1. Introduction
The measurement of financial risks is the core of their management, which is essential to achieve the necessary financial security that guarantees the sustainability of the enterprises and contribute to the sustainability of the economic growth. In this context, this paper focuses on nonfinancial firms’ interest rate risk measurement. Concretely, our research is based on the concept of implied equity duration (IED), initially proposed by Dechow, Sloan, and Soliman (DSS) [
1].
The IED is a measure of equity interest rate risk developed by adapting the well-known expression of Macaulay bond duration. DSS [
1] show evidence that there is a significant association between the IED and the earnings-to-price ratio, the book-to-market ratio, and the sales growth rate, but not to capitalization, thus excluding the presence of a size effect in line with [
2]. Their results support the relation of IED-related effects with the Fama and French high-minus-low (book-to-market ratio) factor [
3], suggesting that the latter is subsumed in an IED-related factor.
However, as conceded by DSS [
1], improvements in their procedures should lead to more accurate and useful estimates of the measure. Concerning this, Fullana, Nave, and Toscano [
4] estimated the DSS [
1] implied equity duration measure for the US market, but using industry-specific parameters for forecasting and discounting the future cash flows of listed firms as opposed to the market-estimated parameters used previously by DSS [
1]. These authors showed that when they move to IED estimations based on industry-specific parameters, significant differences arise in absolute, relative, and rank terms. They also provide evidence that their more refined procedures improve the ability of the IED to measure stock price risk.
Fullana et al. [
4] sought the source of this improvement in the context of the market asset-pricing model. These authors found that industry-specific IED better captures all the components of stock price risk in this valuation model, and, as it is expected, higher differences in the duration estimations imply higher improvements in price risk measurements. Furthermore, their results show the highest improvements by using industry parameters-based IED when the original IED has poor performance. Thus, they concluded that the cost of being parsimonious in estimating firms’ duration is high on average and also quite variable across firms, both quantitatively and qualitatively. Moreover, this cost is large enough to reverse the duration-based ranking order of firms and to result in estimated durations without the ability to measure price risk.
In the context of small stock markets, we only found in the previous literature one article in which the DSS [
1] approach is applied: Fullana and Toscano [
5] computed and analyzed the IED of the Spanish listed firms. Concretely, they estimated the IED for the nonfinancial companies listed in the Continuous Market of the Spanish Stock Exchanges at the end of 2011. In their work, they compared their results with those of DSS [
1] for the US market, performed sector and size analyses, and looked for the relationships of the IED with other variables commonly used as firms’ price risk proxies. The authors used the exact DSS [
1] methodology to compare their results with the evidence reported by DSS [
1] in the context of the US stock market.
The aim of this paper is to check whether the effects, both qualitative and quantitative, of using industry-specific parameters when computing the IED of US firms also occur when we compute the IED of firms listed in a small stock market. Our central hypothesis is that, in a small stock market, there is less variety in the firms listed and perhaps the parsimony of DSS [
1] procedures may actually result in greater precision in the IED estimates, or at least sufficient for adequately ranked listed companies To achieve it, we built this paper on the Fullana and Toscano [
5] research by applying to their data new procedures to estimate the parameters involved in IED computation as in [
4].
We also performed an industry analysis and a size analysis of the differences between and within these firms’ subsamples that arise when we apply the two alternative procedures. To conduct these analyses, we used the industry allocation of firms made by the Spanish Stock Exchange and the composition of Spanish Stock Exchange size indices. Finally, we determined whether the new IED (IEDn) maintains the relationships that IED has with alternative variables used in the previous literature as firms’ price risk proxies.
Our results support that the evidence found by Fullana et al. [
4] in the US stock market is also in a small stock market as the Spanish. The use of industry-specific parameters instead of market parameters leads to significant changes in the firms’ IEDs. These changes are large enough not only to modify the ranking the relative risk among companies based on duration but to modify their own risk profile. On the other hand, we also observed that the differences between the IED and IEDn induce significant changes within industries that have a significant impact on the industry analysis by increasing the differences between industries. However, the results show that differences found in the size analysis and in the relationships with alternative variables are not significant.
The rest of this paper is structured as follows.
Section 2 is devoted to presenting the implied equity duration developed by DSS [
1] and the industry-specific procedures introduced by Fullana et al. [
5], and also to describe primary data, the multivariate outlier detection process and the time-series procedure to estimate the autocorrelation coefficients. In
Section 3, we conducted the analyses and discuss the results.
Section 4 presents the main conclusions.
3. Results and Discussion
To compute IED using Equation (1), we started by estimating the required four forecast parameters. In
Table 2, we show
r—the long-run equity return, and
g—the equity growth rate, estimated by cross-sectional regression for the overall sample using Equation (5). Next, we conducted the same estimations for each industry with the aim of computing the IEDn. We can observe outstanding differences in the long-run equity return between industries, and between industries and the overall sample. There are three industries that have an r-value close to the overall sample value: Oil & Energy, Commodities, and Consumer Services. However, one of the industries, Consumer Goods, has an r-value close to half the value of the overall sample, and another one, Technology, has an r-value close to twice the value of the whole sample. The implied equity growth estimates show more variability among industries and correctly cluster them depending on their growth-value feature.
