|---|---|---|---|---|
Countries | Linear Regression | Support Vector Regression | Deep Learning | Linear Regression | Support Vector Regression | Deep Learning |
China | 0.420 +/− 0.430 | 0.236 +/− 0.167 | 0.092 +/− 0.102 | 0.601 +/− 0.000 | 0.289 +/− 0.000 | 0.137 +/− 0.000 |
Hong Kong | 0.029 +/− 0.058 | 0.020 +/− 0.064 | 0.006 +/− 0.021 | 0.064 +/− 0.000 | 0.067 +/− 0.000 | 0.022 +/− 0.000 |
Mexico | 0.424 +/− 0.248 | 0.257 +/− 0.207 | 0.149 +/− 0.069 | 0.491 +/− 0.000 | 0.330 +/− 0.000 | 0.165 +/− 0.000 |
Turkey | 0.975 +/− 0.864 | 0.973 +/− 0.874 | 0.479 +/− 0.406 | 1.303 +/− 0.000 | 1.307 +/− 0.000 | 0.628 +/− 0.000 |
UK | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
With Sentiment | Absolute Error (AE) | Root Mean Squared Error (RMSE) | ||||
---|---|---|---|---|---|---|
Turkey | Linear Regression | Support Vector Regression | Deep Learning | Linear Regression | Support Vector Regression | Deep Learning |
Brexit | 0.975 +/− 0.864 | 0.972 +/− 0.876 | 0.467 +/− 0.441 | 1.303 +/− 0.000 | 1.308 +/− 0.000 | 0.642 +/− 0.000 |
Ghaza Attack | 0.990 +/− 1.075 | 0.776 +/− 1.479 | 1.236 +/− 0.914 | 1.462 +/− 0.000 | 1.670 +/− 0.000 | 1.537 +/− 0.000 |
Hong Kong Protest | 1.043 +/− 0.837 | 0.766 +/− 1.328 | 0.361 +/− 0.423 | 1.338 +/− 0.000 | 1.533 +/− 0.000 | 0.556 +/− 0.000 |
Mexican Election | 0.186 +/− 0.150 | 0.175 +/− 0.167 | 0.111 +/− 0.102 | 0.239 +/− 0.000 | 0.242 +/− 0.000 | 0.151 +/− 0.000 |
Refugee Welcome | 1.035 +/− 0.853 | 1.013 +/− 0.858 | 0.233 +/− 0.340 | 1.342 +/− 0.000 | 1.328 +/− 0.000 | 0.412 +/− 0.000 |
US Election | 0.143 +/− 0.138 | 0.141 +/− 0.160 | 0.039 +/− 0.053 | 0.199 +/− 0.000 | 0.213 +/− 0.000 | 0.066 +/− 0.000 |
With Sentiment | Absolute Error (AE) | Root Mean Squared Error (RMSE) | ||||
---|---|---|---|---|---|---|
China | Linear Regression | Support Vector Regression | Deep Learning | Linear Regression | Support Vector Regression | Deep Learning |
Brexit | 0.385 +/− 0.409 | 0.235 +/− 0.159 | 0.098 +/− 0.098 | 0.562 +/− 0.000 | 0.284 +/− 0.000 | 0.139 +/− 0.000 |
Ghaza Attack | 0.305 +/− 0.166 | 0.256 +/− 0.207 | 0.050 +/− 0.049 | 0.348 +/− 0.000 | 0.330 +/− 0.000 | 0.070 +/− 0.000 |
Hong Kong Protest | 0.302 +/− 0.173 | 0.256 +/− 0.256 | 0.072 +/− 0.048 | 0.348 +/− 0.000 | 0.362 +/− 0.000 | 0.087 +/− 0.000 |
Mexican Election | 0.117 +/− 0.084 | 0.104 +/− 0.091 | 0.052 +/− 0.053 | 0.144 +/− 0.000 | 0.138 +/− 0.000 | 0.075 +/− 0.000 |
Refugee Welcome | 0.327 +/− 0.311 | 0.405 +/− 0.433 | 0.156 +/− 0.185 | 0.451 +/− 0.000 | 0.593 +/− 0.000 | 0.242 +/− 0.000 |
US Election | 0.180 +/− 0.156 | 0.138 +/− 0.128 | 0.066 +/− 0.056 | 0.238 +/− 0.000 | 0.189 +/− 0.000 | 0.086 +/− 0.000 |
With Sentiment | Absolute Error (AE) | Root Mean Squared Error (RMSE) | ||||
---|---|---|---|---|---|---|
UK | Linear Regression | Support Vector Regression | Deep Learning | Linear Regression | Support Vector Regression | Deep Learning |
Brexit | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
Ghaza Attack | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
Hong Kong Protest | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
