Optimized Use of Ferric Chloride and Sesbania Seed Gum (SSG) as Sustainable Coagulant Aid for Turbidity Reduction in Drinking Water Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Method
Preparation of SSG
2.3. Sampling of River Water
2.4. Assay of Turbidity Reduction
2.5. Physicochemical Properties
2.6. Design of Experiment for Optimization
2.7. Verification of Model
3. Results
3.1. Extraction of SSG
3.2. Characterization of SSG
3.2.1. Functional Group of SSG
3.2.2. Zeta Potential and Electrophoretic Mobility of SSG
3.2.3. Elemental Composition
3.3. Optimization of the Performance of SSG as Coagulant Aid in River Water Treatment Using RSM
3.3.1. Model Adequacy Checking
3.3.2. Analysis of the Response Surfaces
3.3.3. Optimum Condition of the Influencing Factors
3.3.4. Validation of the Developed Model
3.4. Proposed Mechanism for SSG Coagulant Aid
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vijayaraghavan, G.; Sivakumar, T.; Kumar, A.V. Application of plant based coagulants for waste water treatment. Int. J. Adv. Eng. Res. Stud. 2011, 1, 88–92. [Google Scholar]
- Adelodun, B.; Ajibade, F.O.; Ogunshina, M.S.; Choid, K.-S. Dosage and settling time course optimization of Moringa oleifera in municipal wastewater treatment using response surface methodology. Desalin. Water Treat. 2019, 167, 45–56. [Google Scholar] [CrossRef]
- Choy, S.Y.; Prasad, K.N.; Wu, T.Y.; Raghunandan, M.E.; Ramanan, R.N. Performance of conventional starches as natural coagulants for turbidity removal. Ecol. Eng. 2016, 94, 352–364. [Google Scholar] [CrossRef]
- Ahmed, T.; Bhatti, Z.A.; Maqbool, F.; Mahmood, Q.; Faridullah; Qayyum, S.; Mushtaq, N. A comparative study of synthetic and natural coagulants for silver nanoparticles removal from wastewater. Desalin. Water Treat. 2016, 57, 18718–18723. [Google Scholar] [CrossRef]
- Colomina, M.T.; Peris-Sampedro, F. Aluminum and Alzheimer’s disease. In Neurotoxicity of Metals; Springer: Cham, Switzerland, 2017; pp. 183–197. [Google Scholar]
- Klotz, K.; Weistenhöfer, W.; Neff, F.; Hartwig, A.; van Thriel, C.; Drexler, H. The health effects of aluminum exposure. Dtsch. Ärzteblatt Int. 2017, 114, 653. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.; Hussain, G.; Haydar, S.; Zahara, N. Use of new local plant-based coagulants for turbid water treatment. Int. J. Environ. Sci. Technol. 2019, 16, 6167–6174. [Google Scholar] [CrossRef]
- Al-Hamadani, Y.A.; Yusoff, M.S.; Umar, M.; Bashir, M.J.; Adlan, M.N. Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. J. Hazard. Mater. 2011, 190, 582–587. [Google Scholar] [CrossRef]
- Sanghi, R.; Bhattacharya, B.; Dixit, A.; Singh, V. Ipomoea dasysperma seed gum: An effective natural coagulant for the decolorization of textile dye solutions. J. Environ. Manag. 2006, 81, 36–41. [Google Scholar] [CrossRef]
- Šćiban, M.; Klašnja, M.; Antov, M.; Škrbić, B. Removal of water turbidity by natural coagulants obtained from chestnut and acorn. Bioresour. Technol. 2009, 100, 6639–6643. [Google Scholar] [CrossRef]
