Heavy-Metal Pollution Characteristics and Influencing Factors in Agricultural Soils: Evidence from Shuozhou City, Shanxi Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of Soil Samples
2.3. Data Sources
2.4. Methods
2.4.1. Processing of Soil Samples
2.4.2. Potential Ecological Risk Assessment
2.4.3. Statistical Analysis
3. Results and Discussion
3.1. Soil HM Content
3.2. Soil Pollution Level and Potential Ecological Risk Assessment
3.3. Correlation Analysis of HMs and Environmental Variables
3.3.1. Correlation Analysis between HMs and pH
3.3.2. Variation of HM Content in Soil at Different Slopes
3.3.3. Variation of HM Content in Soil for Different Farmland Types
3.3.4. Correlation Analysis between HMs and the Geochemical Background of the Parent Rock
3.4. Relationship between Soil HMs and Surrounding Enterprise Types
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, T.; Liu, X.; Li, X.; Zhao, K.; Zhang, J.; Xu, J.; Shi, J.; Dahlgren, R.A. Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou, China. Environ. Pollut. 2009, 157, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils; Springer: Dordrecht, The Nederland, 2013; pp. 11–50. [Google Scholar]
- Sun, Y.; Zhou, Q.; Xie, X.; Liu, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2010, 174, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Madrid, L.; Díaz-Barrientos, E.; Madrid, F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere 2002, 49, 1301–1308. [Google Scholar] [CrossRef]
- Ljung, K.; Otabbong, E.; Selinus, O.; Sveriges, L. Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environ. Geochem. Health 2006, 28, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, Z.; Yuan, Y.; Wang, X.; Li, X. Heavy metal accumulation and its spatial distribution in agricultural soils: Evidence from Hunan province, China. RSC Adv. 2018, 8, 10665–10672. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Wang, M.; Chen, W.; Peng, C. Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environ. Pollut. 2016, 210, 174–181. [Google Scholar] [CrossRef]
- Chamannejadian, A.; Moezzi, A.A.; Sayyad, G.; Jahangiri, A.; Jafarnejadi, A. Effect of soil characteristics on spatial distribution of cadmium in calcareous paddies. Int. J. Agric. 2013, 3, 139. [Google Scholar]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef]
- Zou, J.; Liu, X.; Dai, W.; Luan, Y. Pollution assessment of heavy metal accumulation in the farmland soils of Beijing’s suburbs. Environ. Sci. Pollut. Res. 2018, 25, 27483–27492. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, G.; Ge, X.; Xu, G.; Guan, Y. Novel insights into heavy metal pollution of farmland based on reactive heavy metals (RHMs): Pollution characteristics, predictive models, and quantitative source apportionment. J. Hazard. Mater. 2018, 360, 32–42. [Google Scholar] [CrossRef]
- Yong, L.; Huifeng, W.; Xiaoting, L.I.; Jinchang, L.I. Heavy Metal Contamination of Agricultural Soils in Taiyuan, China. Pedosphere 2015, 25, 901–909. [Google Scholar]
- Xiao, W.; Sui, T.; Wang, X.; Zhu, Q.; Liu, R.; Chen, X. Assessment and Geographical Detection of Heavy Metal Pollution in Typical Farmland Soil in Chaohu Lake Basin; Chinese Society for Agricultural Machinery: Beijing, China, 2018; pp. 144–152. [Google Scholar]
- Christou, A.; Theologides, C.P.; Costa, C.; Kalavrouziotis, I.K.; Varnavas, S.P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017, 178, 16–22. [Google Scholar] [CrossRef]
- Liang, J.; Shi, C.; Zeng, G.; Zhong, M.; Yuan, Y. Spatial Variation and Assessment of Heavy Metal and Radioactive Risk in Farmland around a Retired Uranium Mine. IOP Conference Series. Earth Environm. Sci. 2017, 78, 12005. [Google Scholar]
