How Are Unemployed Individuals with Obesity Affected by an Economic Crisis?
Abstract
:1. Introduction
2. Background
3. Methods
3.1. Propensity Score Matching
3.2. Difference-in-Differences Framework
3.3. Difference-in-Differences Framework Via Quantile Regression
4. Data Collection
5. Results and Discussion
5.1. Evidence Regarding Average Treatment Effect on the Treated
5.2. Difference-in-Differences Evidence
5.3. Difference-in-Differences Evidence via Quantile Regression
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [Green Version]
- Hemphill, E.; Raine, K.; Spence, J.C.; Smoyer-Tomic, K.E. Exploring obesogenic food environments in Edmonton, Canada: The association between socioeconomic factors and fast-food outlet access. Am. J. Health Promot. 2008, 22, 426–432. [Google Scholar] [CrossRef]
- Moulin, J.J.; Labbe, E.; Sass, C.; Gerbaud, L. Job insecurity, unemployment and health: Results from the health examination centers of the French General Health Insurance. Rev. Epidemiol. Sante Publique 2009, 57, 141–149. [Google Scholar] [CrossRef]
- Deb, P.; Gallo, W.T.; Ayyagari, P.; Fletcher, J.M.; Sindelar, J.L. The effect of job loss on overweight and drinking. J. Health Econ. 2011, 30, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Muenster, E.; Rueger, H.; Ochsmann, E.; Letzel, S.; Toschke, A.M. Association between overweight, obesity and self-perceived job insecurity in German employees. BMC Public Health 2011, 11, 162. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, M. Health in the long-term unemployed. Higher risk of obesity. Dtsch. Arztebl. Int. 2013, 110, 676. [Google Scholar]
- Latif, E. The impact of macroeconomic conditions on obesity in Canada. Health Econ. 2014, 23, 751–759. [Google Scholar] [CrossRef]
- Schnuerer, I.; Baumann, S.; Haberecht, K.; Gaertner, B.; John, U.; Freyer-Adam, J. Patterns of health risk behaviors among job-seekers: A latent class analysis. Int. J. Public Health 2015, 60, 111–119. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Fact Sheet No. 311, Jan 2015. Available online: http://www.who.int/mediacentre/factsheets/fs311/es/ (accessed on 15 February 2018).
- Breda, J.; Webber, L. Proportion of Overweight and Obese Males and Females to Increase in Most European Countries by 2030, Say Latest Projections by WHO; World Health Organization: Copenhagen, Denmark; UK Health Forum: London, UK, 2015. [Google Scholar]
- National Statistics Institute, INE. 2015. Available online: http://www.ine.es/prensa/np770.pdf (accessed on 17 January 2018).
- Hernández-Jiménez, S. Fisiopatología de la Obesidad. Gac. Med. Mex. 2004, 140, 27–32. [Google Scholar]
- Health Information System. Health Information and Statistics 2013, Trends in the Main Risk Factors for Chronic Diseases, Spain 2001–2011/12; Ministry of Health, Social Services and Equality: Madrid, Spain, 2013. [Google Scholar]
- Wardle, J.; Waller, J.; Jarvis, M.J. Sex differences in the association of socioeconomic status with obesity. Am. J. Public Health 2001, 92, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Sen, J.; Mondal, N.; Dutta, S. Factors affecting overweight and obesity among urban adults: A cross-sectional study. Epidemiol. Biostat. Public Health 2013, 10, 1. [Google Scholar]
- Drewnowski, A.; Specter, S.E. Poverty and obesity: The role of energy density and energy costs. Am. J. Clin. Nutr. 2004, 79, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Akil, L.; Ahmad, H.A. Effects of socioeconomic factors of obesity rates in forth southern states and Colorado. Ethn. Dis. 2011, 21, 58–62. [Google Scholar]
- Sobal, J.; Rauschenbach, B.S.; Frongillo, E.A. Marital status, fatness and obesity. Soc. Sci. Med. 1992, 35, 915–923. [Google Scholar] [CrossRef]
- Ball, K.; Mishra, G.; Crawford, D. Which aspects of socioeconomic status are related to obesity among men and women? Int. J. Obes. 2002, 26, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Sartorius, B.; Veerman, L.J.; Manyema, M.; Chola, L.; Hofman, K. Determinants of obesity and associated population attributability, South Africa: Empirical evidence from a national panel survey, 2008–2012. PLoS ONE 2015. [Google Scholar] [CrossRef] [Green Version]
