Validation of a Wearable Accelerometer-Based Activity Monitor for Use in Future Osteoporosis Prevention Programs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Analysis
3. Results
3.1. Analysis 1: Association between Measurements from Both Devices
3.2. Analysis 2: Level of Similarity in Group Estimates
3.3. Analysis 3: Level of Agreement between Devices
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 2001, 285, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Hernlund, E.; Svedbom, A.; Ivergard, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jonsson, B.; Kanis, J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sozen, T.; Ozisik, L.; Basaran, N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Svedbom, A.; Hernlund, E.; Ivergard, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jonsson, B.; Kanis, J.A.; IOF, E.U.R.P.O. Osteoporosis in the European Union: A compendium of country-specific reports. Arch. Osteoporos. 2013, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compston, J. Osteoporosis: Social and economic impact. Radiol. Clin. N Am. 2010, 48, 477–482. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Saltin, B. Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 3), 1–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borer, K.T. Physical activity in the prevention and amelioration of osteoporosis in women: Interaction of mechanical, hormonal and dietary factors. Sports Med. 2005, 35, 779–830. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chen, X.; Zhang, L.; Wu, J.; Guo, J.; Zou, D.; Chen, B.; Sun, Z.; Shen, C.; Zou, J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Prog. Biophys. Mol. Biol. 2016, 122, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Sanudo, B.; de Hoyo, M.; Del Pozo-Cruz, J.; Carrasco, L.; Del Pozo-Cruz, B.; Tejero, S.; Firth, E. A systematic review of the exercise effect on bone health: The importance of assessing mechanical loading in perimenopausal and postmenopausal women. Menopause 2017, 24, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Vainionpaa, A.; Korpelainen, R.; Vihriala, E.; Rinta-Paavola, A.; Leppaluoto, J.; Jamsa, T. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos. Int. 2006, 17, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Suh, M. 12-Wearable sensors for athletes. In Electronic Textiles; Dias, T., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 257–273. [Google Scholar]
- Sievänen, H.; Kujala, U.M. Accelerometry-Simple, but challenging. Scand. J. Med. Sci. Sports 2017, 27, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, J.E.; John, D.; Freedson, P.S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 2011, 14, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, A.V.; Stiles, V.H. Accelerometer counts and raw acceleration output in relation to mechanical loading. J. Biomech. 2012, 45, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiles, V.H.; Griew, P.J.; Rowlands, A.V. Use of accelerometry to classify activity beneficial to bone in premenopausal women. Med. Sci. Sports Exerc. 2013, 45, 2353–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welk, G.J.; McClain, J.; Ainsworth, B.E. Protocols for evaluating equivalency of accelerometry-based activity monitors. Med. Sci. Sports Exerc. 2012, 44, S39–S49. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mean | SD | |
---|---|---|
Age (years) | 44.2 | 4.8 |
Body mass (kg) | 62.7 | 9.5 |
Stature (cm) | 165.0 | 7.1 |
Accelerometers Location | Test | Pearson’s r | 95% CI1 | Pearson’s r (>3.9 g) | 95% CI1 |
---|---|---|---|---|---|
Wrist | CMJ2 | 0.894 | 0.839–0.931 | 0.777 | 0.633–0.869 |
4.8 km·h−1 | 0.967 | 0.964–0.969 | 0.786 | 0.680–0.859 | |
6.4 km·h−1 | 0.975 | 0.972–0.833 | 0.878 | 0.857–0.896 | |
9.7 km·h−1 | 0.911 | 0.904–0.918 | 0.859 | 0.847–0.870 | |
12 km·h−1 | 0.901 | 0.888–0.913 | 0.868 | 0.850–0.884 | |
Hip | CMJ2 | 0.935 | 0.886–0.963 | 0.905 | 0.806–0.955 |
