Land Use, Livestock, Quantity Governance, and Economic Instruments—Sustainability Beyond Big Livestock Herds and Fossil Fuels
Abstract
:1. Introduction: Research Issue
2. Methodology
3. Natural Scientific Background: Environmental Problems of the Production of Animal Foodstuff
4. Results: Approaches of a Sustainability Governance for Animal Products
4.1. Purely Technical Strategies Versus Frugality by Means of Quantity Reduction
4.2. Emissions Trading with Greenhouse Gas Emissions from Animal Husbandry
4.3. Climate-Linked Livestock-to-Land Ratio in Livestock Farming—in View of the EU Nitrate Directive and the Regulation on EU Organic Farming
5. Discussion
- Both instruments face the challenge of the diversity of emission sources in animal husbandry and of the high number of animal farmers. This complexity can best be reduced with a cap-and-trade system. The implementation-related advantage of an emissions trading system over a climate-linked livestock-to-land ratio is that there is the option of choosing the manufacturing industry as the norm addressee instead of the animal husbandry plants, by choosing animal products as the subject of the emissions trading certificates. If emissions are determined at farm level, all information provided by livestock farmers (far more numerous than the manufacturing industries) would have to be checked for accuracy. For this reason, a cap-and-trade system offers a cost and control advantage over a climate-linked livestock-to-land ratio under regulatory law which makes compliance with standards and, moreover, the political enforceability of the instrument more likely.
- Cap-and-trade has less impact on livestock farmers than a climate-linked livestock-to-land ratio. Livestock farms are more restricted in their development due to the land-link than is the case with a cap-and-trade system, even if the total emission maximum on EU level is the same for both instruments. The introduction of a climate-linked livestock-to-land ratio would imply greater structural adjustments in line with the deconcentrating of livestock farming, which may result in high investment costs for the construction of new farms and facilities for the livestock farmers. The costs would far exceed those of buying additional certificates for keeping the same amount of livestock in existing, just (in total) shrinking structures.
- If a livestock-to-land ratio is the main instrument, complementary import bans are necessary, since this instrument (unlike ETS) cannot be combined with a border adjustment. However, such import bans may not be justifiable under world trade law. This is due to the fact that—unlike in a cap-and-trade system—there is no direct link to a product, namely animal food. Rather, standards would have to be placed on the production methods of those products abroad. Standards like that—e.g., via Article XX General Agreement on Tariffs and Trade (GATT), which allows ecologically justified exceptions to the free trade rules of the WTO—have repeatedly been advocated legally (e.g., [113,133]. The WTO courts are so far very hesitant about allowing for such production-related regulations, in contrast to product-related regulations, however (for more details on border tax adjustments in the environmental sector, see [15,18,81,113,132,134]).
- Regarding biodiversity conservation and closed nutrient cycles, the climate-linked livestock-to-land ratio has the advantage of indirectly limiting animal N and P surpluses by limiting GHG emissions per hectare. However, this advantage is particularly evident only if the stricter and more inflexible design of a livestock-to-land ratio is chosen that does not allow for using off-farm areas and/or adds nutrient restrictions per hectare. At the same time, it should be remembered that a cap-and-trade system for animal products also indirectly addresses other environmental problems as described above. Furthermore, the gradual phasing out of using fossil fuels in the economy as a whole is already providing impetus for more land-linked animal husbandry such as pasture farming: the purchase of animal feed, the production of mineral fertilisers, the transport of farm fertilisers and the transport of animal products will become more expensive due to a strict cap on fossil fuels, thus favouring decentralised animal husbandry. In addition, the EU-wide emission ceiling will also reduce the number of livestock in absolute terms, so that the problem of nutrient surpluses will be alleviated overall.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adler, R.W. Climate change adaptation and agricultural and forestry law. In Research Handbook on Climate Change Adaptation Law; Verschuuren, J., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2013; pp. 214–249. [Google Scholar]
- Food and Agriculture Organization (FAO). Climate Smart Agriculture Sourcebook; FAO: Rome, Italy, 2013; pp. 1–570. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Summary for Policymakers. Approved Draft; Cambridge University Press: Geneva, Switzerland, 2019; pp. 1–43. [Google Scholar]
- Reijnders, L.; Soret, S. Quantification of the environmental impact of different dietary protein choices. Am. J. Clin. Nutr. 2003, 78, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Sonesson, U.; Davis, J.; Ziegler, F. Food Production and Emissions of Greenhouse Gases. An Overview of the Climate Impact of Different Product Groups; Institutet för livsmedel och bioteknik: Göteborg, Sweden, 2010; pp. 1–26. [Google Scholar]
- Meier, T.; Christen, O. Gender as a factor in an environmental assessment of the consumption of animal and plant-based foods in Germany. Int. J. Life Cycle Assess. 2012, 17, 550–564. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Notarnicola, B. Environmental impacts of food consumption in Europe. J. Clean. Prod. 2017, 140, 13–765. [Google Scholar] [CrossRef]
- United Nations (UN). World Population Prospects 2019 Highlights; UN: New York, NY, USA, 2019; pp. 1–46. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper No. 12-03; FAO: Rome, Italy, 2012; pp. 1–154. [Google Scholar]
- Verschuuren, J. Towards a Regulatory Design for Reducing Emissions from Agriculture: Lessons from Australia’s Carbon Farming Initiative. Clim. Law 2017, 7, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Buckwell, A.; Nadeu, E. What Is the Safe Operating Space for EU Livestock? RISE Foundation: Brussels, Belgium, 2018; pp. 1–108. [Google Scholar]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 19 December 2019).
