Temporal–Spatial Distribution of Ecosystem Health and Its Response to Human Interference Based on Different Terrain Gradients: A Case Study in Gannan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Terrain Gradient Classification
2.3.2. Geo-information Tupu Change Analysis
2.3.3. LCDM Model
2.3.4. Ecosystem Health Assessment
2.3.5. Human Interference Assessment
2.3.6. Spatial Correlation Analysis between Ecosystem Health and Human Interference
3. Results
3.1. Temporal–Spatial Variation of Land Use Based on Terrain Gradient
3.2. Assessment of Ecosystem Health
3.3. Ecosystem Health Heterogeneity by Hot Spots Mapping
3.4. The Spatial Distribution of Human Interference in Different Terrain Gradient
3.5. Spatial Correlation Between ESH and Human Interference in Gannan
4. Discussion
4.1. Temporal–Spatial Relationship Between ESH and HI
4.2. Spatial Relationship Between ESH and Urbanization for Ecosystem Management
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Yanxu, L. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Zhou, M. Vulnerability of ecosystem services provisioning to urbanization: A case of China. Ecol. Indic. 2015, 57, 505–513. [Google Scholar] [CrossRef]
- Manuel-Navarrete, D.; Gómez, J.J.; Gallopín, G. Syndromes of sustainability of development for assessing the vulnerability of coupled human–environmental systems. The case of hydrometeorological disasters in Central America and the Caribbean. Glob. Environ. Chang. 2007, 17, 207–217. [Google Scholar] [CrossRef]
- Su, M.; Fath, B.D.; Yang, Z. Urban ecosystem health assessment: A review. Sci. Total Environ. 2010, 408, 2425–2434. [Google Scholar] [CrossRef]
- Zeng, C.; Deng, X.; Xu, S. An integrated approach for assessing the urban ecosystem health of megacities in China. Cities 2016, 53, 110–119. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Kuhlmann, H. Life cycle impact assessment of land use based on the hemeroby concept. Int. J. Life Cycle Assess. 2002, 7, 339–348. [Google Scholar]
- Fehrenbach, H.; Grahl, B.; Giegrich, J.; Busch, M. Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. Int. J. Life Cycle Assess. 2015, 20, 1511–1527. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Z. Quantitative assessment of human-induced impacts based on net primary productivity in Guangzhou, China. Environ. Sci. Pollut. Res. Int. 2018, 25, 11384. [Google Scholar] [CrossRef]
- Fang, C.L.; Liu, H.M.; Li, G.D. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment. J. Geogr. Sci. 2016, 26, 1081–1116. [Google Scholar] [CrossRef]
- Liu, Y.B.; Li, R.D.; Song, X.F. Correlation analysis between regional urbanization and ecological environment coupling in China. Acta Geogr. Sin. 2005, 2, 237–247. [Google Scholar]
- Chen, J. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Rapport, D.J. What constitutes ecosystem health? Perspect. Biol. Med. 1989, 33, 120–132. [Google Scholar] [CrossRef]
- Rapport, D.J. Eco-cultural health, global health, and sustainability. Ecol. Res. 2011, 26, 1039–1049. [Google Scholar] [CrossRef]
- Kim, Y.O.; Xu, F.L. Marine ecosystem health assessments in Korean coastal waters. Ocean Sci. J. 2014, 49, 249–250. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Xu, Z.X.; Zhan, C.S.; Yin, X.W.; Yu, S.Y. A new framework to evaluate ecosystem health: A case study in the Wei River basin, China. Environ. Monit. Assess. 2015, 187, 460. [Google Scholar] [CrossRef]
- Wang, X.B.; Liu, W.N.; Wu, W.L. A holistic approach to the development of sustainable agriculture: Application of the ecosystem health model. Int. J. Sustain. Dev. World 2009, 16, 339–345. [Google Scholar] [CrossRef]
- Styers, D.M.; Chappelka, A.H.; Marzen, L.J.; Somers, G.L. Developing a land-cover classification to select indicators of forest ecosystem health in a rapidly urbanizing landscape. Landsc. Urban Plan. 2010, 94, 158–165. [Google Scholar] [CrossRef]
