RGB Vegetation Indices, NDVI, and Biomass as Indicators to Evaluate C3 and C4 Turfgrass under Different Water Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Biomass
2.3. NDVI Index
2.4. RGB Vegetation Indices
2.5. Statistical Analysis
3. Results
3.1. Water Irrigation Effect on Shoot Biomass, NDVI, GA and GGA
3.2. C4-C3 Effect on Biomass, NDVI, GA and GGA
3.3. Water Deficit and Seasonal Periods Effects on Turfgrass Growing
3.4. Relationships of Biomass, NDVI and RGB Vegetation Indices
4. Discussion
4.1. Potential of Spectral Vegetation Indices to Evaluate Turfgrass Growing
4.2. Turfgrass Water Management Using Low-cost Remote Sensing Techniques
4.3. Is the Mixture C4-C3 Better Tolerant to Water Stress than C3?
4.4. Can We Sustain Turfgrass Quality with Less Water Irrigation?
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Soil Characteristics | Unity | |
---|---|---|
PH | 8.35 | |
Electrical conductivity (EC) | 170 | µs/cm |
Potasium (K+) | 0.83 | meq/100gr |
Calcium Ca+2) | 11.00 | meq/100gr |
Magnesium (Mg+2) | 3.12 | meq/100gr |
Sodium (Na+) | 0.85 | meq/100gr |
Phosphorus (P) | 26.3 | mg/kg |
Total Nitrogen | 459 | mg/kg |
Clay | 27 | % |
Silt | 23 | % |
Sand | 50 | % |
Texture | loamy sand soil |
Mar | Apr | May | Jun | Jul | Aug | Sep | |
---|---|---|---|---|---|---|---|
PP (mm) | 19.00 | 14.80 | 29.20 | 13.80 | 38.90 | 15.70 | 0.00 |
T min (°C) | 3.30 | 5.00 | 10.32 | 15.74 | 17.11 | 18.01 | 12.00 |
T max (°C) | 18.37 | 24.00 | 26.75 | 32.37 | 33.62 | 33.29 | 28.00 |
T aver (°C) | 11.15 | 14.50 | 18.53 | 24.05 | 25.36 | 26.00 | 20.00 |
ET (mm) | 164.4 | 327.0 | 377.6. | 411.8 | 287.8 | 223.7 | 379.0 |
ET aver (mm) | 5.3 | 10.9 | 12.2 | 13.7 | 9.3 | 7.2 | 12.6 |
References
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- James, P.; Tzoulas, K.; Adams, M.D.; Barber, A.; Box, J.; Breuste, J.; Elmqvist, T.; Frith, M.; Gordon, C.; Greening, K.L.; et al. Towards an integrated understanding of green space in the European built environment. Urban For. Urban Green. 2009, 8, 65–75. [Google Scholar] [CrossRef]
- Schebella, M.F.; Weber, D.; Brown, G.; Hatton MacDonald, D. The importance of irrigated urban green space: Health and recreational perspectives. Technical Report; Goyder Institute for Water Research: Adelaide, Australia, 2014. [Google Scholar]
- Saunders, R. Climate Change Discussion Paper: The Impact of Climate Change on Urban Parks Managed by Parks Victoria; Rob Saunders Associates: Carlton Victoria, Australia, 2009. [Google Scholar]
- Kenna, M.R.; Horst, G.L. Turfgrass water conservation and quality. Inter. Turf. Soc. Res. J. 1993, 7, 99–113. [Google Scholar]
- Jansen van vuuren, J.D. Optimal Use of Turf Grass; Water Research Commission: Pretoria, South Africa, 1997. [Google Scholar]
- Domenghini, J.C.; Bremer, D.J.; Fry, J.D.; Davis, G.L. Evapotranspiration and Performance among Turfgrass and Ornamental Landscape Species in Response to Irrigation Deficit. Inter. Turf. Soc. Res. J. 2013, 12, 405–414. [Google Scholar]
- Edwards, E.J.; Smith, S.A. Phylogenetic analyses reveal the shady history of C4 grasses. Proc. Natl. Acad. Sci. USA 2010, 107, 2532–2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, S.P. Environmental responses. In C4 Plant Biology; Sage, R.F., Monson, R.K., Eds.; Academic Press: San Diego, CA, USA, 1999; pp. 215–249. [Google Scholar]
- Osmond, C.B.; Winter, K.; Ziegler, H. Functional significance of different pathways of CO2 fixation in photosynthesis. In Encyclopedia of Plant Physiology: New Series; Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., Eds.; Springer: Berlin, Germany, 1982; pp. 479–547. [Google Scholar]