- Han, Z.; Wan, D.; Tian, H. Pollution Assessment of Heavy Metals in Soils and Plants around a Molybdenum Mine in Central China. Pol. J. Environ. Stud. 2019, 28, 11. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Santamaría, J.M.; Moraza, M.L.; Elustondo, D.; Baquero, E.; Jordana, R.; Lasheras, E.; Bermejo, R.; Ariño, A.H. Diversity of acari and collembola along a pollution gradient in soils of a pre-pyrenean forest ecosystem. Environ. Eng. Manag. J. 2012, 11, 1159–1169. [Google Scholar] [CrossRef]
- Fan, W.; Bai, Z.; Li, H. Potential Ecological Risk Assessment of Heavy Metals in Reclaimed Soils. Trans. Chin. Soc. Agric. Eng. 2011, 27, 348–354. [Google Scholar]
- Phil-Eze, P.O. Variability of soil properties related to vegetation cover in a tropical rainforest landscape. J. Geogr. Reg. Plan. 2010, 3, 177–184. [Google Scholar]
- Huang, Y.; Liu, D.; Wang, Y.; Wang, X.; Li, J. Heavy metals accumulation by hydrophytes. Chin. J. Ecol. 2006, 5, 541–545. [Google Scholar]
- Tholkappian, M.; Ravisankar, R.; Chandrasekaran, A.; Jebakumar, J.P.P.; Kanagasabapathy, K.V.; Prasad, M.V.; Satapathy, K.K. Assessing heavy metal toxicity in sediments of Chennai Coast of Tamil Nadu using Energy Dispersive X-Ray Fluorescence Spectroscopy (EDXRF) with statistical approach. Toxicol. Rep. 2018, 5, 173–182. [Google Scholar] [CrossRef]
- Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 2000, 34, 1125–1131. [Google Scholar] [CrossRef]
- Shan, Y.; Shan, Y.; Tysklind, M.; Tysklind, M.; Hao, F.; Hao, F.; Ouyang, W.; Ouyang, W.; Chen, S.; Chen, S.; et al. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J. Soil Sediment 2013, 13, 720–729. [Google Scholar] [CrossRef]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, Z.; Yang, Z.; Sun, G.; He, J. Variability of heavy metal content in soils of typical Tibetan grasslands. RSC Adv. 2016, 6, 105398–105405. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, B.; Yang, W.; Ji, H. Sources, spatial distribution and contamination assessments of heavy metals in gold mine area soils of Miyun Reservoir upstream, Beijing, China. Environ. Chem. 2015, 34, 2248–2256. [Google Scholar]
- Likuan, D.; Bin, F. Analysis of spatial heterogeneity of soil heavy metals in tea plantation: Case study of high quality tea garden in Jiangsu and Zhejiang. Geogr. Res. Aust. 2017, 36, 391–404. [Google Scholar]
- Qiao, P.; Lei, M.; Guo, G.; Yang, J.; Zhou, X.; Chen, T. Quantitative analysis of the factors influencing soil heavy metal lateral migration in rainfalls based on geographical detector software: A case study in huanjiang county, China. Sustainability 2017, 9, 1227. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; He, X.; Zhou, C. Advances in Researches on Slope Gradient Factor in Soil Erosion. Res. Soil Water Conserv. 2008, 15, 229–231. [Google Scholar]
- Ding, Q.; Cheng, G.; Wang, Y.; Zhuang, D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci Total Environ. 2017, 578, 577–585. [Google Scholar] [CrossRef]
- Kheir, R.B.; Shomar, B.; Greve, M.B.; Greve, M.H. On the quantitative relationships between environmental parameters and heavy metals pollution in Mediterranean soils using GIS regression-trees: The case study of Lebanon. J. Geochem. Explor. 2014, 147, 250–259. [Google Scholar] [CrossRef]
- Qiao, P.; Yang, S.; Lei, M.; Chen, T.; Dong, N. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Sci. Total Environ. 2019, 664, 392–413. [Google Scholar] [CrossRef] [PubMed]
- Chunjie, C.; Jinfeng, Z. Distribution and pollution of soil heavy metals in hilly upland around Pingdingshan coal mining area. Geogr Res-Aust 2014, 33, 1383–1392. [Google Scholar]
- Zhang Yubin, C.N.S.D. Heavy Metal Distribution Feature in Terrace Soil on the Loess Gullied-Hilly Area. Chinese Agricultural Science Bulletin 2009, 25, 252–256. [Google Scholar]