- Ruhm, C.J. Healthy living in hard times? J. Health Econ. 2005, 24, 341–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freyer-Adam, J.; Gaertner, B.; Tobschall, S.; John, U. Health risk factors and self-rated health among job-seekers. BMC Public Health 2011, 11, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komlos, J.; Carson, S. The BMI values of the lower classes likely declined during the great depression. Econ. Hum. Biol. 2017, 26, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Benavides, F.G.; García, A.M.; Sáez-Lloret, I.; Librero, J. Unemployment and health in Spain. The influence of socio-economic environment. Eur. J. Public Health 1994, 4, 103–107. [Google Scholar] [CrossRef]
- Ross, C.; Mirowsky, J. Does employment affect health? J. Health Soc. Behav. 1995, 36, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Dooley, D.; Fielding, J.; Levi, L. Health and unemployment. Annu. Rev. Public Health 1996, 17, 949–965. [Google Scholar] [CrossRef] [PubMed]
- Pharr, J.R.; Moonie, S.; Bungum, T.J. The impact of unemployment on mental and physical health, access to health care and health risk behaviors. ISRN Public Health 2012, 2012, 483432. [Google Scholar] [CrossRef] [Green Version]
- Urbanos, R.; González, B. Desempleo y salud: Un análisis de la repercusión de la crisis económica sobre la salud de los españoles. Estud. Econ. Appl. 2013, 31, 303–326. [Google Scholar]
- Ásgeirsdóttir, T.L.; Corman, H.; Noonan, K.; Reichman, N.E. Lifecycle effects of a recession on health behaviors: Boom, bust, and recovery in Iceland. Econ. Hum. Biol. 2016, 20, 90–107. [Google Scholar] [CrossRef] [Green Version]
- Crost, B.; Friedson, A. Recessions and health revisited: New findings for working age adults. Econ. Hum. Biol. 2017, 27, 241–247. [Google Scholar] [CrossRef]
- Caliendo, M.; Lee, W.-S. Fat chance! Obesity and the transition from unemployment to employment. Econ. Hum. Biol. 2013, 11, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Zdrojowy-Wełna, A.; Zatońska, K.; Bednarek-Tupikowska, G.; Jokiel-Rokita, A.; Kolackov, K.; Szuba, A.; Bolanowski, M. Determinants of obesity in population of PURE study from Lower Silesia. Endokrynol. Pol. 2018, 69, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Noh, J.W.; Kim, J.; Park, J.; Oh, I.H.; Kwon, Y.D. Age and gender differential relationship between employment status and body mass index among middle-aged and elderly adults: A cross-sectional study. BMJ Open 2016, 15, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, J.; Yang, L.; He, Y.; Chen, Q.; Tong, Q. Prevalence and Risk Factors of Overweight and Obesity Among Planed Pregnancy Couples in Chongqing City. Wei Sheng Yan Jiu = J. Hyg. Res. 2015, 711–716. [Google Scholar]
- Coll, J.L.; del Mar Bibiloni, M.; Salas, R.; Pons, A.; Tur, J.A. The prevalence of excessive weight in Balearic Islands’ young and middle-aged women and its association with social and socioeconomic factors: A ten-year trend (2000–2010). BMC Public Health 2015, 15, 837. [Google Scholar] [CrossRef] [Green Version]
- Monsivais, P.; Martin, A.; Suhrcke, M.; Forouhi, N.G.; Wareham, N.J. Job-loss and weight gain in British adults: Evidence from two longitudinal studies. Soc. Sci. Med. 2015, 143, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Hughes, A.; Kumari, M. Unemployment, underweight, and obesity: Findings from Understanding Society (UKHLS). Prev. Med. 2018, 97, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Okop, K.J.; Levitt, N.; Puoane, T. Factors Associated with Excessive Body Fat in Men and Women: Cross-Sectional Data from Black South Africans Living in a Rural Community and an Urban Township. PLoS ONE 2015, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Norte, A.; Sospedra, I.; Ortíz-Moncada, R. Influence of economic crisis on dietary quality and obesity rates. Int. J. Food Sci. Nutr. 2019, 70, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Zohoori, N.; Mroz, T.A.; Popkin, B.; Glinskaya, E.; Lokshin, M.; Mancini, D.; Kozyreva, P.; Kosolapov, M.; Swafford, M. Monitoring the economic transition in the Russian Federation and its implications for the demographic crisis. The Russian Longitudinal Monitoring Survey. World Dev. 1998, 26, 1977–1993. [Google Scholar] [CrossRef]
- OECD Directorate for Employment, Labour and Social Affairs. Obesity Update. June 2014. Available online: http://www.oecd.org/health/Obesity-Update-2014.pdf (accessed on 29 January 2018).