- Ehleringer, J.; Pearcy, R.W. Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol. 1983, 73, 555–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.H.; Ripley, B.S.; Woodward, F.I.; Osborne, C.P. Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment. Plant. Cell Environ. 2011, 34, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Kocacinar, F.; Sage, R.F. Photosynthetic pathway alters xylem structure and hydraulic function in herbaceous plants. Plant. Cell Environ. 2003, 26, 2015–2026. [Google Scholar] [CrossRef]
- Krum, J.; Carrow, R.N.M.; Karnok, K. Spatial mapping of complex turfgrass sites: Site-specific management units and protocols. Crop Sci. 2010, 50, 301–315. [Google Scholar] [CrossRef]
- Caturegli, L.; Lulli, F.; Foschi, L.; Guglielminetti, L.; Enrico Bonari, E.; Volterrani, M. Turfgrass spectral reflectance: Simulating satellite monitoring of spectral signatures of main C3 and C4 species. Precis. Agric. 2014, 16, 297–310. [Google Scholar] [CrossRef]
- Prince, S.D. Satellite remote sensing of primary production: Comparison ofresults for Sahelian grassland 1981–1988. Inter. J. Remote Sens. 1991, 12, 1301–1312. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance indices as a potential indirect selection criteria forwheat yield under irrigation. Crop Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef]
- Marti, J.; Bort, J.; Slafer, G.A.; Araus, J.L. Can wheat yield be assessed by earlymeasurements of normalized difference vegetation index? Ann. Appl. Biol. 2007, 150, 253–257. [Google Scholar] [CrossRef]
- Carrow, R.N.; Krum, J.M.; Flitcroft, I.; Cline, V. Precision turfgrass management: Challenges and field applications for mapping turfgrass soil and stress. Precis. Agric. 2010, 11, 115–134. [Google Scholar] [CrossRef]
- Karcher, D.E.; Richardson, M.D. Quantifying turfgrass color using digital image analysis. Crop Sci. 2003, 43, 943–951. [Google Scholar] [CrossRef]
- Casadesus, J.; Kaya, Y.; Bort, J.; Nachit, M.M.; Araus, J.L.; Amor, S.; Ferrazzano, G.; Maalouf, F.; Maccaferri, M.; Martos, V.; et al. Using vegetation indices derived from conventional digital cameras as selectioncriteria for wheat breeding in water-limited environments. Ann. Appl. Bot. 2007, 150, 227–236. [Google Scholar] [CrossRef]
- Casadesús, J.; Biel, C.; Savé, R. Turf color measurement with conventional digital cameras. In EFITA/WCCA Joint Congress in Agriculture; Boaventura Cunha, J., Morais, R., Eds.; Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 2005; pp. 804–811. [Google Scholar]
- Casadesús, J.; Villegas, D. Conventional digital cameras as a tool for assessingleaf area index and biomass for cereal breeding. J. Integr. Plant. Biol. 2014, 56, 7–14. [Google Scholar] [CrossRef]
- Bell, G.E.; Martin, D.L.; Wiese, S.G.; Dobson, D.D.; Smith, M.W.; Stone, M.L.; Solie, J.B. Vehicle-mounted optical sensing: An objective means for evaluating turf quality. Crop Sci. 2002, 42, 197–201. [Google Scholar] [CrossRef]
- Trenholm, L.E.; Carrow, R.N.; Duncan, R.R. Relationship of multispectral radiometry data to qualitative data in turfgrass research. Crop Sci. 1999, 39, 763–769. [Google Scholar] [CrossRef]
- Moran, M.S.; Pinter, P.J.; Clothier, B.E.; Allen, S.G. Effects of water stress on the canopy architecture and spectral indices of irrigated alfalfa. Remote Sens. Environ. 1989, 29, 251–261. [Google Scholar] [CrossRef]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Controls over intra-seasonal dynamics ofAVHRR NDVI for the Arctic tundra in northern Alaska. Inter. J. Remote Sens. 2004, 25, 1425–1432. [Google Scholar] [CrossRef]
- Caturegli, L.; Lulli, F.; Foschi, L.; Guglielminetti, L.; Bonari, E.; Volterrani, M.M. Monitoring Turfgrass Species and Cultivars by Spectral Reflectance. Eur. J. Hortic. Sci. 2014, 79, 97–107. [Google Scholar]
