Scientific Performance and Mapping of the Term STEM in Education on the Web of Science
Abstract
:1. Introduction
2. Justification and Research Objectives
- Determining the scientific performance and production of literature concerning “STEM” in the educational field (year of publication, language, type of documents, organizations, authors, sources of origin, countries and citation).
- Specifying the scientific evolution of this term according to the key words in the different scientific documents.
- Delimiting the most influential topics in the conceptual association, obtained from the analysis of the key words established by the authors in the different documents.
3. Materials and Methods
3.1. Research Design
3.2. Procedure and Data Analysis
- Detection: In this phase, we proceed to the analysis of the keywords of all the scientific production (n = 9146) and create a map of co-occurrence through nodes, thus generating a standardized network of co-words. In this way, the most relevant keywords (n = 8333) are obtained, which, by means of a clustering algorithm, the topics are configured, as well as the connection established between them.
- Representation: The creation of strategic diagrams and thematic networks continues, under the principles of centrality and density. The graphic representation is structured in four sectors: (1) Top-right = motor and relevant themes; (2) Top-left = consolidated but isolated themes; (3) Bottom-left = developing or disappearing themes; and (4) Bottom-right = cross-cutting themes and with little development.
- Location: The configuration of the time intervals continues. Try to collect the documents by time periods. In this case, ten intervals have been created (I1 = 2010; I2 = 2011; I3 = 2012; I4 = 2013; I5 = 2014; I6 = 2015; I7 = 2016; I8 = 2017; I9 = 2018; I10 = 2019), following the criteria of document equity in all established periods.
- Performance analysis: Finally we proceed with the analysis of the data, obtaining the connections given between the key words or themes. For this purpose, the unit of analysis specified by the assessment unit was determined, in this case, the keywords set by the authors in the documents and the keywords set by WoS. The frequency threshold sets the minimum frequency of the intervals. The network type elaborates a multiple connection of co-occurrence of keywords and authors. The value of coincidence binding articulates the established intervals. The normalization measure determines the binding threshold, revealing the minimum connection of the occurrence. The normalization of connections is based on the equivalence index eij = cij2/Root (ci − cj). The clustering algorithm, by means of simple centers, makes the map of subjects and related subnetworks. The evolutionary measure, through the Jaccard Index, shows the similarity measure that elaborates the evolutionary map and the transition map through the inclusion rate. All this is collected, with its corresponding indicators in Table 2.
4. Results
4.1. Performance and Scientific Production
4.2. Structural and Thematic Development
4.3. Thematic Evolution of the Terms
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ifinedo, E.; Rikala, J.; Hamalainen, T. Factors affecting Nigerian teacher educators’ technology integration: Considering characteristics, knowledge constructs, ICT practices and beliefs. Comput. Educ. 2020, 146, 103760. [Google Scholar] [CrossRef]
- Gemiya, A.G. Factors Affecting the Use of ICT Services in Ethiopia: The Case of Illubabor Zone—Oromia Regional State. Int. J. Inf. Commun. Technol. Educ. 2020, 16, 50–60. [Google Scholar] [CrossRef]