- Li, W.; Wang, D.; Wang, Q.; Liu, S.; Zhu, Y.; Wu, W. Impacts from the land-use pattern on the spatial distribution of cultivated soil heavy metal pollution in the typical rural-urban fringe of northeast China. Int. J. Environ. Res. Public Health 2017, 14, 336. [Google Scholar] [CrossRef] [Green Version]
- Deng, A.; Wang, L.; Chen, F.; Li, Z.; Liu, W.; Liu, Y. Soil aggregate-associated heavy metals subjected to different types of land use in subtropical China. Glob. Ecol. Conserv. 2018, 16, e465. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Yang, L.; Yang, L.; Chen, L.; Chen, L.; Zhao, F.; Zhao, F.; Sun, L.; Sun, L. Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China. Environ. Sci. Pollut. Res. 2019, 26, 1615–1627. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- Li, Q.; Wu, T. The establishment of the Holocene Xuanren And Tuoyang Formations in Shanxi. Reg. Geol. China 1996, 3, 38–41. [Google Scholar]
- Min, L.; Zhang, Z.; Wang, X. The basal boundary of the Nihewan Formation at the Taiergou section of Yangyuan, Hebei Province. J. Stratigr. 2006, 30, 103–108. [Google Scholar]
- Liyang, D.; Yi, J.; Zhang, C.; Liu, Y.; Xue, P.; Liu, Y.; Li, Y. The discovery of a gigantic sauropord femur in Xinrong area, Shanxi Province. Chin. Geol. 2017, 44, 1037–1038. [Google Scholar]
- Roca, N.; Pazos, M.S.; Bech, J. The relationship between WRB soil units and heavy metals content in soils of Catamarca (Argentina). J. Geochem. Explor. 2008, 96, 77–85. [Google Scholar] [CrossRef]
- Ali, M.H.; Mustafa, A.A.; El-Sheikh, A.A. Geochemistry and spatial distribution of selected heavy metals in surface soil of Sohag, Egypt: A multivariate statistical and GIS approach. Environ. Earth Sci. 2016, 75, 1–17. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Wu, J.; Song, J.; Li, W.; Zheng, M. The accumulation of heavy metals in agricultural land and the associated potential ecological risks in Shenzhen, China. Environ. Sci. Pollut. Res. Int. 2016, 23, 1428–1440. [Google Scholar] [CrossRef]
- Wazwaz, A.; Al-Salaymeh, A.; Khan, M.S. Removing heavy metals through different types of soils and marble powder found in Oman. J. Ecol. Eng. 2019, 20, 136–142. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, X.; Shi, X. Influential factors of spatial distribution of Cd and Cr in regional soils. Soils 2018, 50, 989–998. [Google Scholar]
- GB/T 4754-2017. China National Industries Classification [S]. 2017.06.30.
- Manu, M.; Băncilă, R.I.; Iordache, V.; Bodescu, F.; Onete, M. Impact assessment of heavy metal pollution on soil mite communities (Acari: Mesostigmata) from Zlatna Depression–Transylvania. Process. Saf. Environ. Prot. 2017, 108, 121–134. [Google Scholar] [CrossRef]
- Qiu, M.; Wang, Q.; Li, F.; Chen, J.; Yang, G.; Liu, L. Simulation of changes in heavy metal contamination in farmland soils of a typical manufacturing center through logistic-based cellular automata modeling. Environ. Sci. Pollut. Res. 2016, 23, 816–830. [Google Scholar] [CrossRef]
- He, K.; Sun, Z.; Hu, Y.; Zeng, X.; Yu, Z.; Cheng, H. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations. Environ. Sci. Pollut. Res. Int. 2017, 24, 9387–9398. [Google Scholar] [CrossRef]
- Cai, L.; Xu, Z.; Ren, M.; Guo, Q.; Hu, X.; Hu, G.; Wan, H.; Peng, P. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Saf. 2012, 78, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Min, Y.S. Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ. Pollut. 2002, 119, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.; Llamas, J.; Miguel, E.; Rey, J.; Hidalgo, M. Soil contamination from urban and industrial activity: Example of the mining district of Linares (southern Spain). Environ. Geol. 2007, 54, 669–677. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