- Trenholm, L.E.; Sclossberg, G.; Lee, G.; Parks, W. An evaluation of multi-spectral responses on selected turfgrass species. Inter. J. Remote Sens. 2000, 21, 709–721. [Google Scholar] [CrossRef]
- Adamsen, F.J.; Pinter, P.J.; Barnes, E.M.; LaMorte, R.L.; Wall, W.G.; Leavitt, S.W.; Kimball, B.A. Measuring wheat senescence with a digital camera. Crop Sci. 1999, 39, 719–724. [Google Scholar] [CrossRef]
- Lukina, E.V.; Stone, M.L.; Raun, W.R. Estimating vegetation coverage in wheat using digital images. J. Plant. Nutr. 1999, 22, 341–350. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C. Breeding to adapt agriculture to climate change: Affordable phenotyping solutions. Curr. Opin. Plant Biol. 2018, 45, 237–247. [Google Scholar] [CrossRef]
- Marín, J.; Parra, L.; Rocher, J.; Sendra, S.; Lloret, J.; Pedro, V. Mauri, Alberto Masaguer. Urban Lawn Monitoring in Smart City Environments. J. Sens. 2018, 2018, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Marín, J.; Rocher, J.; Parra, L.; Sendra, S.; Lloret, J.; Mauri, P.V. Autonomous WSN for Lawns Monitoring in Smart Cities. In Proceedings of the IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA 2017), Hammamet, Tunisia, 30 October–3 November 2017. [Google Scholar]
- Kenna, M.P. Detecting turf stress with remote sensing. Grounds Maint. 1995, 10, 17–20. [Google Scholar]
- Taghvaeian, S.; Chávez, J.L.; Mary, J.; Hattendorf, M.J.; Crookston, M.A. Optical and Thermal Remote Sensing of Turfgrass Quality, Water Stress, and Water Use under Different Soil and Irrigation Treatments. Remote Sens. 2013, 5, 2327–2347. [Google Scholar] [CrossRef] [Green Version]
- Horst, G.L.; Steinegger, D.H.; Gaussoin, R.E. Comparative evapotranspiration rates of some perennial herbaceous ground covers and turfgrass species under greenhouse conditions. Inter. Turf. Soc. Res. J. 1997, 8, 1274–1279. [Google Scholar]
- Feldhake, C.M.; Danielson, R.E.; Butler, J.D. Turfgrass Evapotranspiration. I. Factors Influencing Rate in Urban Environ. Agron. J. 1983, 75, 824–830. [Google Scholar] [CrossRef]
- Osborne, C.P.; Sack, L. Evolution of C4 plants: A new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2012, 367, 583–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beard, J.B. Turfgrass: Science and Culture; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973; p. 130. [Google Scholar]
- Husmoen, D.; Vietor, D.M.; Rouquette, F.M.; Cothren, J.T. Variation of responses to water stress between ‘Tifton 85’ and ‘Tifway’ or ‘Coastal’ bermudagrass. Crop Sci. 2012, 52, 2385–2391. [Google Scholar] [CrossRef]
- Carrow, R.N. Drought resistance aspects of turfgrasses in the Southeast: Root-shoot responses. Crop Sci. 1996, 36, 687–694. [Google Scholar] [CrossRef]
- Zhou, Y.; Lambrides, C.; Kearns, R.; Ye, C.; Cao, N.; Fukai, S. Selecting for drought tolerance among Australian green couch grasses (Cynodon spp.). Crop Pasture. Sci. 2009, 60, 1175–1183. [Google Scholar] [CrossRef]
- Mukhtar, N.; Hameed, M.; Ashraf, M.; Ahmed, R. Modifications in stomatal structure and function in Cenchrus ciliaris L. and Cynodon dactylon (L.) pers. in response to cadmium stress. Pak. J. Bot. 2013, 45, 351–357. [Google Scholar]
Species | Characteristics |
---|---|
Brachypodium distachyon | It is highly resistant to the winter cold, drought and high temperatures of spring, own of the Mediterranean climate. Resistant quite well the trampling. |
Buchloe dactyloides | Specie of warm weather. It adapts to all types of soils, preferring the alkaline. Resistant to drought and the conditions of aridity. Bad adaptation to the shade. Low maintenance. |
Cynodon dactylon | It is the most important C4 grass species of warm weather. Resistant to long periods of drought and does not need special care. It adapts to all kinds of soils with strong stolons that give it a lot of covering power and withstand trampling. |