- Banch, T.J.; Hanafiah, M.M.; Alkarkhi, A.F.; Amr, A.; Salem, S. Factorial design and optimization of landfill leachate treatment using tannin-based natural coagulant. Polymers 2019, 11, 1349. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, N.; Chaibakhsh, N.; Zanjanchi, M.A. Use of Descurainia sophia L. As a natural coagulant for the treatment of dye-containing wastewater. Environ. Prog. Sustain. Energy 2016, 35, 996–1001. [Google Scholar] [CrossRef]
- Chua, S.-C.; Chong, F.-K.; Yen, C.-H.; Ho, Y.-C. Valorization of conventional rice starch in drinking water treatment and optimization using response surface methodology (RSM). Chem. Eng. Commun. 2019, 1–11. [Google Scholar] [CrossRef]
- Rachdi, R.; Srarfi, F.; Shimi, N.S. Cactus Opuntia as natural flocculant for urban wastewater treatment. Water Sci. Technol. 2017, 76, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Mund, N.K.; Dash, D.; Barik, C.R.; Goud, V.V.; Sahoo, L.; Mishra, P.; Nayak, N.R. Evaluation of efficient glucose release using sodium hydroxide and phosphoric acid as pretreating agents from the biomass of Sesbania grandiflora (L.) Pers.: A fast growing tree legume. Bioresour. Technol. 2017, 236, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.D.; Maheriya, P.M.; Jani, G.K.; Patil, P.D.; Patel, B.N. Lepidium sativum Linn.: A current addition to the family of mucilage and its applications. Int. J. Biol. Macromol. 2014, 65, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Li, J.; Zhou, S.; Li, M.; Liu, X.; Li, H. Insight into the Degradation of two benzophenone-type UV filters by the UV/H2O2 advanced oxidation process. Water 2018, 10, 1238. [Google Scholar] [CrossRef] [Green Version]
- Harun, N.Y.; Jian, T.M.; Jusoh, N.; Ramli, R.M. Application of response surface methodology to investigate the effect of different variables on fusion slagging index. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2019; p. 020033. [Google Scholar]
- Chen, L.; Chen, Q.; Rao, P.; Yan, L.; Shakib, A.; Shen, G. Formulating and optimizing a novel biochar-based fertilizer for simultaneous slow-release of nitrogen and immobilization of cadmium. Sustainability 2018, 10, 2740. [Google Scholar] [CrossRef] [Green Version]
- Nazir, S.; Wani, I.A.; Masoodi, F.A. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology. J. Adv. Res. 2017, 8, 235–244. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, S.; Zhao, J.; Zhang, J. Characterization and flocculation mechanism of high efficiency microbial flocculant TJ-F1 from Proteus mirabilis. Colloids and Surfaces B: Biointerfaces 2010, 75, 247–251. [Google Scholar] [CrossRef]
- Rahul, R.; Kumar, S.; Jha, U.; Sen, G. Cationic inulin: A plant based natural biopolymer for algal biomass harvesting. Int. J. Biol. Macromol. 2015, 72, 868–874. [Google Scholar] [CrossRef]
- Ghori, M.U.; Mohammad, M.A.; Rudrangi, S.R.S.; Fleming, L.T.; Merchant, H.A.; Smith, A.M.; Conway, B.R. Impact of purification on physicochemical, surface and functional properties of okra biopolymer. Food Hydrocoll. 2017, 71, 311–320. [Google Scholar] [CrossRef]
- Awang, N.A.; Aziz, H.A. Hibiscus rosa-sinensis leaf extract as coagulant aid in leachate treatment. Appl. Water Sci. 2012, 2, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gao, Y.; Zhai, Y.; Liu, F.; Gao, G. Synthesis of sesbania gum supported dithiocarbamate chelating resin and studies on its adsorption performance for metal ions. Carbohydr. Polym. 2008, 73, 359–363. [Google Scholar] [CrossRef]