- Antentas, J.M.; Vivas, E. Impacto de la crisis en el derecho a una alimentación sana y saludable. Informe SESPAS 2014. Gac. Sanit. 2014, 28, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Urbanos-Garrido, R.M.; López-Valcarcel, B.G. The influence of the economic crisis on the association between unemployment and health: An empirical analysis for Spain. Eur. J. Health Econ. 2015, 16, 175–184. [Google Scholar] [CrossRef]
- Böckerman, P.; Ilmakunnas, P. Unemployment and self-assessed health: Evidence from panel data. Health Econ. 2009, 18, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Heckman, J.; LaLonde, R.; Smith, J. The economics and econometrics of active labor market programs. In Handbook of Labor Economics; Ashenfelter, O., Card, D., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 3, pp. 1865–2097. [Google Scholar]
- Blundell, R.; Dias, M.C. Alternative approaches to evaluation in empirical microeconomics. J. Hum. Resour. 2009, 44, 565–640. [Google Scholar]
- Villa, J.M. Diff: Simplifying the estimation of difference-in-differences treatment effects. Stata J. 2016, 16, 52–71. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R. Quantile Regression; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Koenker, R.; D’Orey, V. Algorithm AS 229: Computing regression quantiles. J. R. Stat. Soc. Ser. C Appl. Stat. 1987, 36, 383–393. [Google Scholar] [CrossRef]
- Buchinsky, M. Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study. J. Econ. 1995, 68, 303–338. [Google Scholar] [CrossRef]
- Lobstein, T.; Baur, L.; Uauy, R. IASO International Obesity Task Force. Obesity in children and young people: A crisis in public health. Obes. Rev. 2004, 5, 4–104. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Stillman, S.; Thomas, D. Nutritional status during an economic crisis: Evidence from Russia. Econ. J. 2008, 118, 1385–1417. [Google Scholar] [CrossRef]
- Grossman, M.; Kaestner, R. Effects of education on health. In Social Benefits Education; Behrman, J.R., Stacey, N., Eds.; University of Michigan Press: Ann Arbor, MI, USA, 1997; pp. 69–124. [Google Scholar]
- Groot, W.; van den Brink, M.H. The health effects of education. Econ. Educ. Rev. 2007, 26, 186–200. [Google Scholar] [CrossRef]
- Suhrcke, M.; Stuckler, D. Will the recession be bad for our health? It depends. Soc. Sci. Med. 2012, 74, 647–653. [Google Scholar] [CrossRef]
Variable | Definition | 2006–2007 (N = 13,783) Meana | 2011–2012 (N = 10,830) Meana | |
---|---|---|---|---|
BMI | Body mass index | 25.3 (4.193) | 25.6 (4.256) | (**) |
(log)BMI | Logarithm of BMI | 3.2 (0.001) | 3.2 (0.002) | (**) |
Obesity | Dummy variable: 1, obese; 0, otherwise | 12.414 | 14.497 | (**) |
Labor status | ||||
Employed | Dummy variable: 1, employed; 0, otherwise | 88.116 | 77.091 | (**) |
Unemp_never worked | Dummy variable: 1, unemployed and never worked; 0, otherwise | 0.566 | 0.988 | (**) |
<6 months unemployed | Dummy variable: 1, unemployed <6 months; 0, otherwise | 5.202 | 6.805 | (**) |
6-12 months unemployed | Dummy variable: 1, unemployed 6-12 months; 0, otherwise | 1.654 | 3.638 | (**) |
>12 months unemployed | Dummy variable: 1, unemployed >12 months; 0, otherwise | 4.099 | 11.330 | (**) |
Socioeconomic status | ||||
Age | Age in years | 40.3 (0.092) | 41.9 (0.103) | (**) |
Male | Dummy variable: 1, male; 0, otherwise | 48.349 | 54.515 | (**) |
Health | Dummy variable: 1, vision good; 0, otherwise | 76.638 | 81.237 | (**) |
Health regular | Dummy variable: 1, vision regular; 0, otherwise | 19.060 | 15.125 | (**) |
Health poor | Dummy variable: 1, vision bad; 0, otherwise | 4.302 | 3.638 | (**) |
Marital status | Dummy variable: 1, not single; 0, otherwise | 65.733 | 64.441 | (**) |