Festuca Arundinacea | C3 grass specie of temperate climate. Resistant to drought, shade, trampling and diseases especially Brown Patch. |
Lolium perenne | Resistant to low reaping, is well adapted to extreme climates (heat and cold) and to diseases such as Grey Leaf. |
Poa Pratensis | Specie of temperate climate. Vigorous root system that gives high power density. Resistant to trampling. Adaptable to various soils and climates, it is typically used in mixtures. Excellent tolerance to salinity and shade, is also quite resistant to heat and drought. |
SB | NDVI | GA | GGA | |
---|---|---|---|---|
Water regime | ||||
FI-100 | 18.48 b | 0.60 c | 0.64 b | 0.32 b |
DI-75 | 17.94 ab | 0.56 b | 0.54 a | 0.22 a |
DI-50 | 17.10 a | 0.51 a | 0.53 a | 0.24 a |
Level of significance | ||||
Water regime (WR) | 0.038* | 0.000*** | 0.000*** | 0.000*** |
Mar | Apr | May | Jun | Jul | Aug | Sep | Significance | ||
---|---|---|---|---|---|---|---|---|---|
Water regime | |||||||||
FI-100 | SB | 21.91 b | 21.26 b | 25.69 d | 24.48 c | 9.33 a | 13.97 a | 12.70 a | 0.000*** |
NDVI | 0.61ab | 0.57 ab | 0.62 ab | 0.61ab | 0.51a | 0.65 b | 0.66 b | 0.172 ns | |
GA | 0.80c | 0.91c | 0.61 abc | 0.78 bc | 0.49 ab | 0.40 a | 0.51ab | 0.000*** | |
GGA | 0.51bc | 0.54c | 0.23 ab | 0.60 c | 0.12a | 0.12a | 0.08a | 0.000*** | |
DI-75 | SB | 19.11bc | 20.74c | 24.63c | 25.03c | 10.95a | 13.55a | 11.55a | 0.000*** |
NDVI | 0.56a | 0.54a | 0.58a | 0.58a | 0.53a | 0.56a | 0.52a | 0.974 ns | |
GA | 0.56b | 0.64b | 0.56b | 0.64b | 0.50a | 0.43a | 0.44a | 0.018** | |
GGA | 0.24b | 0.33b | 0.26ab | 0.32ab | 0.19a | 0.11a | 0.08a | 0.019** | |
DI-50 | SB | 18.04ab | 22.07bc | 24.55c | 24.45c | 12.19a | 11.03a | 7.34a | 0.000*** |
NDVI | 0.54b | 0.59b | 0.58b | 0.59b | 0.50ab | 0.41a | 0.38a | 0.006** | |
GA | 0.55b | 0.59b | 0.59b | 0.78b | 0.46ab | 0.35a | 0.42a | 0.025** | |
GGA | 0.21b | 0.33b | 0.28b | 0.30b | 0.16a | 0.08a | 0.12a | 0.000*** |
Cynodon-Bachypodium | Buchloe-Brachypodium | Llium-Festuca-Poa | Sigificance | |
---|---|---|---|---|
FI-100 | ||||
SB | 18.72a | 17.82a | 18.89a | 0.865ns |
NDVI | 0.56a | 0.55a | 0.70b | 0.000*** |
GA | 0.50a | 0.66b | 0.78b | 0.005** |
GGA | 0.32a | 0.23a | 0.39a | 0.186ns |
DI-75 | ||||
SB | 18.86b | 17.57a | 17.38a | 0.035* |
NDVI | 0.57b | 0.48a | 0.61b | 0.017* |
GA | 0.58b | 0.43a | 0.62b | 0.016* |
GGA | 0.30b | 0.14a | 0.22b | 0.028** |
DI-50 | ||||
SB | 18.00b | 17.14ab | 16.21a | 0.040* |
NDVI | 0.55a | 0.47a | 0.51a | 0.051* |
GA | 0.56b | 0.44a | 0.51b | 0.018* |
GGA | 0.23a | 0.20a | 0.30a | 0.355ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín, J.; Yousfi, S.; Mauri, P.V.; Parra, L.; Lloret, J.; Masaguer, A. RGB Vegetation Indices, NDVI, and Biomass as Indicators to Evaluate C3 and C4 Turfgrass under Different Water Conditions. Sustainability 2020, 12, 2160. https://doi.org/10.3390/su12062160
Marín J, Yousfi S, Mauri PV, Parra L, Lloret J, Masaguer A. RGB Vegetation Indices, NDVI, and Biomass as Indicators to Evaluate C3 and C4 Turfgrass under Different Water Conditions. Sustainability. 2020; 12(6):2160. https://doi.org/10.3390/su12062160
Chicago/Turabian StyleMarín, José, Salima Yousfi, Pedro V. Mauri, Lorena Parra, Jaime Lloret, and Alberto Masaguer. 2020. "RGB Vegetation Indices, NDVI, and Biomass as Indicators to Evaluate C3 and C4 Turfgrass under Different Water Conditions" Sustainability 12, no. 6: 2160. https://doi.org/10.3390/su12062160
APA StyleMarín, J., Yousfi, S., Mauri, P. V., Parra, L., Lloret, J., & Masaguer, A. (2020). RGB Vegetation Indices, NDVI, and Biomass as Indicators to Evaluate C3 and C4 Turfgrass under Different Water Conditions. Sustainability, 12(6), 2160. https://doi.org/10.3390/su12062160