Table 2 also shows
ROE and
SGR autocorrelation coefficients for the overall sample and each industry. They are averages of time-series estimations of firms performed as we have detailed in the previous section. In this case, important differences also appear around the overall sample values. These parameters set the speed of the firms’ cash-flow reversion to their long-run means, so that equity duration values are very sensitive to them, i.e., a small difference may result in an important variation in the equity duration estimate.
For all the sample firms at the end of 2011, we computed the IED
à la DSS using the whole sample parameters, and the IEDn using industry-level parameters. As DSS [
1] and Fullana et al. [
4], we used a 10 years prediction time period, allowing
SGR and
ROE to revert to their means. Panel A of
Table 3 shows the summary statistics for these results. In the same panel, we report the summary statistics of other variables, computed at the same time, which are usually used as risk proxies: the earning-to-price ratio, the book-to-market ratio, the market capitalization and the annual sales growth rate.
The average of firms’ IED is 19.02 years and their standard deviation is 6.33 years. The lowest quartile and the superior one are defined by 16.37 and 1.90 IED values, respectively. Finally, the IED minimum and the maximum values are 1.61 years and 38.95 years, respectively. These results are slightly different from those obtained by Fullana and Toscano [
5], also for the Spanish Continuous Stock Market at the same time. The differences may arise through two ways: the first one is that we updated the initial data sample using Compustat Global Vantage, and the second one is that we have used a more restricted outlier detection methodology, which reduces the standard deviation significantly and refines the market implicit cost of equity and growth rate. The IEDn mean is greater than the IED mean by 2.64 years; however, a higher standard deviation arises when the IEDn measure is implemented, showing that it achieves a better capture of variability among industries.
In
Table 3, Panel B, we report the Pearson linear correlation coefficients (below the diagonal) and Spearman’s linear correlation coefficients (above the diagonal) between the duration measures and with the other risk proxies. The correlations between the IED and IEDn are positive, but only between 50% and 60%; thus, even though the main statistics of the two measures do not differ too much, their correlation suggests that they are actually two different measures. On the other hand, the lower correlation of IEDn with these risk proxies than with IED might indicate that the industry-specific measure captures different explanatory risk factors than IED.
The next step in our analysis is to check the effect that the two duration measures produce in the firms’ risk classification based on them. In
Table 4, Panel A, we run the analysis by deciles, and we can observe than only approximately 16% do not change decile with respect to the original measure. Thus, in about 84% of the cases, a change in the risk classification of at least one decile occurs. Half of the firms change their risk classification by three deciles or more. In addition, close to 8% of firms change from the lowest five risk deciles to the highest five risk deciles or vice versa.
We also show the results of an analysis by quartiles in
Table 4, Panel B. Concretely, we classify firms by their risk level measured by IED and IEDn: from high-risk companies included in the fourth quartile, to low-risk companies when they belong to the first quartile. Between them, we consider companies in the third quartile as those with acceptable risk and companies in the second quartile as those with moderate risk. In
Table 4, Panel B, for the full sample, we summarized the quartile changes of the ranges of firms between the IED and the IEDn ranks. This contingency matrix shows that, although 35% of the firms remain in the same quartile, in 65% of the cases, a change of risk quartile occurs. Moreover, in 20% of the cases, the firms change in two quartiles or more. Finally, we observe even one change of three quartiles, i.e., one high-risk company, classified by its IED, is considered a low-risk firm when it is classified based on its IEDn.
In
Table 5, we show the summary statistics of the IED and IEDn estimations by industry (Panel A) and by size (Panel B). Concerning industry analysis, we observe that the major differences in the mean appear for Consumer Goods (approximately 10 years), followed by Technology, which is close to (minus) 7 years. Consumer Services has the minimum mean difference of less than (minus) 2 years. Thus, when we advanced to a deeper analysis by sector, the absolute difference that arises between both measures is higher in most industries than for the whole sample. Qualitatively, note that only for the Technology industry the correlation coefficient does not reach fifty percent, indicating a very different rank of firms. For the remainder of the industries, the correlation coefficient between the IED and IEDn are above 90%, so although the quantitative mean differences reported, the firms’ ranks derived from them are quite similar.
When we carried out our analysis by size, the maximum difference occurs for the smallest firms included in the IBEX SMALL CAP, being close to four years on average, while the impact in the largest firms included in the IBEX 35 index is practically naught. In general, results show a quantitative effect lower in the size clusters than in industries. However, from a qualitative point of view, important differences arise. All correlation coefficients, especially the correlation coefficient for the medium firms included in the IBEX MED CAP index, which is slightly less than 32%, are quite low, suggesting that although unrelated to the size, a quite different rank of the firms arises when we move from IED to IEDn.