- Molodozhnikova, N.M.; Biryukova, N.V.; Galustyan, O.V.; Lazareva, J.B.; Stroiteleva, N.N. Formation of Professional Orientation of High School Students to Medical Profession by Using ICT Tools. Int. J. Emerg. Technol. Learn. 2020, 15, 231–239. [Google Scholar] [CrossRef]
- Carrión, E. The use of ICT in educational inclusion: Bullying, components and gender difference. EDMETIC 2020, 9, 126–148. [Google Scholar] [CrossRef]
- Moreno-Guerrero, A.J.; López, J.; Pozo, S.; Fuentes, A. Influence of the context on the use of ICT devices in Basic Vocational Training. EDMETIC 2020, 9, 149–169. [Google Scholar] [CrossRef]
- Sharma, E. Developing ICT adoption model based on the perceived awareness and perceived usefulness of technology among telecom users. Int. J. Technol. Enhanc. Learn. 2020, 12, 99–114. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, C.; Meng, C.Y.; Wu, D. How to promote Chinese primary and secondary school teachers to use ICT to develop high-quality teaching activities. Educ. Technol. Res. Dev. 2019, 67, 1593–1611. [Google Scholar] [CrossRef]
- Senkbeil, M.; Ihme, J.M.; Schöeber, C. Are first-semester and advanced university students ready for life and work in the digital world? Results of a standard setting method to describe ICT-related proficiency levels. Z. Fur Erzieh. 2019, 22, 1359–1384. [Google Scholar] [CrossRef] [Green Version]
- Enakrire, R.T. ICT-related training and support Programmes for information professionals. Educ. Inf. Technol. 2019, 24, 3269–3287. [Google Scholar] [CrossRef]
- Moreno-Guerrero, A.J.; Romero-Rodríguez, J.M.; López-Belmonte, J.; Alonso-García, S. Flipped Learning Approach as Educational Innovation in Water Literacy. Water 2020, 12, 574. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Guerrero, A.J.; Rondón, M.; Martínez, N.; Rodríguez-García, A.M. Collaborative Learning Based on Harry Potter for Learning Geometric Figures in the Subject of Mathematics. Mathematics 2020, 8, 369. [Google Scholar] [CrossRef] [Green Version]
- Cabero, J.; Barroso, J. Los escenarios tecnológicos en Realidad Aumentada (RA): Posibilidades educativas en estudios universitarios. Aula Abierta 2018, 47, 327–336. [Google Scholar] [CrossRef]
- Verdin, D.; Godwin, A.; Klotz, L. Exploring the Sustainability-Related Career Outcome Expectations of Community College Students Interested in Science and Engineering Careers. Community Coll. J. Res. Pract. 2020, 44, 83–98. [Google Scholar] [CrossRef]
- Saw, G. The Impact of Inclusive STEM High Schools on Student Outcomes: A Statewide Longitudinal Evaluation of Texas STEM Academies. Int. J. Sci. Math. Educ. 2019, 17, 1445–1457. [Google Scholar] [CrossRef]
- Sylverster, P.; Myran, S. “Minding the Gaps”: Career Navigators as an Illustration for Supporting Student Growth and Learning. Community Coll. J. Res. Pract. 2020, 44, 147–161. [Google Scholar] [CrossRef]
- Ramey, K.E.; Stevens, R. Interest development and learning in choice-based, in-school, making activities: The case of a 3D printer. Learn. Cult. Soc. Interact. 2019, 23, 1–13. [Google Scholar] [CrossRef]
- Campbell, A.; Craig, T.; Collier-Reed, B. A framework for using learning theories to inform ‘growth mindset’ activities. Int. J. Math. Educ. Sci. Technol. 2020, 51, 26–43. [Google Scholar] [CrossRef]
- Peters-Burton, E.E.; House, A.; Peters, V.; Remold, J. Understanding STEM-focused elementary schools: Case study of Walter Bracken STEAM Academy. Sch. Sci. Math. 2019, 119, 446–456. [Google Scholar] [CrossRef]
