On-Road Bus Emission Comparison for Diverse Locations and Fuel Types in Real-World Operation Conditions
Abstract
:1. Introduction
2. Data and Methods
2.1. T-Test and Mean Distribution Deviation Methods
2.2. Data Collection and Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Ye, Z.; Wang, W.; Jin, M. Traffic-related heavy metal contamination in urban areas and correlation with traffic activity in China. Transp. Res. Rec. J. Transp. Res. Board 2016, 2571, 80–89. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.; Jiang, J.; Zhang, S.; Li, Z.; Zheng, X.; Hao, J. Impacts of load mass on real-world PM1 mass and number emissions from a heavy-duty diesel bus. Int. J. Environ. Sci. Technol. 2015, 12, 1261–1268. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.H.; Hung, W.T.; Cheung, C.S. On-road motor vehicle emissions and fuel consumption in urban driving conditions. J. Air Waste Manag. Assoc. 2000, 50, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Analyzing truck fleets’ acceptance of alternative fuel freight vehicles in China. Renew. Energy 2019, 134, 1148–1155. [Google Scholar] [CrossRef]
- Smieszek, M.; Dobrzanska, M.; Dobrzanski, P. Rzeszow as a city taking steps towards developing sustainable public transport. Sustainability 2019, 11, 402. [Google Scholar] [CrossRef] [Green Version]
- Ahn, K.; Rakha, H.; Trani, A.; van Aerde, M. Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. J. Transp. Eng. 2002, 128, 182–190. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, M.; Wu, J.; Rasouli, S.; Lei, D. Assessing bus transit service from the perspective of elderly passengers in Harbin, China. Int. J. Sustain. Transp. 2019, 13, 761–776. [Google Scholar] [CrossRef]
- Ji, Y.; Ma, X.; Yang, M.; Jin, Y.; Gao, L. Exploring spatially varying influences on metro-bikeshare transfer: A geographically weighted Poisson regression approach. Sustainability 2018, 10, 1526. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Fan, Y.; Ermagun, A.; Cao, X.; Wang, W.; Das, K. Public bicycle as a feeder mode to rail transit in China: The role of gender, age, income, trip purpose, and bicycle theft experience. Int. J. Sustain. Transp. 2017, 11, 308–317. [Google Scholar] [CrossRef]
- Fu, X.; Lam, W.H.K. Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks. Transportation 2018, 45, 23–49. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, J.; Yue, X.; Zhou, J.; Li, Y.; Wan, Q. An auxiliary optimization method for complex public transit route network based on link prediction. Mod. Phys. Lett. B 2018, 32, 1850066. [Google Scholar] [CrossRef]
- Rodrigue, J.P. Urban Mobility. In The Geography of Transport Systems; Routledge Publishing: New York, NY, USA, 2020; ISBN 978-0-367-36463-2. [Google Scholar]
- Li, G. Green Transportation Mode Trend Report. Available online: https://m21jingji.com/article/20180207/b1ec6afcb398d41c846d1a28887ef938.html (accessed on 7 December 2018).
- Updated Comparison of Energy Use & Emissions from Different Transportation Modes. Available online: http://www.trb.org/Main/Blurbs/170644.aspx (accessed on 27 February 2020).
- Bel, G.; Holst, M. Evaluation of the impact of bus rapid transit on air pollution in Mexico City. Transp. Policy 2018, 63, 209–220. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, S.; Qiao, F.; Ukkusuri, S.V.; Tang, K. Estimation of real-driving emissions for buses fueled with liquefied natural gas based on gradient boosted regression trees. Sci. Total Environ. 2019, 660, 741–750. [Google Scholar] [CrossRef]
- Xu, X.; Lv, X.; Han, L. Carbon asset of electrification: Valuing the transition from fossil fuel-powered buses to battery electric buses in Beijing. Sustainability 2019, 11, 2749. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Li, T. Evaluation of bus emissions generated near bus stops. Atmos. Environ. 2014, 85, 195–203. [Google Scholar] [CrossRef]
- Song, G.; Zhou, X.; Yu, L. Delay correction model for estimating bus emissions at signalized intersections based on vehicle specific power distributions. Sci. Total Environ. 2015, 514, 108–118. [Google Scholar] [CrossRef]
- Wang, C.; Ye, Z.; Yu, Y.; Gong, W. Estimation of bus emission models for different fuel types of buses under real conditions. Sci. Total Environ. 2018, 640–641, 965–972. [Google Scholar] [CrossRef]
- Shan, X.; Chen, X.; Jia, W.; Ye, J. Evaluating urban bus emission characteristics based on localized MOVES using sparse GPS data in Shanghai, China. Sustainability 2019, 11, 2936. [Google Scholar] [CrossRef] [Green Version]
- U.S. Electric Bus Market. Available online: https://www.psmarketresearch.com/market-analysis/us-electric-bus-market (accessed on 29 September 2019).