4.8 km·h−1 | 0.818 | 0.802–0.833 | 0.434 | −0.390–0.872 | |
6.4 km·h−1 | 0.902 | 0.892–0.910 | 0.413 | 0.219–0.522 | |
9.7 km·h−1 | 0.655 | 0.628–0.680 | 0.330 | 0.274–0.384 | |
12 km·h−1 | 0.607 | 0.553–0.656 | 0.446 | 0.370–0.516 |
Test | Device | Location | Mean | Median | SD2 | SE3 |
---|---|---|---|---|---|---|
CMJ1 | ActiGraph | Hip | 4.32 g | 4.14 g | 1.08 g | 0.16 g |
CMJ1 | Muvone | Hip | 4.46 g | 4.46 g | 1.23 g | 0.18 g |
CMJ1 | ActiGraph | Wrist | 4.21 g | 4.17 g | 0.79 g | 0.09 g |
CMJ1 | Muvone | Wrist | 4.20 g | 4.24 g | 0.92 g | 0.10 g |
4.8 km/h | ActiGraph | Hip | 1.79 g | 1.75 g | 0.26 g | 0.07 g |
4.8 km/h | Muvone | Hip | 1.75 g | 1.67 g | 0.34 g | 0.09 g |
4.8 km/h | ActiGraph | Wrist | 1.89 g | 1.70 g | 0.65 g | 0.15 g |
4.8 km/h | Muvone | Wrist | 1.82 g | 1.63 g | 0.63 g | 0.15 g |
6.4 km/h | ActiGraph | Hip | 2.64 g | 2.39 g | 0.99 g | 0.27 g |
6.4 km/h | Muvone | Hip | 2.67 g | 2.31 g | 1.11 g | 0.30 g |
6.4 km/h | ActiGraph | Wrist | 3.06 g | 2.27 g | 1.56 g | 0.37 g |
6.4 km/h | Muvone | Wrist | 2.89 g | 2.10 g | 1.47 g | 0.35 g |
9.7 km/h | ActiGraph | Hip | 4.23 g | 3.85 g | 0.87 g | 0.23 g |
9.7 km/h | Muvone | Hip | 4.45 g | 4.40 g | 0.93 g | 0.24 g |
9.7 km/h | ActiGraph | Wrist | 5.41 g | 5.38 g | 1.08 g | 0.25 g |
9.7 km/h | Muvone | Wrist | 5.10 g | 5.08 g | 0.99 g | 0.23 g |
12 km/h | ActiGraph | Hip | 4.80 g | 4.45 g | 0.85 g | 0.38 g |
12 km/h | Muvone | Hip | 5.02 g | 5.06 g | 0.77 g | 0.34 g |
12 km/h | ActiGraph | Wrist | 6.73 g | 6.41 g | 1.43 g | 0.54 g |
12 km/h | Muvone | Wrist | 6.40 g | 6.04 g | 1.26 g | 0.48 g |
Accelerometers Location | Test | Difference between Peak Acceleration Means (GT3X - Muvone) | 95% CI1 |
---|---|---|---|
Wrist | CMJ2 | 0.006 g (p = 0.96) | −0.260–0.272 |
4.8 Km/h | 0.073 g (p = 0.73) | −0.360–0.506 | |
6.4 Km/h | 0.165 g (p = 0.75) | −0.864–1.195 | |
9.7 Km/h | 0.311 g (p = 0.37) | −0.389–1.011 | |
12 Km/h | 0.326 g (p = 0.66) | −1.245–1.896 | |
Hip | CMJ2 | −0.143 g (p = 0.55) | −0.613–0.327 |
4.8 Km/h | 0.048 g (p = 0.68) | −0.189–0.285 | |
6.4 Km/h | −0.033 g (p = 0.93) | −0.849–0.783 | |
9.7 Km/h | −0.215 g (p = 0.52) | −0.891–0.461 | |
12 Km/h | −0.215 g (p = 0.69) | −1.398–0.968 |
Accelerometer Location | Test | Mean Bias (GT3X - Muvone) | Lower Limit of Agreement | Upper Limit of Agreement |
---|---|---|---|---|
Wrist | CMJ1 | 0.006 g (0.88%) | −0.804 g | 0.816 g |
4.8 km·h−1 | 0.072 g (3.79%) | −0.251 g | 0.395 g | |
6.4 km·h−1 | 0.163 g (5.27%) | −0.558 g | 0.884 g | |
9.7 km·h−1 | 0.313 g (5.77%) | −0.845 g | 1.471 g | |
12 km·h−1 | 0.333 g (4.97%) | −1.172 g | 1.839 g | |
Hip | CMJ1 | −0.143 g (−2.52%) | −1.011 g | 0.725 g |
4.8 km·h−1 | 0.049 g (4.33%) | −0.526 g | 0.623 g | |
6.4 km·h−1 | −0.032 g (−1.26%) | −1.026 g | 0.962 g | |
9.7 km·h−1 | −0.178 g (−1.68%) | −2.349 g | 1.994 g | |
12 km·h−1 | −0.218 g (−2.88%) | −2.341 g | 1.906 g |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Trigo, H.; Sanchez-Oliver, A.J.; Abt, G.; Sañudo, B. Validation of a Wearable Accelerometer-Based Activity Monitor for Use in Future Osteoporosis Prevention Programs. Sustainability 2020, 12, 2187. https://doi.org/10.3390/su12062187
Sánchez-Trigo H, Sanchez-Oliver AJ, Abt G, Sañudo B. Validation of a Wearable Accelerometer-Based Activity Monitor for Use in Future Osteoporosis Prevention Programs. Sustainability. 2020; 12(6):2187. https://doi.org/10.3390/su12062187
Chicago/Turabian StyleSánchez-Trigo, Horacio, Antonio Jesús Sanchez-Oliver, Grant Abt, and Borja Sañudo. 2020. "Validation of a Wearable Accelerometer-Based Activity Monitor for Use in Future Osteoporosis Prevention Programs" Sustainability 12, no. 6: 2187. https://doi.org/10.3390/su12062187
APA StyleSánchez-Trigo, H., Sanchez-Oliver, A. J., Abt, G., & Sañudo, B. (2020). Validation of a Wearable Accelerometer-Based Activity Monitor for Use in Future Osteoporosis Prevention Programs. Sustainability, 12(6), 2187. https://doi.org/10.3390/su12062187