- Siverling, E.A.; Suazo-Flores, E.; Mathis, C.A.; Moore, T.J. Students’ use of STEM content in design justifications during engineering design-based STEM integration. Sch. Sci. Math. 2019, 119, 457–474. [Google Scholar] [CrossRef]
- Howard, M.; Kern, A. The role of story and place in Indigenous science education: Bigfoot in a youth-designed ecological restoration plan. Cult. Stud. Sci. Educ. 2019, 14, 915–935. [Google Scholar] [CrossRef]
- Williams, P.J. STEM education: Proceed with caution. Des. Technol. Educ. Int. J. 2011, 16, 27–35. [Google Scholar]
- Gil-Domenech, D.; Berbegal-Mirabent, J. Stimulating students’ engagement in mathematics courses in non-STEM academic programmes: A game-based learning. Innov. Educ. Teach. Int. 2019, 56, 57–65. [Google Scholar] [CrossRef]
- Saienki, N.; Olizko, Y.; Arshad, M. Development of Tasks with Art Elements for Teaching Engineers in English for Specific Purposes Classroom. Int. J. Emerg. Technol. Learn. 2019, 14, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Mwenda, A.B.; Sullivan, M.; Grand, A. How do Australian universities market STEM courses in YouTube videos? J. Mark. High. Educ. 2019, 29, 191–208. [Google Scholar] [CrossRef]
- Ferrada, C.; Díaz-Levicoy, D.; Salgado-Orellana, N.; Parraguez, R. Proposals of mathematical activities with a Bee-bot child robot based on STEM education. Edma 0–6 Educ. Mat. Infanc. 2019, 8, 33–43. [Google Scholar]
- Sigal, M.; Jacobs, S. Preparing for University: An Applied Analysis on the Efficacy of 4U and University Level Preparatory STEM Courses. Can. J. Scholarsh. Teach. Learn. 2019, 10, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Davila-Guzmán, N.E.; Tiempos-Flores, N.; Maya-Trevino, M.L.; Sánchez-Vázquez, A.I.; Cerino-Cordova, F.D. Educational Content Development to Enhance STEM Learning. Int. J. Emerg. Technol. Learn. 2019, 14, 235–242. [Google Scholar] [CrossRef]
- Pyraz, G.T.; Kumpete, E.G. An Example of STEM Education in Turkey and Distance Education for Sustainable STEM Learning. J. Qual. Res. Educ. 2019, 7, 1345–1364. [Google Scholar] [CrossRef] [Green Version]
- González, E.O.; Estévez, E.H.; Del Cid, C.J. Effects of public policies on the preferences and orientation of the activities carried out by academics in STEM areas of IES de Mexico. Educ. Policy Anal. Arch. 2019, 27, 19. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Albion, P. Investigating Remote Access Laboratories for Increasing Pre-service Teachers’ STEM Capabilities. Educ. Technol. Soc. 2019, 22, 82–93. [Google Scholar]
- Musabirov, I.; Pozdniakov, S.; Tenisheva, K. Predictors of Academic Achievement in Blended Learning: The Case of Data Science Minor. Int. J. Emerg. Technol. Learn. 2019, 14, 64–74. [Google Scholar] [CrossRef]
- Searle, K.A.; Tofel-Grehl, C.; Breitenstein, J. Equitable Engagement in STEM: Using E-textiles to Challenge the Positioning of Non-dominant Girls in School Science. Int. J. Multicult. Educ. 2019, 21, 42–61. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, R.J.; Chu, S.L.; Chen, K.; Deuermeyer, E.; Christy, A.G.; Quek, F. Making in the classroom: Longitudinal evidence of increases in self-efficacy and STEM possible selves over time. Comput. Educ. 2019, 142, 103637. [Google Scholar] [CrossRef]
- Wang, X.L.; Lee, S.Y. Investigating the Psychometric Properties of a New Survey Instrument Measuring Factors Related to Upward Transfer in STEM Fields. Rev. High. Educ. 2019, 42, 339–384. [Google Scholar] [CrossRef]