No education | Dummy variable: 1, no education; 0, otherwise | 3.026 | 3.093 | |
Primary education | Dummy variable: 1, completed primary education; 0, otherwise | 47.203 | 51.348 | (**) |
Secondary education | Dummy variable: 1, completed secondary education; 0 otherwise otherwise | 26.112 | 22.946 | (**) |
University education | Dummy variable: 1, completed university education; 0, otherwise | 23.660 | 22.613 | (*) |
Physical activity | Dummy variable: 1, physically active; 0, otherwise | 58.550 | 25.642 | (**) |
Fruit | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise | 79.830 | 78.901 | (*) |
Meat | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise | 75.383 | 68.818 | (**) |
Eggs | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise times a week to daily; 0, otherwise | 29.137 | 26.519 | (**) |
Fish | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise times a week to daily; 0, otherwise | 40.499 | 37.313 | (**) |
Pasta | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise times a week to daily; 0, otherwise | 96.409 | 94.922 | (**) |
Vegetables | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise times a week to daily; 0, otherwise | 80.062 | 83.564 | (**) |
Sausages | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise times a week to daily; 0, otherwise | 43.118 | 38.984 | (**) |
Milk | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise times a week to daily; 0, otherwise | 94.464 | 92.207 | (**) |
Sugars | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise times a week to daily; 0, otherwise | 47.972 | 44.515 | (**) |
Soda | Dummy variable: 1, if 3 or more times/week to daily; 0, otherwise times a week to daily; 0, otherwise | 26.968 | 23.666 | (**) |
Region 1 | Dummy variable: 1, if resident in Andalusia; 0, otherwise | 8.024 | 12.115 | (**) |
Region 2 | Dummy variable: 1, if resident in Aragon; 0, otherwise | 9.410 | 3.804 | (**) |
Region 3 | Dummy variable: 1, if resident in Asturias; 0, otherwise | 2.808 | 3.416 | (**) |
Region 4 | Dummy variable: 1, if resident in Balearic Islands; 0, otherwise | 6.798 | 3.638 | (**) |
Region 5 | Dummy variable: 1, if resident in Canarias; 0, otherwise | 4.484 | 5.466 | (**) |
Region 6 | Dummy variable: 1, if resident in Cantabria; 0, otherwise | 5.674 | 2.650 | (**) |
Region 7 | Dummy variable: 1, if resident in Castilla-Leon; 0, otherwise | 3.932 | 5.577 | (**) |
Region 8 | Dummy variable: 1, if resident in Castilla-La Mancha; 0, otherwise otherwise | 3.359 | 4.377 | (**) |
Region 9 | Dummy variable: 1, if resident in Catalonia; 0, otherwise | 7.255 | 11.099 | (**) |
Region 10 | Dummy variable: 1, if resident in Valencia; 0, otherwise | 6.675 | 8.772 | (**) |
Region 11 | Dummy variable: 1, if resident in Extremadura; 0, otherwise | 2.714 | 4.211 | (**) |
Region 12 | Dummy variable: 1, if resident in Galicia; 0, otherwise | 10.187 | 4.986 | (**) |
Region 13 | Dummy variable: 1, if resident in Madrid; 0, otherwise | 8.119 | 10.323 | (**) |
Region 14 | Dummy variable: 1, if resident in Murcia; 0, otherwise | 6.254 | 4.192 | (**) |
Region 15 | Dummy variable: 1, if resident in Navarre; 0, otherwise | 6.225 | 3.980 | (**) |
Region 16 | Dummy variable: 1, if resident in Basque Country; 0, otherwise | 3.998 | 5.873 | (**) |
Region 17 | Dummy variable: 1, if resident in Rioja; 0, otherwise | 2.677 | 3.398 | (**) |
Region 18 | Dummy variable: 1, if resident in Ceuta or Melilla; 0, otherwise | 1.408 | 2.124 | (**) |
Obesity (%) | 2006–2007 | 2011–2012 | |
---|---|---|---|
Employed | 12.194 | 13.523 | (**) |
Never worked | 12.821 | 13.084 | |
Unemployed | 14.042 | 17.775 | (**) |
<6 months | 12.552 | 15.197 | |
6–12 months | 13.158 | 18.020 | |
>12 months | 15.929 | 19.641 | (*) |
Total | 12.414 | 14.497 |