- Green Travel Promotion Month 2019 and Public Transport Travel Promotion Week 2019 Launch Ceremony Held in Tianjin. Available online: http://www.ggj.gov.cn/xwzx/ggjxw/201909/t20190917_28939.html (accessed on 12 February 2020).
- Li, J.; Gupta, S.D.; Zhang, L.; Zhou, K.; Zhang, W. Evaluate bus emissions generated near far-side and near-side stops and potential reduction by ITS: An empirical study. Transp. Res. Part. D 2012, 17, 73–77. [Google Scholar] [CrossRef]
- Moore, A.M.; Figliozzi, M.; Monsere, C.M. Bus stop air quality: An empirical analysis of exposure to particulate matter at bus stop shelters. In Proceedings of the 91st Transportation Research Board Annual Meeting, Washington, DC, USA, 22–26 January 2012. [Google Scholar]
- Lv, J.; Zhang, Y. Effect of signal coordination on traffic emission. Transp. Res. Part. D 2012, 17, 149–153. [Google Scholar] [CrossRef]
- Du, M.; Cheng, L. Better understanding the characteristics and influential factors of different travel patterns in free-floating bike sharing: Evidence from Nanjing, China. Sustainability 2018, 10, 1244. [Google Scholar] [CrossRef] [Green Version]
- López-Martínez, J.M.; Jiménez, F.; Páez-Ayuso, F.J.; Flores-Holgado, M.N.; Arenas, A.N.; Arenas-Ramirez, B.; Aparicio-Izquierdo, F. Modelling the fuel consumption and pollutant emissions of the urban bus fleet of the city of Madrid. Transp. Res. Part. D 2017, 52, 112–127. [Google Scholar] [CrossRef]
- Liu, D.; Lou, D.; Liu, J.; Fang, L.; Huang, W. Evaluating nitrogen oxides and ultrafine particulate matter emission features of urban bus based on real-world driving conditions in the Yangtze River Delta Area, China. Sustainability 2018, 10, 2051. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wu, L.; Yang, Z.; Zou, C.; Liu, X.; Zhang, K.; Mao, H. Characteristics of gaseous and particulate pollutants exhaust from logistics transportation vehicle on real-world conditions. Transp. Res. Part. D 2016, 43, 40–48. [Google Scholar] [CrossRef]
- American Public Transportation Association. More than 35% of Public Transit Buses Use Alternative Fuels or Hybrid Technology Transit News. Available online: http://www.apta.com/mediacenter/pressreleases/2013/Pages/130422_Earth-Day.aspx (accessed on 22 April 2013).
- Bitzan, D.J.; Ripplinger, D.G. Public transit and alternative fuels-The costs associated with using biodiesel and CNG in comparison to diesel for U.S. public transit systems. Transp. Res. Part. A 2016, 94, 17–30. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Ye, Z.; Bi, H. Long short-term memory network-based emission models for conventional and new energy buses. Int. J. Sustain. Transp. 2020. [Google Scholar] [CrossRef]
- Bak, B.D.; Bak, J.S.; Kim, S.Y. Strategies for implementing public service electric bus lines by charging type in Daegu Metropolitan city, South Korea. Sustainability 2018, 10, 3386. [Google Scholar] [CrossRef] [Green Version]
- Dreier, D.; Silveira, S.; Khatiwada, D.; Fonseca, K.V.O.; Nieweglowski, R.; Schepanski, R. Well-to-Wheel analysis of fossil energy use and greenhouse gas emissions for conventional, hybrid-electric and plug-in hybrid-electric city buses in the BRT system in Curitiba, Brazil. Transp. Res. Part. D 2018, 58, 122–138. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y. Technology evaluation and decision making for sustainability enhancement of industrial systems under uncertainty. AIChE J. 2012, 58, 1841–1852. [Google Scholar] [CrossRef]