Index | Category | Degree |
---|---|---|
Potential ecological risk index (RI) | < 40, RI < 110 | Low |
40 ≤ < 80, 110 ≤ RI < 220 | Moderate | |
80 ≤ < 160, 220 ≤ RI < 440 | Considerable | |
160 ≤ < 320, RI ≥ 440 | High | |
≥ 320 | Extreme |
Cd | Hg | As | Pb | Cr | |
---|---|---|---|---|---|
Mean | 0.117 | 0.030 | 9.269 | 21.328 | 55.609 |
Median | 0.109 | 0.025 | 9.280 | 20.600 | 53.800 |
Max | 0.343 | 0.185 | 13.800 | 46.000 | 88.700 |
Min | 0.033 | 0.011 | 4.230 | 16.100 | 38.900 |
SD | 0.042 | 0.021 | 1.704 | 3.827 | 8.924 |
CV | 0.358 | 0.7 | 0.183 | 0.179 | 0.1 |
Background | 0.112 | 0.017 | 7.8 | 13.8 | 53 |
Limit value | 0.6 | 3.4 | 25 | 170 | 250 |
S-min | P-min | S-max | P-max | S-mean | P-mean | |
---|---|---|---|---|---|---|
Ei-Cd | 8.84 | 21.43 | 91.88 | 37.5 | 31.27 | 30.26 |
Ei-Hg | 26.82 | 101.18 | 435.29 | 232.94 | 71.28 | 148.94 |
Ei-As | 5.42 | 10.01 | 17.69 | 14.62 | 11.88 | 11.85 |
Ei-Pb | 5.83 | 5.58 | 16.67 | 8.04 | 7.72 | 6.84 |
Ei-Cr | 1.47 | 1.96 | 3.35 | 2.53 | 2.09 | 2.1 |
RI | 66.64 | 156.62 | 498.39 | 283.39 | 124.27 | 200.07 |
Cd | Hg | As | Cr | Pb | pH | |
---|---|---|---|---|---|---|
Cd | 1 | |||||
Hg | 0.102 | 1 | ||||
As | 0.413** | 0.059 | 1 | |||
Cr | 0.461** | 0.034 | 0.569** | 1 | ||
Pb | 0.566** | 0.226** | 0.292** | 0.461** | 1 | |
pH | −0.062 | −0.243** | −0.022 | −0.108 | −0.194* | 1 |
Slope | Cd | Hg | As | Pb | Cr |
---|---|---|---|---|---|
>15 | 0.114 | 0.018 | 7.2 | 18.5 | 53.8 |
5–15 | 0.121 | 0.032 | 9.351 | 21.498 | 55.935 |
0–5 | 0.115 | 0.029 | 9.262 | 21.301 | 55.525 |
Correlation coefficient | 0.069 | −0.014 | −0.012 | 0.011 | 0.036 |
Farmland type | Cd | Hg | As | Pb | Cr |
---|---|---|---|---|---|
Dry land | 0.12 | 0.03 | 9.24 | 21.75 | 55.35 |
Irrigated land | 0.11 | 0.03 | 9.39 | 21.15 | 56.64 |
Artificial pastureland | 0.10 | 0.02 | 8.34 | 19.50 | 50.23 |
Mean value | 0.12 | 0.03 | 9.27 | 21.43 | 55.73 |
Statistical significance | 0.492 | 0.592 | 0.488 | 0.409 | 0.334 |
Cd | Hg | As | Pb | Cr | |
---|---|---|---|---|---|
Nonferrous metal smelting and rolling processing (n = 4) | 0.118 | 0.028 | 8.438 | 21.117 | 54.508 |
Medicine manufacturing (n = 2) | 0.080 | 0.019 | 8.489 | 18.429 | 48.686 |
Ecological protection and environmental management (n = 3) | 0.103 | 0.021 | 7.857 | 21.635 | 50.972 |
Other (n = 3) | 0.123 | 0.045 | 9.027 | 22.434 | 56.025 |
Leather, fur, feathers, and footwear (n = 1) | 0.166 | 0.030 | 13.158 | 23.950 | 67.883 |
Chemical raw materials and chemical product manufacturing (n = 8) | 0.120 | 0.027 | 10.208 | 21.989 | 59.055 |
Ferrous metal smelting and rolling (n = 6) | 0.117 | 0.032 | 8.972 | 20.290 | 54.622 |
Public facility management (n = 2) | 0.128 | 0.028 | 10.424 | 22.211 | 57.716 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, D.; Bai, Z.; Liu, X. Heavy-Metal Pollution Characteristics and Influencing Factors in Agricultural Soils: Evidence from Shuozhou City, Shanxi Province, China. Sustainability 2020, 12, 1907. https://doi.org/10.3390/su12051907
Yan D, Bai Z, Liu X. Heavy-Metal Pollution Characteristics and Influencing Factors in Agricultural Soils: Evidence from Shuozhou City, Shanxi Province, China. Sustainability. 2020; 12(5):1907. https://doi.org/10.3390/su12051907
Chicago/Turabian StyleYan, Dingxuan, Zhongke Bai, and Xiaoyang Liu. 2020. "Heavy-Metal Pollution Characteristics and Influencing Factors in Agricultural Soils: Evidence from Shuozhou City, Shanxi Province, China" Sustainability 12, no. 5: 1907. https://doi.org/10.3390/su12051907
APA StyleYan, D., Bai, Z., & Liu, X. (2020). Heavy-Metal Pollution Characteristics and Influencing Factors in Agricultural Soils: Evidence from Shuozhou City, Shanxi Province, China. Sustainability, 12(5), 1907. https://doi.org/10.3390/su12051907