- Ekardt, F.; Wieding, J.; Zorn, A. Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades? Sustainability 2018, 10, 2812. [Google Scholar] [CrossRef] [Green Version]
- Ekardt, F. Sustainability. Transformation, Governance, Ethics, Law; Environmental Humanities: Transformation, Governance, Ethics, Law; Springer: Basel, Switzerland, 2019; pp. 1–296. [Google Scholar]
- Ekardt, F. Nachhaltigkeit und Methodik: Verhaltensantriebe und Transformationsbedingungen ermitteln. Revue D’Allemagne et des Pays de Langue Allemande 2018, 50, 279–296. [Google Scholar] [CrossRef]
- Stubenrauch, J. Phosphor-Governance in Ländervergleichender Perspektive—Deutschland, Costa Rica, Nicaragua. Ein Beitrag zur Nachhaltigkeits- und Bodenschutzpolitik; Beiträge zur Sozialwissenschaftlichen Nachhaltigkeitsforschung; Metropolis: Marburg, Germany, 2019; pp. 1–490. [Google Scholar]
- Garske, B. Ordnungsrechtliche und Ökonomische Instrumente der Phosphor-Governance. Unter Berücksichtigung der Wirkungen auf Böden, Gewässer, Biodiversität und Klima; Metropolis: Marburg, Germany, 2020; pp. 1–517. [Google Scholar]
- Kerr, S.; Sweet, A. Inclusion of Agriculture and Forestry in a Domestic Emissions Trading Scheme: New Zealand’s Experience to Date; Motu Working Paper 08-04; Motu Economic and Public Policy Research: Wellington, New Zealand, 2008; pp. 1–11. [Google Scholar]
- Hennig, B. Nachhaltige Landnutzung und Bioenergie. Ambivalenzen, Governance, Rechtsfragen; Beiträge zur Sozialwissenschaftlichen Nachhaltigkeitsforschung; Metropolis: Marburg, Germany, 2017; pp. 1–482. [Google Scholar]
- Ekardt, F.; Wieding, J.; Garske, B.; Stubenrauch, J. Agriculture-related Climate Policies—Law and Governance Issues on the European and Global Level. Carbon Clim. Law Rev. 2018, 12, 316–331. [Google Scholar] [CrossRef]
- Weishaupt, A. Nachhaltigkeits-Governance Tierischer Nahrungsmittel in der EU; Beiträge zur Sozialwissenschaftlichen Nachhaltigkeitsforschung; Metropolis: Marburg, Germany, 2019; pp. 1–156. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet. Health 2018, 2, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Westhoek, H.; Lesschen, J.P.; Rood, T.; Wagner, S.; De Marco, A.; Murphy-Bokern, D.; Leip, A.; van Grinsven, H.; Sutton, M.A.; Oenema, O. Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Glob. Environ. Chang. 2014, 26, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Ugbogu, E.A.; Elghandour, M.M.M.Y.; Ikpeazu, V.O.; Buendía, G.R.; Molina, O.M.; Arunsi, U.O.; Emmanuel, O.; Salem, A.Z.M. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. J. Clean. Prod. 2019, 213, 915–925. [Google Scholar] [CrossRef]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Bajželj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 2014, 4, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Hedenus, F.; Wirsenius, S.; Johansson, D.J.A. The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Clim. Chang. 2014, 124, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Bellarby, J.; Tirado, R.; Leip, A.; Weiss, F.; Lesschen, J.P.; Smith, P. Livestock greenhouse gas emissions and mitigation potential in Europe. Glob. Chang. Biol. 2013, 19, 3–18. [Google Scholar] [CrossRef]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 2011, 166–167, 308–320. [Google Scholar] [CrossRef]
- Beach, R.H.; DeAngelo, B.J.; Rose, S.; Li, C.; Salas, W.; DelGrosso, S.J. Mitigation potential and costs for global agricultural greenhouse gas emissions. Agric. Econ. 2008, 38, 109–115. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). Agriculture at a Crossroads; Global Report; IAASTD: Washington DC, USA, 2009; pp. 1–606. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falucci, A.; Tempio, G. Tackling Climate Change through Livestock. A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013; pp. 1–139. [Google Scholar]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- United Nations Convention to Combat Desertification (UNCCD). Global Land Outlook; UNCCD: Bonn, Germany, 2017; pp. 1–340. [Google Scholar]