- He, J.; Pan, Z.; Liu, D.; Guo, X. Exploring the regional differences of ecosystem health and its driving factors in China. Sci. Total Environ. 2019, 673, 553–564. [Google Scholar] [CrossRef]
- Meng, Z.Q.; Long, L.B.; She, Q.N.; Cheng, D.Y.; Liu, M. Assessment of ecological conditions over China’s coastal areas based on land use/cover change. J. Appl. Ecol. 2018, 29, 3337–3346. [Google Scholar]
- Sun, T.; Lin, W.; Chen, G.; Guo, P.; Zeng, Y. Wetland ecosystem health assessment through integrating remote sensing and inventory data with an assessment model for the Hangzhou Bay, China. Sci. Total Environ. 2018, 566, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Wu, J.; Yong, S.; Yang, J.; Yong, W. A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J. Arid Environ. 2004, 59, 133–149. [Google Scholar] [CrossRef]
- Wang, D.G.; Hu, B.Q.; Rao, Y.X.; Li, W.H. Research on functional zoning of karst land system at county regional scale based on the methods of lattice and ANN. Res. Soil Water Conserv. 2012, 19, 131–136. [Google Scholar]
- Gong, W.; Wang, H.; Wang, X.; Fan, W.; Stott, P. Effect of terrain on landscape patterns and ecological effects by a gradient-based RS and GIS analysis. J. For. Res. 2017, 28, 1061–1072. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Year Book Cartogr. 1967, 7, 186–190. [Google Scholar]
- Wang, Z.M.; Zhang, B.; Zhang, S.Q. Estimates of loss in ecosystem service values of Songnen Plain from 1980 to 2000. J. Geogr. Sci. 2005, 15, 82–88. [Google Scholar] [CrossRef]
- Ye, Q.H.; Liu, G.H.; Lu, Z.; Gong, Z.H. Research of TUPU on land use/land cover change based on GIS. Prog. Geogr. 2002, 21, 349–357. [Google Scholar]
- Wang, J.L.; Shao, J.A.; Li, Y.B. Geo-spectrum based analysis of crop and forest land use change in the recent 20 years in the three gorges reservoir area. J. Nat. Resour. 2015, 30, 235–247. [Google Scholar]
- Lu, X.; Shi, Y.Y.; Huang, X.J.; Sun, X.F.; Miao, Z.W. Geo-spectrum characteristics of land use change in Jiangsu Province, China. Chin. J. Appl. Ecol. 2016, 27, 1077–1084. [Google Scholar]
- Zubaida, M.B.; Xia, J.X.; Polat, M.; Shi, Q.D.; Zhang, R. Spatiotemporal changes of land use/cover from 1995 to 2015 in an oasis in the middle reaches of the Keriya River, southern Tarim Basin, Northwest China. Catena 2018, 171, 416–425. [Google Scholar]
- Tayfun, T.; Mevlut, U. Evaluation of reallocation criteria in land consolidation studies using the analytic hierarchy process (AHP). Land Use Policy 2013, 30, 541–548. [Google Scholar]
- Costanza, R.; Norton, B.G.; Haskell, B.D. Ecosystem Health: New Goals for Environmental Management; Island Press: Washington, DC, USA, 1992. [Google Scholar]
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hao, S. Ecosystem health assessment county-scale using the pressure-state-response framework on the loess plateau, China. Int. J. Environ. Res. Public Health 2016, 14, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, L.B.; Hansen, A.J.; Flather, C.H. Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production. Remote Sens. Environ. 2008, 112, 3538–3549. [Google Scholar] [CrossRef]
- Cui, E.; Ren, L.; Sun, H. Evaluation of variations and affecting factors of eco-environmental quality during urbanization. Environ. Sci. Pollut. Res. Int. 2015, 22, 3958. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Liu, Y.; Fei, X.; Yu, W.; Zhang, Z.; Meng, Q. Ecosystem health assessment: A comprehensive and detailed analysis of the case study in coastal metropolitan region, Eastern China. Ecol. Indic. 2019, 98, 363–376. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem health and ecological engineering. Ecol. Eng. 2012, 45, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Chen, A.; Zhu, B.; Chen, L.; Wu, Y.; Sun, R. Dynamic changes of landscape pattern and eco-disturbance degree in Shuangtai estuary wet land of Liaoning Province, China. Chin. J. Appl. Ecol. 2010, 21, 1120–1128. [Google Scholar]