To check whether differences by industry and by size groups between the IED and IEDn are statistically significant, we conducted a
within analysis by medians difference tests. In
Table 6, Panel A, in the diagonal, we show by industry the IED and IEDn median differences and, below them, the respective asymptotic significance for the Wilcoxon nonparametric test. All of the median differences are significant at the 1% confidence level, except for the
Consumer Services industry, which is not significant. In the diagonal of Panel B, the results by size groups are shown. The median difference is significant at the 10% confidence level only for the smallest firms, and no pattern is drawn by the median differences of the three size groups. This fact corroborates the previous evidence based on correlation coefficients between firms’ duration measures and firms’ capitalizations: When we move from the IED to the IEDn, a clear relation with firms’ sizes does not arise.
To deepen the characterization of the sample firms through their IED versus IEDn, we conducted sectorial and size
between analyses in a way that is similar to Fullana and Toscano [
5]. This analysis allows us to show evidence of potential firms’ growth options and size effects.
Table 6 shows the median differences between industries and indices, followed by the asymptotic significance for the Wilcoxon nonparametric test. Below the diagonals, we show the differences between the group IED medians, and above the diagonals, we show the differences between the IEDn medians. In these results, we can appreciate in a very clear manner that, when we used the IED, the differences between industries shown in Panel A are generally smaller than when we used IEDn. Moreover, most of the differences between industries become significant when we move to IEDn. Concretely, when we used IED, three differences are significant at the 5–10% confidence level, while when we used IEDn, there are six significant differences at the 10%, with five of them at the 1% confidence level. Again, the size analysis results shown in Panel B do not provide evidence of significant differences.
Finally, given the relationships between the IED and EPR and between the IED and BtM that have been analytically proved by DSS [
1], and given the previous evidence in [
5] that empirically confirms these relations for the Spanish stock market, we performed a cross-sectional regression analysis based on our previous correlation analysis between the IED and IEDn as dependent variables and the EPR, the BtM, and the SGR as independent variables, including CAP as a control variable.
Table 7, Panel A shows the results for the IED regression. As in [
5], the significance of the BtM and SGR in explaining the IED is significant, and CAP is not likely because the BtM withdraws its effect, as noted by Chen [
2]. However, now the EPR turns out not to be significant, which is probably related to the use in this work of a new initial database and a newfangled outliers’ detection. When we moved to IEDn, the explanatory power of the independent variables decreases with respect to IED, and the EPR is close to being significant at the 10% level. In these regression results, shown in
Table 7, Panel B, the expected signs remain invariant, but BtM and SGR are less significant, suggesting that the IEDn is a more orthogonal risk measure to the independent variables than the IED.
4. Conclusions
Based on Macaulay bond duration, the implied equity duration was developed by Dechow, Sloan, and Soliman [
1] in their seminal paper with the aim of capturing an important common risk factor in stock returns. However, their measure has been underutilized in the subsequent literature, perhaps because as they estimate it, the measure did not have significant added value in financial valuation and risk analysis. Recently, Fullana, Nave, and Toscano [
4] demonstrated that, when we move to an industry-specific estimation approach, significant differences arise in the estimates in absolute, relative, and rank terms. Fullana et al. [
4] also provided evidence for the US stock market that their procedures improve the performance of the implied equity duration to capture stock price risk and its two components in the market model, the market risk and specific risk.
This work also focused on analyzing the effects of using the industry-specific estimation procedures in the computation of the implied equity duration, but for the nonfinancial companies listed in the Spanish stock market. We are simultaneously interested in the robustness of both the Fullana et al. [
4] results when we move to a smaller stock market and the Fullana and Toscano [
5] results for the Spanish stock market when we move to an industry-specific estimation approach. We conducted a sector analysis and a size-groups analysis and took a close look at the differences between and within these firms’ groups for both estimation approaches, as originally applied and adapted for the industry-specific case.
Our results show significant changes in the implied equity duration of the firms listed on the Spanish stock market when we moved to the industry-specific approach that manages to change the firms’ risk classification. These results are in line with the previous evidence for the US stock market and, in same way, question the previous implied equity duration estimations for the firms listed on the Spanish stock market. Our regression results also confirm both the poor relation between firms’ sizes and durations for the Spanish stock market and the most relevant fact that, when we move to an industry-specific estimation approach, the implied equity duration becomes a more orthogonal risk measure with respect to other usual price risk measures.
Regarding the size analysis, the results confirm the light relation between firms’ sizes and durations shown by the regression analysis, but the low correlation coefficients found suggest that the industry-specific estimation approach results in an actual new duration measure. On the other hand, the industry analysis shows how the industry-specific estimation approach induces more variability among industries. However, the high correlation coefficients between the two duration measures within industries suggest that, as Fullana et al. [
4] claimed, more accurate estimation procedures can be applied to capture more of the firms’ variability within industries.
For all that, we can conclude in favor of the use of industry-specific estimation procedures in the computation of the implied equity duration, also in the small markets such as the Spanish stock market. This better measurement of the nonfinancial firms’ interest rate risk will contribute to its management, allowing enterprises to achieve better levels of financial sustainability.