- Lesschen, J.P.; van den Berg, M.; Westhoek, H.J.; Witzke, H.P.; Oenema, O. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Technol. 2011, 166–167, 16–28. [Google Scholar] [CrossRef]
- Leip, A.; Gilles, B.; Garnier, J.; Grizetti, B.; Lassaletta, L.; Reis, S.; Simpson, D.; Sutton, M.A.; de Vries, W.; Weiss, F.; et al. Impacts of European livestock production: Nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 2015, 10, 11504. [Google Scholar] [CrossRef]
- Shepon, A.; Eshel, G.; Noor, E.; Milo, R. The opportunity cost of animal based diets exceeds all food losses. Proc. Natl. Acad. Sci. USA 2018, 115, 3804–3809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Bekanda, M.; Grizetti, B.; de Vries, W.; van Grivsen, H.J.M.; Abrol, Y.P.; Adha, T.K.; Davidson, E.A.; et al. Our Nutrient World. The Challenge to Produce More Food and Energy with Less Pollution. Global Overview of Nutrient Management; Centre for Ecology and Hydrology: Edinburgh, UK, 2013; pp. 1–128. [Google Scholar]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.W.; Van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [Green Version]
- European Environmental Agency. European Waters. Assessment of Status and Pressures 2018; EEA Report 7/2018; EEA: Copenhagen, Denmark, 2018. [Google Scholar]
- Oliveira, G.; Hecht, S. Sacred groves, sacrifice zones and soy production: Globalization, intensification and neo-nature in South America. J. Peasant Stud. 2016, 43, 251–285. [Google Scholar] [CrossRef] [Green Version]
- Kratz, S.; Schnug, E. Schwermetalle in P-Düngern; Landbauforschung Völkenrode Special Issue 286, Thünen-Institut: Braunschweig, Germany, 2005; pp. 37–45. [Google Scholar]
- FAO; ITPS. Status of the World’s Soil Resources. Main report; FAO: Rome, Italy, 2015; pp. 1–650. [Google Scholar]
- Schoumans, O.F.; Bouraoui, F.; Kabbe, C.; Oenema, O.; van Dijk, K.C. Phosphorus management in Europe in a changing world. AMBIO 2015, 44 (Suppl. 2), 180–192. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Report from the Commission to the Council and the European Parliament on the Implementation of Council Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources Based on Member State Reports for the Period 2012–2015. COM(2018) 257 final; EU Commission: Brussels, Belgium, 2018. [Google Scholar]
- Leip, A.; Weiss, F.; Lesschen, J.P.; Westhoek, H. The nitrogen footprint of food products in the European Union. J. Agric. Sci. 2014, 152, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Metson, G.S.; Bennett, E.M.; Elser, J.J. The role of diet in phosphorus demand. Environ. Res. Lett. 2012, 7, 044043. [Google Scholar] [CrossRef] [Green Version]
- Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.C.; et al. A European aerosol phenomenology—3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- German Federal Environment Agency (UBA). Hintergrundpapier zu Einer Multimedialen Stickstoff-Emissionsminderungsstrategie; UBA: Dessau-Roßlau, Germany, 2009; pp. 1–115. [Google Scholar]
- Webb, J.; Menzi, H.; Pain, B.F.; Misselbrook, T.H.; Dämmgen, U.; Hendriks, H.; Döhler, H. Managing ammonia emissions from livestock production in Europe. Environ. Pollut. 2005, 135, 399–406. [Google Scholar] [CrossRef]
- German Scientific Advisory Board for Agricultural Policy (WBA); German Environment Ministry (BMU); Expert Council on the Environment (SRU). Novellierung der Düngeverordnung: Nährstoffüberschüsse Wirksam Begrenzen; Federal Ministry of Food, Agriculture and Consumer Protection (BMEL): Berlin, Germany, 2013; pp. 1–13.