- Anselin, L. Local indicators of spatial analysis—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Amaral, P.V.; Anselin, L. Finite sample properties of Moran’s—Test for spatial autocorrelation in Tobit models. Pap. Reg. Sci. 2014, 93, 773–781. [Google Scholar] [CrossRef]
- Liang, L.; Chen, F.; Shi, L. NDVI-derived forest area change and its driving factors in China. PLoS ONE 2018, 13, e0205885. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ma, H.; Zhao, Y. Exploring the relationship between urbanization and the eco-environment—A case study of Beijing-Tianjin-Hebei region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.; Simondson, D.; White, M. Integrating conservation planning and land use planning in urban landscapes. Landsc. Urban Plan. 2009, 91, 183–194. [Google Scholar] [CrossRef]
- Wang, J. Environmental costs: Revive china’s green GDP programme. Nature 2016, 534, 37. [Google Scholar] [CrossRef]
Objective | Indicator | Factor | Data Source |
---|---|---|---|
Ecosystem health index (EHI) | Ecosystem vigor (EV) | Vegetation cover index | Land use data of 1990, 1995, 2000, 2005, 2010, and 2015 in Gannan |
Ecosystem organization (EO) | Landscape heterogeneity index | ||
Landscape connectivity index | |||
Patch connectivity index | |||
Ecosystem resilience (ER) | Ecosystem resilience index | ||
Ecosystem service (ES) | Ecosystem service value |
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | |
---|---|---|---|---|---|---|
Cold Spots | 990 | 1146 | 1155 | 1151 | 1148 | 1136 |
Hot Spots | 374 | 339 | 365 | 365 | 363 | 356 |
Not significant | 8648 | 8527 | 8492 | 8496 | 8501 | 8520 |
Total | 10,012 | 10,012 | 10,012 | 10,012 | 10,012 | 10,012 |
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | |
---|---|---|---|---|---|---|
Low | 5900 | 5928 | 5831 | 5821 | 5785 | 5760 |
Relatively Low | 118 | 109 | 118 | 114 | 112 | 120 |
Average | 3185 | 3149 | 3242 | 3251 | 3267 | 3249 |
Relatively High | 459 | 483 | 461 | 458 | 475 | 471 |
High | 350 | 343 | 360 | 368 | 373 | 412 |
Total | 10,012 | 10,012 | 10,012 | 10,012 | 10,012 | 10,012 |
Index | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|---|
I | −0.0278 | −0.2923 | −0.2971 | −0.2986 | −0.3010 | −0.3156 |
P | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Z | −5.4322 | −42.2877 | −42.4991 | −42.7673 | −42.9032 | −44.9600 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Han, R.; Guo, L. Temporal–Spatial Distribution of Ecosystem Health and Its Response to Human Interference Based on Different Terrain Gradients: A Case Study in Gannan, China. Sustainability 2020, 12, 1773. https://doi.org/10.3390/su12051773
Shi Y, Han R, Guo L. Temporal–Spatial Distribution of Ecosystem Health and Its Response to Human Interference Based on Different Terrain Gradients: A Case Study in Gannan, China. Sustainability. 2020; 12(5):1773. https://doi.org/10.3390/su12051773
Chicago/Turabian StyleShi, Yu, Rui Han, and Luo Guo. 2020. "Temporal–Spatial Distribution of Ecosystem Health and Its Response to Human Interference Based on Different Terrain Gradients: A Case Study in Gannan, China" Sustainability 12, no. 5: 1773. https://doi.org/10.3390/su12051773
APA StyleShi, Y., Han, R., & Guo, L. (2020). Temporal–Spatial Distribution of Ecosystem Health and Its Response to Human Interference Based on Different Terrain Gradients: A Case Study in Gannan, China. Sustainability, 12(5), 1773. https://doi.org/10.3390/su12051773