2006–2007 | 2011–2012 | |||||
---|---|---|---|---|---|---|
Employed | Unemployed | Employed | Unemployed | |||
BMI | 25.335 | 25.148 | (**) | 25.516 | 25.912 | (**) |
(log) BMI | 3.220 | 3.210 | (**) | 3.227 | 3.240 | (**) |
2006–2007 | 2011–2012 | |||||||
---|---|---|---|---|---|---|---|---|
Unemployed (average) a | Estimated counterfactual (average) b | Impact (average) c | t-statistic | Unemployed (average) a | Estimated counterfactual (average) b | Impact (average) c | t-statistic | |
Panel A. Overall (log) BMI | ||||||||
3.210 | 3.214 | −0.005 | −1.02 | 3.240 | 3.232 | 0.007 | 1.87 * | |
Panel B. (log) BMI by quantile range | ||||||||
0–0.05 | 2.924 | 2.926 | −0.002 | −0.33 | 2.911 | 2.921 | −0.010 | −1.56 |
0.05–0.10 | 2.997 | 2.998 | −0.001 | −0.69 | 3.004 | 3.006 | −0.002 | −1.41 |
0.10–0.25 | 3.065 | 3.066 | −0.001 | −0.74 | 3.079 | 3.078 | −0.000 | −0.14 |
0.25–0.50 | 3.159 | 3.161 | −0.002 | −1.15 | 3.174 | 3.173 | 0.001 | 0.51 |
0.50–0.75 | 3.264 | 3.263 | 0.000 | 0.04 | 3.275 | 3.274 | 0.001 | 0.78 |
0.75–0.90 | 3.366 | 3.366 | −0.001 | −0.25 | 3.380 | 3.378 | 0.003 | 1.36 |
0.90–0.95 | 3.450 | 3.455 | −0.005 | −1.87 * | 3.468 | 3.470 | −0.002 | −0.80 |
0.95–1 | 3.579 | 3.582 | −0.003 | −0.29 | 3.592 | 3.596 | −0.005 | −0.56 |
Panel C. (log) BMI by unemployment category | ||||||||
Never worked employed | 3.163 | 3.209 | −0.046 | −2.08 ** | 3.173 | 3.200 | −0.026 | −1.28 |
Unemployed | ||||||||
<6m unemployed | 3.200 | 3.216 | −0.016 | −2.49 ** | 3.235 | 3.227 | 0.009 | 1.42 |
6-12m | 3.218 | 3.219 | −0.001 | −0.08 | 3.234 | 3.228 | 0.009 | 0.74 |
>12m | 3.224 | 3.224 | −0.000 | −0.03 | 3.250 | 3.239 | 0.011 | 1.99 ** |
Parameter | All | Never Employed | <6 months Unemployed | 6–12 months Unemployed | >12 months Unemployed |
---|---|---|---|---|---|
Constant () | 3.098 *** (323.85) | 3.092 *** (291.98) | 3.094 *** (303.16) | 3.091 *** (296.32) | 3.095 *** (306.42) |
IUOP in boom () | −0.002 (−0.38) | 0.004 (0.24) | −0.005 (−0.82) | 0.011 (1.12) | −0.003 (−0.44) |
Bust effect () | −0.008 *** (−3.63) | −0.008 *** (−3.61) | −0.008 *** (−3.78) | −0.008 *** (−3.62) | −0.008 *** (−3.45) |
Bust effect on IUOP () | 0.010 * (1.93) | −0.006 (−0.30) | 0.017 ** (2.15) | −0.002 (−0.16) | 0.010 (1.28) |
Control variables | |||||
Age | 0.003 *** (32.92) | 0.003 *** (30.83) | 0.003 *** (32.02) | 0.003 *** (31.06) | 0.003 *** (30.86) |
Sex | 0.087 *** (44.50) | 0.091 *** (43.75) | 0.090 *** (44.45) | 0.090 *** (43.74) | 0.088 *** (43.38) |
Health regular | 0.020 *** (7.85) | 0.020 *** (9.12) | 0.019 *** (7.29) | 0.020 *** (7.42) | 0.020 *** (7.72) |
Health poor | 0.025 *** (5.08) | 0.033 *** (5.89) | 0.032 *** (5.97) | 0.029 *** (5.45) | 0.026 *** (5.04) |
Marital status | 0.020 *** (10.19) | 0.020 *** (9.12) | 0.020 *** (9.54) | 0.020 *** (9.29) | 0.020 *** (9.41) |
Primary education | −0.012 ** (−2.18) | −0.013 ** (−2.01) | −0.013 ** (−2.16) | −0.011 * (−1.78) | −0.011 * (−1.77) |
Secondary education | −0.033 *** (−5.71) | −0.032 *** (−4.81) | −0.033 *** (−5.20) | −0.030 *** (−4.69) | −0.032 *** (−5.16) |
University education | −0.058 *** (−9.86) | −0.058 *** (−8.67) | −0.058 *** (−9.13) | −0.056 *** (−8.57) | −0.056 *** (−9.06) |
Physical activity | −0.018 *** (−8.69) | −0.017 *** (−7.73) | −0.017 *** (−7.99) | −0.017 *** (−7.87) | −0.017 *** (−8.08) |
Fruit | 0.007 *** (2.66) | 0.005 * (1.80) | 0.006 ** (2.14) | 0.005 ** (1.99) | 0.006 ** (2.35) |
Meat | 0.017 *** (7.71) | 0.017 *** (7.04) | 0.016 *** (7.04) | 0.017 *** (7.35) | 0.017 *** (7.45) |
Eggs | −0.006 *** (−2.84) | −0.006 *** (−2.72) | −0.007 *** (−3.02) | −0.007 *** (−3.07) | −0.007 *** (−2.88) |
Fish | 0.0020 (1.00) | 0.003 (1.23) | 0.001 (0.49) | 0.003 (1.26) | 0.003 (1.48) |