- Federal Association for Energy and Water Management (BDEW). Gutachten zur Berechnung der Kosten der Nitratbelastung in Wasserkörpern für die Wasserwirtschaft. Kurzfassung; BDEW: Mühlheim a.d. Ruhr, Germany, 2017; pp. 1–16. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Working Group 1, Contributions to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–222. [Google Scholar]
- Leip, A.; Weiss, F.; Wassenar, T.; Perez, I.; Fellmann, T.; Loudjani, P.; Tubiello, F.; Grandgirard, D.; Monni, S.; Biala, K. Evaluation of the Livestock Sector’s Contribution to the EU Greenhouse Gas Emissions (GGELS); Final Report; EU Commission, Joint Research Center: Brussels, Belgium, 2010. [Google Scholar]
- European Commission. Fifth Report of the European Union to the Convention on Biological Diversity; EU Commission: Brussels, Belgium, 2014; pp. 1–323. [Google Scholar]
- European Commission. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides; EU Commission: Brussels, Belgium, 2009; Volume OJ L 309/71. [Google Scholar]
- European Commission. Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources; EU Commission: Brussels, Belgium, 1991; Volume OJ L 375/1. [Google Scholar]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; EU Commission: Brussels, Belgium, 2000; Volume OJ L 375 1. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament and the Council on the Implementation of the Water Framework Directive (2000/60/EC) and the Floods Directive (2007/60/EC). COM(2019) 95 Final; EU Commission: Brussels, Belgium, 2019; pp. 1–11. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament and the Council on Member State National Action Plans and on Progress in the Implementation of Directive 2009/128/EC on the Sustainable Use of Pesticides. COM(2017) 587 Final; EU Commission: Brussels, Belgium, 2017; pp. 1–19. [Google Scholar]
- Food and Agriculture Organization (FAO). Livestock’s Long Shadow. Environmental Issues and Options; FAO: Rome, Italy, 2006; pp. 1–416. [Google Scholar]
- Marques, A.; Martins, I.S.; Kastner, T.; Plutzar, C.; Theurl, M.C.; Eisenmenger, N.; Huijbregts, M.A.J.; Wood, R.; Stadler, K.; Bruckner, M.; et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Assessing Global Land Use. Balancing Consumption with Sustainable Supply. A Report of the Working Group on Land and Soils of the International Resource Panel; UNEP: Nairobi, Kenya, 2014; pp. 1–46. [Google Scholar]
- Rook, A.J.; Tallowin, J.R.B. Grazing and pasture management for biodiversity benefit. Anim. Res. 2003, 52, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Stoll-Kleemann, S.; Schmidt, U.J. Reducing meat consumption in developed and transition countries to counter climate change and biodiversity loss: A review of influence factors. Reg. Environ. Chang. 2017, 17, 1261–1277. [Google Scholar] [CrossRef] [Green Version]
- Pikaar, I.; Matassa, S.; Bodirsky, B.L.; Weindl, I.; Humpenöder, F.; Rabaey, K.; Boon, N.; Bruschi, M.; Yuan, Z.; van Zanten, H.; et al. Decoupling Livestock from Land Use through Industrial Feed Production Pathways. Environ. Sci. Technol. 2018, 52, 7351–7359. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Lee, C.; Meinen, R.; Montes, S.; Ott, T.; Firkins, J.; Dell, C.; Adesogan, A.; Yang, W.; Tricarico, J.; et al. Mitigation of Greenhouse Gas Emissions in Livestock Production. A Review of Technical Options for Non-CO2 Emissions; FAO: Rome, Italy, 2013; pp. 1–226. [Google Scholar]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.O.; et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef] [Green Version]
- Roque, B.M.; Brooke, C.G.; Ladau, J.; Polley, T.; Marsh, L.; Najafi, N.; Pandey, P.; Singh, L.; Salwen, J.K.; Eloe-Fadrosh, E.; et al. Effect of the macroalgae Asparagopsis taxiformis on methane production and the rumen microbiome assemblage. bioRxiv 2018, 436568. [Google Scholar] [CrossRef]