- Jun, B.-M.; Kim, Y.; Han, J.; Yoon, Y.; Kim, J.; Park, C.M. Preparation of Activated Biochar-Supported Magnetite Composite for Adsorption of Polychlorinated Phenols from Aqueous Solutions. Water 2019, 11, 1899. [Google Scholar] [CrossRef] [Green Version]
- Meili, L.; Godoy, R.; Soletti, J.; Carvalho, S.; Ribeiro, L.; Silva, M.; Vieira, M.; Gimenes, M. Cassava (Manihot esculenta Crantz) stump biochar: Physical/chemical characteristics and dye affinity. Chem. Eng. Commun. 2019, 206, 829–841. [Google Scholar] [CrossRef]
- Shak, K.P.Y.; Wu, T.Y. Optimized use of alum together with unmodified Cassia obtusifolia seed gum as a coagulant aid in treatment of palm oil mill effluent under natural pH of wastewater. Ind. Crop. Prod. 2015, 76, 1169–1178. [Google Scholar] [CrossRef]
- Betatache, H.; Aouabed, A.; Drouiche, N.; Lounici, H. Conditioning of sewage sludge by prickly pear cactus (Opuntia ficus Indica) juice. Ecol. Eng. 2014, 70, 465–469. [Google Scholar] [CrossRef]
- Basaran, H.K.; Tasdemir, T. Determination of flocculation characteristics of natural stone powder suspensions in the presence of different polymers. Physicochem. Problems Mineral Process. 2014, 50, 169–184. [Google Scholar]
- Ahmad, R.; Haseeb, S. Absorptive removal of Pb2+, Cu2+ and Ni2+ from the aqueous solution by using groundnut husk modified with Guar Gum (GG): Kinetic and thermodynamic studies. Groundw. Sustain. Dev. 2015, 1, 41–49. [Google Scholar] [CrossRef]
- Agunbiade, M.; Pohl, C.; Ashafa, O. Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz. J. Microbiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Bello, O.S.; Adegoke, K.A.; Akinyunni, O.O. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Appl. Water Sci. 2017, 7, 1295–1305. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Jia, Q.; Chen, X.; Wang, G.; Yao, C. Optimization of polyacrylonitrile-2-aminothiazole resin synthesis, characterization, and its adsorption performance and mechanism for removal of Hg (II) from aqueous solutions. Ind. Eng. Chem. Res. 2013, 52, 4978–4986. [Google Scholar] [CrossRef]
- Raissi, S.; Farsani, R.-E. Statistical process optimization through multi-response surface methodology. World Acad. Sci. Eng. Technol. 2009, 51, 267–271. [Google Scholar]
- Swamy, G.J.; Muthukumarappan, K. Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chem. 2017, 220, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.-C.; Malek, M.A.; Chong, F.-K.; Sujarwo, W.; Ho, Y.-C. Red Lentil (Lens culinaris) Extract as a Novel Natural Coagulant for Turbidity Reduction: An Evaluation, Characterization and Performance Optimization Study. Water 2019, 11, 1686. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, J.O.; Pantula, S.G.; Dickey, D.A. Applied Regression Analysis: A Research Tool; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- Chu, W. Dye removal from textile dye wastewater using recycled alum sludge. Water Res. 2001, 35, 3147–3152. [Google Scholar] [CrossRef]
Influencing Factors | Unit | Coded Symbols | Range and Level | ||
---|---|---|---|---|---|