Pasta | −0.025 *** (−5.39) | −0.024 *** (−4.70) | −0.025 *** (−5.15) | −0.023 *** (−4.71) | −0.026 *** (−5.24) |
Vegetables | 0.005 ** (1.97) | 0.005 * (1.65) | 0.006 ** (2.14) | 0.006 ** (2.18) | 0.004 (1.64) |
Sausages | −0.003 (−1.23) | −0.002 (−0.95) | −0.002 (−0.88) | −0.002 (−0.99) | −0.002 (−1.00) |
Milk | 0.003 (0.88) | 0.004 (0.95) | 0.005 (1.11) | 0.004 (1.07) | 0.004 (0.93) |
Sugars | −0.0144 *** (−7.44) | −0.015 *** (−7.01) | −0.014 *** (−7.06) | −0.015 *** (−7.39) | −0.014 *** (−6.81) |
Soda | 0.002 (0.75) | 0.002 (0.80) | 0.002 (0.71) | 0.003 (1.09) | 0.002 (0.84) |
R2 | 0.18 | 0.19 | 0.19 | 0.19 | 0.18 |
Parameter | All | Never Employed | <6 months Unemployed | 6–12 months Unemployed | >12 months Unemployed |
---|---|---|---|---|---|
Constant () | 3.108 *** (332.44) | 3.113 *** (237.10) | 3.104 *** (306.72) | 3.091 *** (297.25) | 3.133 *** (310.18) |
IUOP in boom () | −0.002 (−0.77) | 0.011 *** (2.64) | −0.003 (−1.16) | 0.011 *** (3.19) | −0.006 (−1.53) |
Bust effect () | −0.007 ** (−2.37) | −0.008 * (−1.87) | −0.010 *** (−3.32) | −0.008 *** (−2.69) | −0.008 ** (−2.20) |
Bust effect on IUOP () | 0.009 ** (2.27) | −0.010 * (−1.83) | 0.015 *** (3.85) | −0.001 (−0.31) | 0.011 ** (2.43) |
Control variables | |||||
Age | 0.003 *** (32.42) | 0.004 *** (30.24) | 0.003 *** (30.83) | 0.003 *** (30.05) | 0.003 *** (25.47) |
Sex | 0.076 *** (36.44) | 0.108 *** (37.45) | 0.083 *** (39.71) | 0.076 *** (35.20) | 0.071 *** (31.34) |
Health regular | 0.021 *** (8.31) | 0.010 ** (2.44) | 0.017 *** (6.45) | 0.021 *** (7.50) | 0.025 *** (9.51) |
Health poor | 0.018 *** (4.29) | 0.059 *** (7.90) | 0.027 *** (4.97) | 0.006 (1.18) | 0.016 *** (3.84) |
Marital status | 0.020 *** (9.73) | 0.018 *** (6.30) | 0.021 *** (10.06) | 0.019 *** (8.70) | 0.016 *** (7.33) |
Primary education | −0.010 ** (−2.08) | −0.035 *** (−5.14) | −0.017 *** (−2.82) | −0.004 (−0.63) | −0.009 * (−1.91) |
Secondary education | −0.033 *** (−6.34) | −0.016 ** (−2.14) | −0.038 *** (−6.22) | −0.018 *** (−2.95) | −0.039 *** (−7.36) |
University education | −0.057 *** (−10.37) | −0.053 *** (−7.38) | −0.063 *** (−10.05) | −0.043 *** (−7.07) | −0.058 *** (−10.21) |
Physical activity | −0.022 *** (−9.46) | −0.034 *** (−11.31) | −0.019 *** (−8.77) | −0.025 *** (−10.52) | −0.023 *** (−9.02) |
Fruit | 0.011 *** (4.34) | −0.011 *** (−3.20) | 0.009 *** (3.48) | 0.007 *** (2.87) | 0.013 *** (4.70) |
Meat | 0.017 *** (7.48) | 0.007 ** (2.36) | 0.015 *** (6.28) | 0.027 *** (11.12) | 0.018 *** (7.22) |
Eggs | −0.006 *** (−2.43) | 0.029 *** (−9.36) | −0.007 *** (−2.98) | −0.010 *** (−4.17) | −0.006 ** (−2.42) |
Fish | −0.000 (−0.15) | 0.011 *** (3.47) | −0.009 *** (−4.21) | 0.003 (1.32) | 0.004 * (1.84) |
Pasta | −0.028 *** (−5.63) | −0.008 (−1.05) | −0.034 *** (−6.76) | −0.019 *** (−3.42) | −0.035 *** (−6.65) |
Vegetables | 0.003 (1.16) | −0.018 *** (−5.46) | 0.008 *** (3.00) | 0.017 *** (6.10) | −0.002 (−0.59) |
Sausages | −0.004 (−1.93) | −0.029 *** (−9.87) | −0.003 (−1.32) | −0.008 *** (−3.57) | −0.002 (−0.89) |
Milk | 0.002 (0.64) | −0.013 ** (−2.50) | 0.008 * (1.82) | 0.004 (0.89) | −0.000 (−0.10) |
Sugars | −0.014 *** (−6.90) | −0.024 *** (−8.41) | −0.012 *** (−5.85) | −0.025 *** (−11.47) | −0.009 *** (−4.17) |
Soda | 0.001 (0.37) | −0.002 (−0.79) | −0.001 (−0.54) | 0.012 *** (4.79) | 0.002 (0.78) |
R2 | 0.15 | 0.22 | 0.18 | 0.17 | 0.13 |
Parameter | Q (0.05) | Q (0.10) | Q (0.25) | Q (0.50) | Q (0.75) | Q (0.90) | Q (0.95) |
---|---|---|---|---|---|---|---|
Constant () | 2.840 *** (157.77) | 2.876 *** (188.29) | 2.973 *** (290.60) | 3.066 *** (272.18) | 3.197 *** (192.77) | 3.341 *** (139.56) | 3.487 *** (106.81) |
IUOP in boom () | −0.019 *** (−2.98) | −0.018 *** (−3.00) | −0.006 (−1.09) | −0.001 (−0.10) | 0.011 * (1.71) | 0.011 (1.50) | 0.034 ** (2.38) |