Mexican Election | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
Refugee Welcome | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
US Election | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.002 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
With Sentiment | Absolute Error (AE) | Root Mean Squared Error (RMSE) | ||||
---|---|---|---|---|---|---|
Mexico | Linear Regression | Support Vector Regression | Deep Learning | Linear Regression | Support Vector Regression | Deep Learning |
Brexit | 0.394 +/− 0.259 | 0.231 +/− 0.171 | 0.082 +/− 0.072 | 0.471 +/− 0.000 | 0.287 +/− 0.000 | 0.109 +/− 0.000 |
Ghaza Attack | 0.332 +/− 0.225 | 0.202 +/− 0.156 | 0.054 +/− 0.070 | 0.401 +/− 0.000 | 0.255 +/− 0.000 | 0.088 +/− 0.000 |
Hong Kong Protest | 0.383 +/− 0.254 | 0.220 +/− 0.181 | 0.040 +/− 0.056 | 0.460 +/− 0.000 | 0.285 +/− 0.000 | 0.069 +/− 0.000 |
Mexican Election | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
Refugee Welcome | 0.405 +/− 0.265 | 0.226 +/− 0.198 | 0.052 +/− 0.068 | 0.484 +/− 0.000 | 0.300 +/− 0.000 | 0.086 +/− 0.000 |
US Election | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.002 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
With Sentiment | Absolute Error (AE) | Root Mean Squared Error (RMSE) | ||||
---|---|---|---|---|---|---|
Hong Kong | Linear Regression | Support Vector Regression | Deep Learning | Linear Regression | Support Vector Regression | Deep Learning |
Brexit | 0.016 +/− 0.046 | 0.013 +/− 0.048 | 0.007 +/− 0.023 | 0.049 +/− 0.000 | 0.050 +/− 0.000 | 0.024 +/− 0.000 |
Ghaza Attack | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
Hong Kong Protest | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
Mexican Election | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
Refugee Welcome | 0.003 +/− 0.001 | 0.003 +/− 0.001 | 0.003 +/− 0.002 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.004 +/− 0.000 |
US Election | 0.002 +/− 0.001 | 0.002 +/− 0.001 | 0.003 +/− 0.001 | 0.003 +/− 0.000 | 0.003 +/− 0.000 | 0.003 +/− 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasir, M.; Afzal, S.; Latif, K.; Chaudhary, G.M.; Malik, N.Y.; Shahzad, F.; Song, O.-y. An Efficient Deep Learning Based Model to Predict Interest Rate Using Twitter Sentiment. Sustainability 2020, 12, 1660. https://doi.org/10.3390/su12041660
Yasir M, Afzal S, Latif K, Chaudhary GM, Malik NY, Shahzad F, Song O-y. An Efficient Deep Learning Based Model to Predict Interest Rate Using Twitter Sentiment. Sustainability. 2020; 12(4):1660. https://doi.org/10.3390/su12041660
Chicago/Turabian StyleYasir, Muhammad, Sitara Afzal, Khalid Latif, Ghulam Mujtaba Chaudhary, Nazish Yameen Malik, Farhan Shahzad, and Oh-young Song. 2020. "An Efficient Deep Learning Based Model to Predict Interest Rate Using Twitter Sentiment" Sustainability 12, no. 4: 1660. https://doi.org/10.3390/su12041660
APA StyleYasir, M., Afzal, S., Latif, K., Chaudhary, G. M., Malik, N. Y., Shahzad, F., & Song, O. -y. (2020). An Efficient Deep Learning Based Model to Predict Interest Rate Using Twitter Sentiment. Sustainability, 12(4), 1660. https://doi.org/10.3390/su12041660