- Eichler-Löbermann, B.; Bachmann, S.; Busch, S.; Schiemenz, K.; Krey, T.; Pfahler, V.; Uptmoor, R. Management Options for an Efficient Utilization of Phosphorus in Agroecosystems. In Phosphorus in Agriculture: 100 % Zero; Schnug, E., De Kok, L.J., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 179–193. [Google Scholar]
- Food Climate Research Network (FCRN). Policies and Actions to Shift Eating Patterns: What Works? A Review of the Evidence of the Effectiveness of Interventions Aimed at Shifting Diets in More Sustainable and Healthy Directions; FCRN: Oxford, UK, 2015; pp. 1–85. [Google Scholar]
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganthan, J. Creating a Sustainable Food Future—A Menu of Solutions to Feed Nearly 10 Billion People by 2050; World Resource Institute: Washington, DC, USA, 2018; pp. 1–96. [Google Scholar]
- Vellinga, T.V.; Hoving, I.E. Maize silage for dairy cows: Mitigation of methane emissions can be offset by land use change. Nutr. Cycl. Agroecosyst. 2011, 89, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Wirsenius, S.; Hedenos, B. Policy strategies for a sustainable food system: Options for protecting the climate. In The Crisis in Meat and Dairy Consumption: Developing a Sustainable and Greener Future; Routledge: London, UK, 2010; pp. 159–184. [Google Scholar]
- Yue, Q.; Xu, X.; Hillier, J.; Cheng, K.; Pan, G. Mitigating greenhouse gas emissions in agriculture: From farm production to food consumption. J. Clean. Prod. 2017, 149, 1011–1019. [Google Scholar] [CrossRef]
- Scheffler, M.; Wiegmann, K. Quantifizierung von Maßnahmenvorschlägen der Deutschen Zivilgesellschaft zu THG-Minderungspotenzialen in der Landwirtschaft bis 2030; Ökoinstitut e.V.: Berlin, Germany, 2019; pp. 1–41. [Google Scholar]
- Wirsenius, S.; Hedenus, F.; Mohlin, K. Greenhouse gas taxes on animal food products: Rationale, tax scheme and climate mitigation effects. Clim. Chang. 2011, 108, 159–184. [Google Scholar] [CrossRef]
- Bähr, C.C. Greenhouse Gas Taxes on Meat Products: A Legal Perspective. Transnatl. Environ. Law 2015, 4, 153–179. [Google Scholar] [CrossRef] [Green Version]
- Popp, A.; Lotze-Campen, H.; Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Chang. 2010, 20, 451–462. [Google Scholar] [CrossRef]
- German Federal Environment Agency (UBA). Umweltschädliche Subventionen in Deutschland; UBA: Dessau-Roßlau, Germany, 2016; pp. 1–124. [Google Scholar]
- Pe’er, G.; Lakner, S.; Müller, R.; Passoni, G.; Bontzorlos, V.; Clough, D.; Moreira, F.; Azam, C.; Berger, J.; Bezák, P.; et al. Is the CAP Fit for Purpose? An Evidence-Based Fitness-Check Assessment; BirdLife Europe and the European Environmental Bureau: Brussels, Belgium, 2017; pp. 1–20. [Google Scholar]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Horne, R.E. Limits to labels: The role of eco-labels in the assessment of product sustainability and routes to sustainable consumption. Int. J. Consum. Stud. 2009, 33, 175–182. [Google Scholar] [CrossRef]
- Deckers, J. What Policy Should Be Adopted to Curtail the Negative Global Health Impacts Associated with the Consumption of Farmed Animal Products? Res. Publica 2010, 16, 57–72. [Google Scholar] [CrossRef]
- Gerber, P.; Key, N.; Portet, F.; Steinfeld, H. Policy options in addressing livestock’s contribution to climate change. Anim. Int. J. Anim. Biosci. 2010, 4, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, G.; Fuss, S.; Koch, N.; Bodirsky, B.L.; De Cara, S.; Acworth, W. Options to overcome the barriers to pricing European agricultural emissions. SSRN 2016, 1–35. [Google Scholar] [CrossRef]
- Lenz, C.; Volmert, B.; Hentschel, A.; Roßnagel, A. Die Verknüpfung von Emissionshandelssystemen—Sozial Gerecht and Ökologisch Effektiv; Kassel University Press GmbH: Kassel, Germany, 2014; pp. 1–404. [Google Scholar]
- Worldbank; Ecofys. State and Trends of Carbon Pricing 2018; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Bullock, D. Emissions trading in New Zealand: Development, challenges and design. Environ. Politics 2012, 21, 657–675. [Google Scholar] [CrossRef]
- Leining, C.; Kerr, S. A Guide to the New Zealand Emissions Trading Scheme. Report Prepared for the Ministry for the Environment; Motu Economic and Public Policy Research: Wellington, New Zealand, 2018. [Google Scholar]