Bust effect () | −0.004 (−1.26) | −0.002 (−0.59) | −0.006 ** (−2.50) | −0.008 *** (−2.95) | −0.009 *** (−2.74) | −0.014 *** (−2.77) | −0.014 * (−1.91) |
Bust effect on IUOP () | 0.007 (0.83) | 0.007 (0.90) | 0.003 (0.46) | 0.009 (1.26) | 0.006 (0.87) | 0.015 (1.49) | −0.009 (−0.51) |
Control variables | |||||||
Age | 0.003 *** (16.31) | 0.003 *** (20.31) | 0.003 *** (27.73) | 0.003 *** (26.65) | 0.003 *** (20.63) | 0.003 *** (12.96) | 0.003 *** (8.52) |
Sex | 0.112 *** (31.62) | 0.114 *** (39.75) | 0.109 *** (47.83) | 0.099 *** (41.79) | 0.074 *** (23.74) | 0.050 *** (12.17) | 0.035 *** (6.37) |
Health regular | −0.005 (−1.02) | 0.004 (0.97) | 0.006 * (1.73) | 0.018 *** (5.77) | 0.035 *** (8.59) | 0.042 *** (8.76) | 0.038 *** (4.83) |
Health poor | −0.020 * (−1.85) | −0.012 (−1.43) | −0.006 (−0.91) | 0.024 *** (3.00) | 0.050 *** (5.55) | 0.055 *** (5.25) | 0.069 *** (5.04) |
Marital status | 0.019 *** (5.05) | 0.021 *** (7.07) | 0.020 *** (8.45) | 0.024 *** (11.71) | 0.021 *** (7.33) | 0.014 *** (3.56) | 0.007 (1.21) |
Primary education | 0.002 (0.19) | 0.011 (1.03) | −0.005 (−0.81) | −0.010 (−1.46) | −0.022 ** (−2.38) | −0.005 (−0.47) | −0.020 (−1.03) |
Secondary education | −0.016 (−1.61) | −0.005 (−0.46) | −0.024 *** (−3.57) | −0.029 *** (−3.86) | −0.047 *** (−4.58) | −0.029 ** (−2.49) | −0.049 ** (−2.50) |
University education | −0.021 ** (−2.44) | −0.014 (−1.39) | −0.040 *** (−5.86) | −0.052 *** (−7.20) | −0.077 *** (−8.05) | −0.070 *** (−5.97) | −0.090 *** (−4.53) |
Physical activity | 0.008 ** (2.14) | 0.002 (0.79) | −0.006 *** (−2.62) | −0.019 *** (−8.33) | −0.022 *** (−7.79) | −0.041 *** (−9.58) | −0.051 *** (−8.39) |
Fruit | 0.019 *** (3.97) | 0.013 *** (3.56) | 0.005 ** (2.01) | 0.006 ** (2.20) | 0.001 (0.41) | −0.000 (−0.06) | −0.001 *** (−0.08) |
Meat | 0.012 *** (3.06) | 0.013 *** (4.00) | 0.016 *** (6.73) | 0.018 *** (7.09) | .021 *** (6.07) | 0.016 *** (3.70) | 0.019 *** (2.54) |
Eggs | −0.007 (−1.56) | −0.007 ** (−2.27) | −0.002 (−1.00) | −0.004 * (−1.69) | −0.008 ** (−2.44) | −0.010 ** (−2.32) | −0.018 *** (−2.87) |
Fish | 0.000 (0.14) | 0.000 (1.00) | 0.001 (0.44) | 0.003 (1.08) | 0.001 (0.47) | 0.001 (0.39) | 0.000 (0.05) |
Pasta | −0.011 (−1.09) | −0.016 ** (−2.13) | −0.021 *** (−3.41) | −0.019 *** (−3.02) | −0.028 *** (−3.56) | −0.039 ** (−2.55) | −0.068 *** (−4.19) |
Vegetables | −0.000 (−0.09) | −0.000 (−0.01) | 0.005 (1.51) | 0.003 (0.93) | 0.008 ** (2.20) | 0.007 (1.13) | 0.007 (0.95) |
Sausages | −0.005 (−1.45) | −0.005 * (−1.73) | −0.004 * (−1.74) | −0.003 (−1.40) | 0.002 (0.53) | 0.003 (0.62) | 0.008 (1.33) |
Milk | 0.012 (1.40) | 0.014 ** (2.52) | 0.006 (1.11) | 0.000 (0.04) | −0.003 (−0.39) | −0.008 (−1.18) | −0.005 (−0.50) |
Sugars | −0.010 *** (−3.08) | −0.010 *** (−3.97) | −0.014 *** (−6.53) | −0.015 *** (−6.74) | −0.012 *** (−4.58) | −0.011 *** (−2.62) | −0.011 * (−1.95) |
Soda | −0.016 *** (−3.40) | −0.011 *** (−2.86) | −0.003 (−1.20) | 0.001 (0.59) | 0.012 *** (3.50) | 0.011 ** (2.30) | 0.010 (1.36) |
R2 | 0.13 | 0.14 | 0.14 | 0.11 | 0.09 | 0.07 | 0.06 |
Parameter | Q (0.05) | Q (0.10) | Q (0.25) | Q (0.50) | Q (0.75) | Q (0.90) | Q (0.95) |
---|---|---|---|---|---|---|---|
Constant () | 2.829 *** (148.36) | 2.884 *** (190.51) | 2.983 *** (235.65) | 3.068 *** (237.25) | 3.207 *** (185.88) | 3.349 *** (164.77) | 3.522 *** (105.73) |
IUOP in boom () | −0.016 *** (−2.66) | −0.016 *** (−3.35) | −0.008 ** (−2.09) | −0.003 (−0.77) | 0.006 (1.15) | 0.010 (1.57) | 0.032 *** (3.00) |
Bust effect () | −0.003 (−0.76) | 0.004 (1.19) | −0.002 (−0.87) | −0.008 *** (−3.00) | −0.013 *** (−3.37) | −0.012 *** (−2.69) | −0.019 *** (−2.68) |
Bust effect on IUOP () | 0.009 (1.09) | 0.006 (1.02) | 0.003 (0.58) | 0.009 * (1.74) | 0.012 * (1.66) | 0.009 (1.08) | −0.013 (−0.91) |