- Miner-Romanoff, K.; Sweetland, Y.; Yang, Y.; Fennema, B. Assessment of Professional Development and Research-Based Instructional Strategies for Instructors of Online Undergraduate STEM Courses. Int. J. Online Pedagog. Course Des. 2019, 9, 51–61. [Google Scholar] [CrossRef]
- Van den Hurk, A.; Meelissen, M.; Van Langen, A. Interventions in education to prevent STEM pipeline leakage. Int. J. Sci. Educ. 2019, 41, 150–164. [Google Scholar] [CrossRef]
- Ikuma, L.H.; Steele, A.; Dann, S.; Adio, O.; Waggenspack, W.N. Large-scale student programs increase persistence in STEM fields in a public university setting. J. Eng. Educ. 2019, 108, 57–81. [Google Scholar] [CrossRef] [Green Version]
- Schachter, R.E.; Strang, T.M.; Piasta, S.B. Teachers’ experiences with a state-mandated kindergarten readiness assessment. Early Years 2019, 39, 80–96. [Google Scholar] [CrossRef]
- Emery, N.; Maher, J.M.; Ebert-May, D. Studying Professional Development as Part of the Complex Ecosystem of STEM Higher Education. Innov. High. Educ. 2019, 44, 469–479. [Google Scholar] [CrossRef]
- Nesmith, S.M.; Cooper, S. Engineering process as a focus: STEM professional development with elementary STEM-focused professional development schools. Sch. Sci. Math. 2019, 119, 487–498. [Google Scholar] [CrossRef]
- Zheng, J.; Xing, W.L.; Zhu, G.X.; Chen, G.H.; Zhao, H.L.; Xie, C. Profiling self-regulation behaviors in STEM learning of engineering design. Comput. Educ. 2020, 143, 103669. [Google Scholar] [CrossRef]
- Lee, S.W.; Mamerow, G. Understanding the role cumulative exposure to highly qualified science teachers plays in students’ educational pathways. J. Res. Sci. Teach. 2019, 56, 1362–1383. [Google Scholar] [CrossRef]
- Morris, B.J.; Owens, W.; Ellenbogen, K.; Erduran, S.; Dunlosky, J. Measuring informal STEM learning supports across contexts and time. Int. J. Stem Educ. 2019, 6, 40. [Google Scholar] [CrossRef]
- Chehlarova, T. Op Art in mathematics education or counting of quadrilaterals. Pedagogika 2019, 31, 1–9. [Google Scholar]
- Hawkins, I.; Ratan, R.; Blair, D.; Fordham, J. The Effects of Gender Role Stereotypes in Digital Learning Games on Motivation for STEM Achievement. J. Sci. Educ. Technol. 2019, 28, 628–637. [Google Scholar] [CrossRef]
- Eilam, B.; Alon, U. Children’s Object Structure Perspective-Taking: Training and Assessment. Int. J. Sci. Math. Educ. 2019, 17, 1541–1562. [Google Scholar] [CrossRef]
- Horvitz, B.S.; García, L.R.; Mitchell, R.G.; Calhoun, C.D. An Examination of Instructional Approaches in Online Technical Education in Community Colleges. Online Learn. 2019, 23, 237–252. [Google Scholar] [CrossRef]
- Bers, M.U. Coding as another language: A pedagogical approach for teaching computer science in early childhood. J. Comput. Educ. 2019, 6, 499–528. [Google Scholar] [CrossRef]
- Moreira, R.G.; Butler-Purry, K.; Carter-Sowell, A.; Walton, S.; Juranek, I.V.; Challoo, L.; Regisford, G.; Coffin, R.; Spaulding, A. Innovative Professional Development and Community Building Activity Program Improves STEM URM Graduate Student Experiences. Int. J. STEM Educ. 2019, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Ergun, A.; Kiyici, G. The effect of design based science education applications of science teacher candidates on their perceptions of engineering education and engineer. Pegem J. Educ. Instr. 2019, 9, 1031–1061. [Google Scholar] [CrossRef]
- Klippel, A.; Zhao, J.Y.; Jackson, K.L.; La Femina, P.; Stubbs, C.; Wetzel, R.; Blair, J.; Wallgrun, J.O.; Oprean, D. Transforming Earth Science Education Through Immersive Experiences: Delivering on a Long Held Promise. J. Educ. Comput. Res. 2019, 57, 1745–1771. [Google Scholar] [CrossRef]