- Nocera, S.; Galati, O.I.; Cavallaro, F. On the uncertainty in the economic evaluation of carbon emissions from transport. J. Transp. Econ. Policy 2018, 52, 68–94. [Google Scholar]
- Yulianto, A.M.; Simic, D.; Taylor, P. Trivailo. Modelling of full electric and hybrid electric fuel cells buses. Procedia Comput. Sci. 2017, 112, 1916–1925. [Google Scholar] [CrossRef]
- Herrera, I.V.; Milo, A.; Gaztanage, H.; Camblong, H. Multi-objective optimization of energy management and sizing for a hybrid bus with dual energy storage system. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 17–20 October 2016. [Google Scholar]
- Fu, Z.; Sun, Y.; Weng, M.; He, H. Strategic Research on Transportation Power; China Communication Press: Beijing, China, 2019. [Google Scholar]
- Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Gao, J.; Lee, C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Ye, Z.; Wang, X.; Li, W. Effects of speed-control measures on the safety of unsignalized midblock street crossings in China. Traffic Inj. Prev. 2017, 18, 774–779. [Google Scholar] [CrossRef]
- Shahinian, V.D. On-Vehicle Diesel Emission Analyzer: Semtech-DS User Manual: Revision 1.14; Elsevier: Alpharetta, GA, USA, 2007. [Google Scholar]
- Wang, C.; Ye, Z.; Wang, Y.; Xu, Y.; Wang, W. Modeling bus dwell time and time lost serving stop in China. J. Public Transp. 2016, 19, 55–77. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Ye, Z.; Chen, E.; Xu, M.; Wang, W. Diffusion approximation for exploring the correlation between failure rate and bus-stop operation. Transp. A Transp. Sci. 2019, 15, 1306–1320. [Google Scholar] [CrossRef]
- Wang, X.; Abdel-Aty, M.; Nevarez, A.; Santos, B.J. Investigation of safety influence area for four-legged signalized intersections: Nationwide survey and empirical inquiry. Transp. Res. Rec. J. Transp. Res. Board 2008, 2083, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Washington, S.P.; van Schalkwyk, I. Important omitted spatial variables in safety models: Understanding contributing crash causes at intersections. In Proceedings of the 86th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 21–25 January 2007. [Google Scholar]
- Liu, P.; Wu, J.; Zhou, H.; Bao, J. Estimating queue length for contraflow left-turn lane design at signalized intersections. J. Transp. Eng. 2019, 145, 04019020. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, P.; Wu, Y.; Chen, J. Evaluating how right-turn treatments affect right-turn-on-red conflicts at signalized intersections. J. Transp. Saf. Secur. 2018, 2018, 1–22. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Wang, W.; Jiang, H. Evaluating bicycle-vehicle conflicts and delays on urban streets with bike lane and on-street parking. Transp. Lett. Int. J. Transp. Res. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Sampson, P.D.; Richards, M.; Szpiro, A.A.; Bergen, S.; Sheppard, L.; Larson, T.V.; Kaufman, J.D. A regionalized National Universal Kriging Model Using Partial Least Squares Regression for Estimating Annual PM2.5 Concentrations in Epidemiology. Atmos. Environ. 2013, 75, 383–392. [Google Scholar] [CrossRef] [Green Version]
Bus Line | Degree of Roads and Average Traffic Volume | Length of Route | Number of Lanes | Number of Stops | |
---|---|---|---|---|---|
Trunk Road | Branch Road | ||||
No. 1 GEHE bus | 36,053 vehicles per day | 9822 vehicles per day | 12.5 km | Most of road sections, two to three lanes one way | 22 |