- Gulbrandsen, L.H.; Sammut, F.; Wettestad, J. Emissions Trading and Policy Diffusion: Complex EU ETS Emulation in Kazakhstan. Glob. Environ. Politics 2017, 17, 115–133. [Google Scholar] [CrossRef]
- Swartz, J.; Dahan, L.; Alberola, E.; Rittenhouse, K. Kazakhstan: A Case Study in Emissions Trading; I4CE, IETA, EDF: Paris, France, 2015; pp. 1–9. [Google Scholar]
- De Cara, S.; Vermont, B. Policy Considerations for Mandating Agriculture in a Greenhouse Gas Emissions Trading Scheme: A Comment. Appl. Econ. Perspect. Policy 2011, 33, 661–667. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–16. [Google Scholar]
- Ancev, T. Policy Considerations for Mandating Agriculture in a Greenhouse Gas Emissions Trading Scheme. Appl. Econ. Perspect. Policy 2011, 33, 99–115. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Directive of the European Parliament and of the Council Amending Directive 2003/87/EC so as to Improve and Extend the Greenhouse Gas Emission Allowance Trading System of the Community. COM(2008) 16 Final; EU Commission: Brussels, Belgium, 2008; pp. 1–12. [Google Scholar]
- Moran, D.; Wall, E. Livestock production and greenhouse gas emissions: Defining the problem and specifying solutions. Anim. Front. 2011, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Bragadóttir, H.; Magnusson, R.; Seppänen, S.; Sandén, D.; Yliheljo, E. Sectoral Expansion of the EU ETS. A Nordic Perspective on Barriers and Solutions to Include New Sectors in the EU ETS with Special Focus on Road Transport.; Nordic Council of Ministers: Copenhagen, Denmark, 2015. [Google Scholar]
- EUROSTAT. Glossary: Livestock Unit (LSU). 2019. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00124/default/table?lang=en (accessed on 19 December 2019).
- European Commission. Report from the Commission to the European Parliament and the Council. Report on the Functioning of the European Carbon Market. COM(2017) 693 Final; EU Commission: Brussels, Belgium, 2017; pp. 1–44. [Google Scholar]
- Scientific Advisory Board for Agricultural Policy at the Federal Ministry of Food and Agriculture (WBA). Wege zu Einer Gesellschaftlich Akzeptierten Nutztierhaltung. Gutachten; WBA: Berlin, Germany, 2015; pp. 1–78. [Google Scholar]
- Tyner, W.E.; Taheripour, F. Land Use Changes and CO2 Emissions Due to US Corn Ethanol Production. In Encyclopedia of Biodiversity (Second Edition); Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 539–554. [Google Scholar]
- European Commission. Regulation (EU) 2018/842 of the European Parliament and of the Council of 30 May 2018 on Binding Annual Greenhouse Gas Emission Reductions by Member States from 2021 to 2030 Contributing to Climate Action to Meet Commitments under the Paris Agreement and Amending Regulation (EU) No 525/2013; EU Commission: Brussels, Belgium, 2018; Volume OJ L 156/26. [Google Scholar]
- European Commission. Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the Inclusion of Greenhouse Gas Emissions and Removals from Land Use, Land Use Change and Forestry in the 2030 Climate and Energy Framework, and Amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU; EU Commission: Brussels, Belgium, 2018; Volume OJ L 156/1. [Google Scholar]
- Heindl, P.; Löschel, A.; Schenker, O. Der Europäische Emissionshandel als zentrales klimapolitisches Instrument. Einbettung, Erfahrungen aus der Praxis and Wirkungsanalyse. In 12 Jahre Europäischer Emissionshandel in Deutschland. Bilanz and Perspektiven für Einen Wirkungsvollen Klimaschutz; Angrick, M., Kühleis, C., Landgrebe, J., Weiß, F., Eds.; Metropolis: Marburg, Germany, 2018; pp. 69–86. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhous Gas Inventories. Volume 4. Agriculture, Forestry and Other Land Use; IGES: Hayama, Japan, 2006; pp. 1–340. [Google Scholar]
- Schmutzler, A.; Goulder, L.H. The Choice between Emission Taxes and Output Taxes under Imperfect Monitoring. J. Environ. Econ. Manag. 1997, 32, 51–64. [Google Scholar] [CrossRef]