Control variables | |||||||
Age | 0.003 *** (12.33) | 0.003 *** (17.74) | 0.003 *** (23.59) | 0.003 *** (25.61) | 0.003 *** (16.87) | 0.003 *** (14.10) | 0.003 *** (7.90) |
Sex | 0.098 *** (22.97) | 0.100 *** (29.74) | 0.097 *** (34.62) | 0.088 *** (30.96) | 0.067 *** (17.27) | 0.041 *** (9.09) | 0.022 *** (3.02) |
Health regular | −0.006 (−1.03) | 0.005 (1.23) | 0.009 ** (2.54) | 0.018 *** (5.04) | 0.037 *** (7.63) | 0.047 *** (8.30) | 0.041 *** (4.43) |
Health poor | −0.037 *** (−3.96) | −0.018 ** (−2.50) | −0.006 (−0.95) | 0.022 *** (3.53) | 0.049 *** (5.81) | 0.059 *** (6.19) | 0.062 *** (4.06) |
Marital status | 0.020 *** (4.88) | 0.023 *** (6.96) | 0.020 *** (7.35) | 0.024 *** (8.74) | 0.020 *** (5.38) | 0.016 *** (3.54) | 0.007 (0.92) |
Primary education | 0.000 (0.05) | 0.005 (0.68) | −0.006 (−0.90) | −0.008 (−1.19) | −0.012 (−1.30) | 0.004 (0.40) | −0.014 (−0.79) |
Secondary education | −0.019 * (−1.70) | −0.010 (−1.15) | −0.021 *** (−2.94) | −0.031 *** (−4.16) | −0.037 *** (−3.73) | −0.023 ** (−2.06) | −0.040 ** (−2.09) |
University education | −0.018 (−1.63) | −0.014 * (−1.67) | −0.040 *** (−5.38) | −0.052 *** (−6.78) | −0.069 *** (−6.68) | −0.063 *** (−5.34) | −0.089 *** (−4.57) |
Physical activity | 0.008 * (1.79) | 0.006 * (1.70) | −0.008 *** (−2.79) | −0.022 *** (−7.32) | −0.032 *** (−7.67) | −0.048 *** (−9.98) | −0.064 *** (−8.20) |
Fruit | 0.030 *** (6.06) | 0.015 *** (3.99) | 0.009 *** (2.78) | 0.011 *** (3.31) | 0.005 (1.10) | −0.002 (−0.32) | −0.004 *** (−0.43) |
Meat | 0.013 *** (2.92) | 0.014 *** (3.93) | 0.010 *** (3.37) | 0.020 *** (6.19) | 0.020 *** (4.70) | 0.017 *** (3.35) | 0.022 *** (2.69) |
Eggs | −0.006 (−1.38) | −0.012 ** (−3.18) | −0.001 (−0.48) | −0.004 (−1.38) | −0.008 * (−1.85) | −0.002 (−0.40) | −0.012 (−1.51) |
Fish | −0.004 (−0.97) | −0.003 (−0.86) | −0.001 (−0.49) | 0.002 (0.76) | −0.001 (−0.29) | −0.000 (−0.04) | −0.005 (−0.65) |
Pasta | −0.017 (−1.83) | −0.026 *** (−3.56) | −0.022 *** (−3.31) | −0.022 *** (−3.24) | −0.027 *** (−2.89) | −0.045 *** (−4.17) | −0.081 *** (−4.58) |
Vegetables | 0.003 (0.49) | −0.002 (−0.43) | 0.001 (0.27) | 0.001 (0.33) | 0.009 * (1.80) | 0.002 (0.41) | −0.005 (−0.50) |
Sausages | −0.009 ** (−2.19) | −0.006 (−1.63) | −0.006 ** (−2.25) | −0.006 * (−1.93) | −0.001 (−0.28) | 0.005 (1.12) | 0.013 * (1.72) |
Milk | 0.023 *** (2.95) | 0.010 * (1.72) | 0.001 (0.28) | 0.002 (0.32) | 0.001 (0.18) | −0.009 (−1.06) | −0.011 (−0.79) |
Sugars | −0.007 (−1.56) | −0.010 *** (−3.97) | −0.013 *** (−4.68) | −0.017 *** (−6.02) | −0.018 *** (−4.78) | −0.011 ** (−2.52) | −0.008 (−1.03) |
Soda | −0.010 ** (−2.21) | −0.009 ** (−2.35) | −0.004 (−1.28) | 0.004 (1.21) | 0.011 ** (2.44) | 0.010 ** (1.80) | 0.001 (0.18) |
R2 | 0.11 | 0.12 | 0.12 | 0.10 | 0.08 | 0.06 | 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antelo, M.; Magdalena, P.; Reboredo, J.C.; Reyes-Santias, F. How Are Unemployed Individuals with Obesity Affected by an Economic Crisis? Sustainability 2020, 12, 2262. https://doi.org/10.3390/su12062262
Antelo M, Magdalena P, Reboredo JC, Reyes-Santias F. How Are Unemployed Individuals with Obesity Affected by an Economic Crisis? Sustainability. 2020; 12(6):2262. https://doi.org/10.3390/su12062262
Chicago/Turabian StyleAntelo, Manel, Pilar Magdalena, Juan C. Reboredo, and Francisco Reyes-Santias. 2020. "How Are Unemployed Individuals with Obesity Affected by an Economic Crisis?" Sustainability 12, no. 6: 2262. https://doi.org/10.3390/su12062262
APA StyleAntelo, M., Magdalena, P., Reboredo, J. C., & Reyes-Santias, F. (2020). How Are Unemployed Individuals with Obesity Affected by an Economic Crisis? Sustainability, 12(6), 2262. https://doi.org/10.3390/su12062262