No. 51 CNG bus | 32,543 vehicles per day | 8499 vehicles per day | 14.4 km | 28 | |
No. 221 EURO 4 bus | 33,479 vehicles per day | 10,155 vehicles per day | 13.5 km | 27 | |
No. 105 EURO 5 bus | 32,984 vehicles per day | 9607 vehicles per day | 12.6 km | 26 |
Variables | Fuel Type | Sample Size | Maximum | Minimum | Mean | SD |
---|---|---|---|---|---|---|
Speed (m/s) | EURO 4 | 6913 | 16.67 | 0.00 | 4.97 | 4.26 |
EURO 5 | 6177 | 16.94 | 0.00 | 4.55 | 4.32 | |
CNG | 6225 | 15.83 | 0.00 | 4.50 | 3.86 | |
GEHE | 6430 | 15.28 | 0.00 | 4.54 | 3.87 | |
Acceleration (m/s2) | EURO 4 | 6913 | 3.75 | −4.42 | −0.01 | 0.55 |
EURO 5 | 6177 | 4.58 | −2.78 | 0.00 | 0.56 | |
CNG | 6225 | 3.30 | −3.08 | 0.00 | 0.48 | |
GEHE | 6430 | 4.28 | −3.06 | −0.01 | 0.57 | |
CO (g/s) | EURO 4 | 6913 | 3.43 | 0.01 | 0.35 | 0.29 |
EURO 5 | 6177 | 1.41 | 0.01 | 0.15 | 0.09 | |
CNG | 6225 | 1.19 | 0.01 | 0.12 | 0.05 | |
GEHE | 6430 | 1.16 | 0.01 | 0.11 | 0.11 | |
CO2 (g/s) | EURO 4 | 6913 | 31.10 | 0.27 | 11.15 | 7.15 |
EURO 5 | 6177 | 24.00 | 0.20 | 7.33 | 4.25 | |
CNG | 6225 | 29.20 | 0.18 | 15.94 | 2.71 | |
GEHE | 6430 | 24.99 | 0.18 | 4.28 | 5.01 | |
HC (g/s) | EURO 4 | 6913 | 3.17×10−2 | 5.83×10−5 | 1.78×10−3 | 2.14×10−3 |
EURO 5 | 6177 | 1.63×10−2 | 4.15×10−5 | 4.82×10−4 | 7.34×10−4 | |
CNG | 6225 | 5.57×10−2 | 5.32×10−5 | 8.93×10−3 | 7.56×10−3 | |
GEHE | 6430 | 4.79×10−3 | 3.73×10−5 | 5.63×10−4 | 6.44×10−4 | |
NOX (g/s) | EURO 4 | 6913 | 5.43×10−1 | 1.73×10−2 | 2.31×10−1 | 1.48×10−1 |
EURO 5 | 6177 | 4.09×10−1 | 3.02×10−3 | 1.73×10−1 | 6.10×10−2 | |
CNG | 6225 | 1.98×10−1 | 2.28×10−3 | 6.24×10−2 | 4.08×10−2 | |
GEHE | 6430 | 1.32×10−1 | 3.78×10−3 | 3.61×10−2 | 2.79×10−2 |
p-Values | Location | Fuel Type | ||||
---|---|---|---|---|---|---|
Bus Stop vs. Intersection | Bus Stop vs. Road Segment | Intersection vs. Road Segment | CNG vs. GEHE | EURO-IV vs. EURO-V | GEHE/CNG vs. EURO-IV/EURO-V | |
CO | 0.087 | <0.001 | <0.001 | 0.026 | <0.001 | <0.001 |
CO2 | 0.357 | 0.004 | <0.001 | <0.001 | <0.001 | <0.001 |
HC | 0.176 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
NOX | 0.178 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
MDD Values | Location | Fuel Type | ||||
---|---|---|---|---|---|---|
Bus Stop vs. Intersection | Bus Stop vs. Road Segment | Intersection vs. Road Segment | CNG vs. GEHE | EURO-IV vs. EURO-V | GEHE/CNG vs. EURO-IV/EURO-V | |
CO | 0.009 | 0.027 | 0.027 | 0.031 | 0.039 | 0.042 |
CO2 | 0.040 | 0.058 | 0.094 | 0.188 | 0.065 | 0.219 |
HC | 0.010 | 0.020 | 0.024 | 0.074 | 0.091 | 0.070 |
NOX | 0.060 | 0.139 | 0.193 | 0.100 | 0.116 | 0.088 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Sun, Z.; Ye, Z. On-Road Bus Emission Comparison for Diverse Locations and Fuel Types in Real-World Operation Conditions. Sustainability 2020, 12, 1798. https://doi.org/10.3390/su12051798
Wang C, Sun Z, Ye Z. On-Road Bus Emission Comparison for Diverse Locations and Fuel Types in Real-World Operation Conditions. Sustainability. 2020; 12(5):1798. https://doi.org/10.3390/su12051798
Chicago/Turabian StyleWang, Chao, Zhuoqun Sun, and Zhirui Ye. 2020. "On-Road Bus Emission Comparison for Diverse Locations and Fuel Types in Real-World Operation Conditions" Sustainability 12, no. 5: 1798. https://doi.org/10.3390/su12051798
APA StyleWang, C., Sun, Z., & Ye, Z. (2020). On-Road Bus Emission Comparison for Diverse Locations and Fuel Types in Real-World Operation Conditions. Sustainability, 12(5), 1798. https://doi.org/10.3390/su12051798