- Pfromm, P.H. Towards sustainable agriculture: Fossil-free ammonia. J. Renew. Sustain. Energy 2017, 9, 034702. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, I.; Fellmann, T.; Weiss, F.; Witzke, P.; Barreiro-Hurlé, J.; Himics, M.; Jansson, T.; Salputra, G.; Leip, A. An Economic Assessment of GHG Mitigation Policy Options for EU Agriculture (EcAMPA 2); JRC: Brussels, Belgium, 2016; pp. 1–122. [Google Scholar]
- Pirlot, A. Environmental Border Tax Adjustments and International Trade Law; Elgar Publishing: Cheltenham, UK, 2017; pp. 1–352. [Google Scholar]
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological principles for the redesign of integrated crop–livestock systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Amery, F.; Schoumans, O.F. Agricultural Phosphorus Legislation in Europe; Institute for Agricultural and Fisheries Research (ILVO): Merelbeke, Belgium, 2014; pp. 1–54. [Google Scholar]
- Douhaire, C. Rechtsfragen der Düngung—Eine Steuerungs- und Rechtswissenschaftliche Analyse vor dem Hintergrund Unions- und Völkerrechtlicher Verpflichtungen und Politischer Zielsetzungen zum Umwelt- und Ressourcenschutz; Duncker & Humblot: Berlin, Germany, 2019; pp. 1–329. [Google Scholar]
- European Commission. Council Regulation (EC) No 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91; EU Commission: Brussels, Belgium, 2007; Volume OJ L 189/1. [Google Scholar]
- European Commission. Commission Regulation (EC) No 889/2008 of 5 September 2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control; EU Commission: Brussels, Belgium, 2008; Volume OJ L 189/1. [Google Scholar]
- Möckel, S.; Köck, W.; Rutz, C.; Schramek, J. Rechtliche und Andere Instrumente für Vermehrten Umweltschutz in der Landwirtschaft; Texte; Umweltbundesamt: Dessau, Germany, 2014; pp. 1–569. [Google Scholar]
- European Commission. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; EU Commission: Brussels, Belgium, 2018; Volume OJ L 150/1. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) No 505/2012 of 14 June 2012 Amending and Correcting Regulation (EC) No 889/2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control; EU Commission: Brussels, Belgium, 2012; Volume OJ L 154/12. [Google Scholar]
- Padel, S.; Vieweger, A.; Nocentini, L.; Devot, A.; Schmid, O.; Stolze, M. Adequacy of the production rules. In Evaluation of the EU legislation on organic farming; Sanders, J., Ed.; Thünen Institute of Farm Economics: Braunschweig, Germany, 2013; pp. 73–130. [Google Scholar]
- Sharpley, A.N.; Bergström, L.; Aronsson, H.; Bechmann, M.; Bolster, C.H.; Börling, K.; Djodjic, F.; Jarvie, H.P.; Schoumans, O.F.; Stamm, C.; et al. Future agriculture with minimized phosphorus losses to waters: Research needs and direction. AMBIO 2015, 44, 163–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leinweber, P.; Bathmann, U.; Buczko, U.; Douhaire, C.; Eichler-Löbermann, B.; Frossard, E.; Ekardt, F.; Jarvie, H.; Krämer, I.; Kabbe, C.; et al. Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of P. Ambio 2018, 47, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, E.D. Phosphorus recovery and recycling with ecological engineering: A review. Ecol. Eng. 2017, 98, 213–227. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Magid, J.; Stouman Jensen, L. Catch crops and green manures as biological tools in nitrogen management in temperate zones; Academic Press: Amsterdam, The Netherlands, 2003; Volume 79, pp. 228–301. [Google Scholar]
- Niggli, U.; Fließbach, A.; Hepperly, P.; Scialabba, N. Low Greenhouse Gas Agriculture: Mitigation and Adaptation Potential of Sustainable Farming Systems; FAO: Rome, Italy, 2009; pp. 1–26. [Google Scholar]
- Stubenrauch, J.; Garske, B.; Ekardt, F. Sustainable Land Use, Soil Protection and Phosphorus Management from a Cross-National Perspective. Sustainability 2018, 10, 1988. [Google Scholar] [CrossRef] [Green Version]