Low (−1) | Central (0) | High (+1) | |||
Dosage of FeCl3 | mg/L | X1 | 10 | 12.5 | 15 |
Dosage of SSG | mg/L | X2 | 0.1 | 2.55 | 5 |
Settling Time | minute(s) | X3 | 1 | 8.0 | 15 |
Extraction Method | Mass of Seed (g) | Mass of SSG Produced (mg) |
---|---|---|
Heating method | 10 | - |
Soaking method | 10 | - |
Advance heating method | 10 | 514.7 |
Acid method | 10 | 2079.0 |
Wave Numbers (cm⁻¹) | Functional Groups | References |
---|---|---|
3410 | O–H Stretching | [24,25,26,27,28] |
2925 | C–H Stretching | [25,26,29] |
1648 | C=O Stretching | [24,30] |
1152, 1073, 1029 | C–O Stretching | [22] |
Elements | SSG Weight (%) | River Water, Weight (%) | |
---|---|---|---|
Before Treatment | After Treatment | ||
C | 65.3 | 41.4 | 8.58 |
O | 30.4 | 36.4 | 50.8 |
Mg | 0.23 | - | 0.23 |
P | 0.83 | - | - |
S | 1.99 | - | - |
K | 1.07 | 0.45 | 0.59 |
Ca | 0.21 | 1.11 | - |
Source | Sum of Squares | Mean Square | F Value | p-Value |
---|---|---|---|---|
Model | 13,223.28 | 1469.25 | 55.30 | 0.0002 * |
FeCl3 | 9342.08 | 9342.08 | 351.60 | <0.0001 * |
SSG | 312.50 | 312.50 | 11.76 | 0.0186 * |
Settling Time | 144.33 | 144.33 | 5.43 | 0.0672 |
FeCl3 × SSG | 14.03 | 14.03 | 0.53 | 0.5001 |
FeCl3 × Settling Time | 33.35 | 33.35 | 1.26 | 0.3135 |
SSG × Settling Time | 89.02 | 89.02 | 3.35 | 0.1267 |
FeCl3 × FeCl3 | 3269.85 | 3269.85 | 123.07 | 0.0001 * |
SSG × SSG | 24.84 | 24.84 | 0.93 | 0.3780 |
Settling Time × Settling Time | 74.56 | 74.56 | 2.81 | 0.1547 |
Lack of Fit | 126.50 | 42.17 | 13.27 | 0.0709 |
Dosage of FeCl3, (mg/L) | Dosage of SSG, (mg/L) | Settling Time, (min) | Turbidity Reduction, (%) | ||
---|---|---|---|---|---|
Predicted | Actual | Difference | |||
1.6 | 0.50 | 10.2 | 28.7 | 32.1 | 3.4 |
4.1 | 1.50 | 8.9 | 59.3 | 57.5 | 1.8 |
10.2 | 0.10 | 2.5 | 80.5 | 79.2 | 1.3 |
10.2 | 4.52 | 2.5 | 98.3 | 98.8 | 0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chua, S.-C.; Chong, F.-K.; Malek, M.A.; Ul Mustafa, M.R.; Ismail, N.; Sujarwo, W.; Lim, J.-W.; Ho, Y.-C. Optimized Use of Ferric Chloride and Sesbania Seed Gum (SSG) as Sustainable Coagulant Aid for Turbidity Reduction in Drinking Water Treatment. Sustainability 2020, 12, 2273. https://doi.org/10.3390/su12062273
Chua S-C, Chong F-K, Malek MA, Ul Mustafa MR, Ismail N, Sujarwo W, Lim J-W, Ho Y-C. Optimized Use of Ferric Chloride and Sesbania Seed Gum (SSG) as Sustainable Coagulant Aid for Turbidity Reduction in Drinking Water Treatment. Sustainability. 2020; 12(6):2273. https://doi.org/10.3390/su12062273
Chicago/Turabian StyleChua, Siong-Chin, Fai-Kait Chong, M. A. Malek, Muhammad Raza Ul Mustafa, Norli Ismail, Wawan Sujarwo, Jun-Wei Lim, and Yeek-Chia Ho. 2020. "Optimized Use of Ferric Chloride and Sesbania Seed Gum (SSG) as Sustainable Coagulant Aid for Turbidity Reduction in Drinking Water Treatment" Sustainability 12, no. 6: 2273. https://doi.org/10.3390/su12062273
APA StyleChua, S.-C., Chong, F.-K., Malek, M. A., Ul Mustafa, M. R., Ismail, N., Sujarwo, W., Lim, J.-W., & Ho, Y.-C. (2020). Optimized Use of Ferric Chloride and Sesbania Seed Gum (SSG) as Sustainable Coagulant Aid for Turbidity Reduction in Drinking Water Treatment. Sustainability, 12(6), 2273. https://doi.org/10.3390/su12062273