- Bund-Länder-Arbeitsgruppe zur Evaluierung der Düngeverordnung (BLAG). Evaluierung der Düngeverordnung—Ergebnisse and Optionen zur Weiterentwicklung. Abschlussbericht; Thünen Institut, Bundesforschungsinstitut für Ländliche Räume: Braunschweig, Germany, 2012; pp. 1–265. [Google Scholar]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of CE Marked Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009. COM(2016) 157; EU Commission: Brussels, Belgium, 2016. [Google Scholar]
- Ekardt, F. Theorie der Nachhaltigkeit: Ethische, Rechtliche, Politische und Transformative Zugänge—Am Beispiel von Klimawandel, Ressourcenknappheit und Welthandel; 2., vollständig überarbeitete und aktualisierte Auflage; Nomos: Baden-Baden, Germany, 2016; pp. 1–669. [Google Scholar]
- Becker, D.; Will, U. Die Durchsetzbarkeit produktbezogener Border Adjustments. In Globalisierung, Freihandel and Umweltschutz in Zeiten von TTIP; Ekardt, F., Unnerstall, H., Garske, B., Eds.; Metropolis: Marburg, Germany, 2016; pp. 197–219. [Google Scholar]
- Ekardt, F.; Schmeichel, A. Border Adjustments, WTO Law, and Climate Protection. In Critical Issues in Environmental Taxation; Chalifour, N.J., Ed.; Oxford University Press: London, UK, 2009; Volume 5, pp. 737–754. [Google Scholar]
- Volmert, B. Border Tax Adjustments. Konfliktpotential zwischen Umweltschutz and Welthandelsrecht? University Press: Kassel, Germany, 2011; pp. 1–161. [Google Scholar]
- Bovet, J.; Bizer, K.; Henger, R.; Ostertag, K.; Siedentop, S. Handelbare Flächenzertifikate—Vom akademischen Diskurs über einen Modellversuch in die Planungspraxis? Raumforsch. Raumordn. 2013, 71, 497–507. [Google Scholar] [CrossRef]
Activity | Gas | Source | EU Climate Policy Regulation from 2021 |
---|---|---|---|
Enteric fermentation | CH4 | Digestion of ruminants | Effort Sharing Regulation 1 |
Farm manure | CH4 | Emissions from storing and processing farm manure | Effort Sharing Regulation 1 |
N2O | Direct and indirect N2O emissions from storing and processing farm manure | ||
Feed stuff | N2O | Direct and indirect N2O emissions from:Direct and indirect N2O emissions from:
| Effort Sharing Regulation 1 |
Emissions from land use change | LULUCF Regulation 1 | ||
CO2 | Emissions from land use change | ||
Changes in the carbon stock of the soil caused by land use | |||
Fossil energy use for growing and transporting feed stuff | Effort Sharing Regulation 2 | ||
Production of mineral fertilisers | EU Emissions Trading Scheme 3 | ||
Fossil energy use for operating machinery for processing feed stuff | |||
Plants | CO2 | Fossil energy use for lighting, cooling, heating, ventilation, appliances | EU Emissions Trading Scheme 3 |
Fossil energy use for the construction of buildings and equipment | |||
Processing and marketing of animal products | CO2 | Fossil energy use for processing, packaging, cooling | EU Emissions Trading Scheme 3 |
Transport of animals and animal products | Effort Sharing Regulation 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weishaupt, A.; Ekardt, F.; Garske, B.; Stubenrauch, J.; Wieding, J. Land Use, Livestock, Quantity Governance, and Economic Instruments—Sustainability Beyond Big Livestock Herds and Fossil Fuels. Sustainability 2020, 12, 2053. https://doi.org/10.3390/su12052053
Weishaupt A, Ekardt F, Garske B, Stubenrauch J, Wieding J. Land Use, Livestock, Quantity Governance, and Economic Instruments—Sustainability Beyond Big Livestock Herds and Fossil Fuels. Sustainability. 2020; 12(5):2053. https://doi.org/10.3390/su12052053
Chicago/Turabian StyleWeishaupt, Antonia, Felix Ekardt, Beatrice Garske, Jessica Stubenrauch, and Jutta Wieding. 2020. "Land Use, Livestock, Quantity Governance, and Economic Instruments—Sustainability Beyond Big Livestock Herds and Fossil Fuels" Sustainability 12, no. 5: 2053. https://doi.org/10.3390/su12052053
APA StyleWeishaupt, A., Ekardt, F., Garske, B., Stubenrauch, J., & Wieding, J. (2020). Land Use, Livestock, Quantity Governance, and Economic Instruments—Sustainability Beyond Big Livestock Herds and Fossil Fuels. Sustainability, 12(5), 2053. https://doi.org/10.3390/su12052053