- Monsalvete, L.; Méndez, Y.; Villalonga, Y.S. Science and Technology: Gender gaps in Europe and Latin America. Atenas 2020, 1, 135–150. [Google Scholar]
- Wade-Jaimes, K.; Cohen, J.D.; Calandra, B. Mapping the evolution of an after-school STEM club for African American girls using activity theory. Cult. Stud. Sci. Educ. 2019, 14, 981–1010. [Google Scholar] [CrossRef]
- Tajmel, T. Pathways, intersections and leaky pipelines: The cognitive function of metaphors for research on STEM careers. Cult. Stud. Sci. Educ. 2019, 14, 1105–1113. [Google Scholar] [CrossRef]
- Todd, B.; Zvoch, K. Exploring Girls’ Science Affinities Through an Informal Science Education Program. Res. Sci. Educ. 2019, 49, 1647–1676. [Google Scholar] [CrossRef]
- García-Peñalvo, F.J.; Bello, A.; Domínguez, A.; Romero, R.M. Gender Balance Actions, Policies and Strategies for STEM: Results from a World Cafe Conversation. Educ. Knowl. Soc. 2019, 20, 31-31–31-15.31. [Google Scholar] [CrossRef]
- Tissenbaum, M. I see what you did there! Divergent collaboration and learner transitions from unproductive to productive states in open-ended inquiry. Comput. Educ. 2020, 145, 103739. [Google Scholar] [CrossRef]
- Howard, M.A.; Kern, A.L. Conceptions of wayfinding: Decolonizing science education in pursuit of Native American success. Cult. Stud. Sci. Educ. 2019, 14, 1135–1148. [Google Scholar] [CrossRef]
- Hite, R.; Jones, M.G.; Andre, T.; Childers, G.; Corin, E. Female and minority experiences in an astronomy-based science hobby. Cult. Stud. Sci. Educ. 2019, 14, 937–962. [Google Scholar] [CrossRef]
- Lin, T.J.; Lin, T.C.; Potvin, P.; Tsai, C.C. Research trends in science education from 2013 to 2017: A systematic content analysis of publications in selected journals. Int. J. Sci. Educ. 2019, 41, 367–387. [Google Scholar] [CrossRef]
- Gutiérrez-Salcedo, M.; Martínez, M.A.; Moral-Muñoz, J.A.; Herrera-Viedma, E.; Cobo, M.J. Some bibliometric procedures for analyzing and evaluating research fields. Appl. Intell. 2017, 48, 1275–1297. [Google Scholar] [CrossRef]
- Moreno, A.J. Estudio bibliométrico de la Producción Científica sobre la Inspección Educativa. REICE Revis. Iberoam. Sobre Calid. Efica. Camb. Educ. 2019, 17, 23–40. [Google Scholar] [CrossRef]
- Campos, M.; Ramos, M.; Moreno-Guerrero, A.J. Realidad virtual y motivación en el contexto educativo: Estudio bibliométrico de los últimos veinte años de Scopus. Alteridad 2020, 15, 47–60. [Google Scholar] [CrossRef]
- Moreno-Guerrero, A.J.; Romero-Rodríguez, J.M.; Ramos, M.; Alonso, S. Bibliometric Analysis on Educational Inspection in the Web of Science Database. REICE Revis. Iberoam. Sobre Calid. Efica. Camb. Educ. 2020, 18, 83–103. [Google Scholar] [CrossRef]
- Moreno-Guerrero, A.J. Estudio bibliométrico de la producción científica en Web of Science: Formación Profesional y blended learning. Píxel-Bit. Revis. Medios Educ. 2019, 149–168. [Google Scholar] [CrossRef]
- Rodríguez-García, A.M.; Fernández, M.A.; Moreno-Guerrero, A.J. Evolución científica de lenguas en el contexto universitario (1900–2019). Texto Livre Ling. Tecnol. 2019, 12, 16–36. [Google Scholar] [CrossRef] [Green Version]
- López, J.; Moreno-Guerrero, A.J.; López, J.A.; Pozo, S. Analysis of the Productive, Structural, and Dynamic Development of Augmented Reality in Higher Education Research on the Web of Science. Appl. Sci. 2019, 9, 5306. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Cobo, M.J.; López, A.G.; Herrera, E.; Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Rodríguez-García, A.M.; López, J.; Agreda, M.; Moreno-Guerrero, A.J. Productive, Structural and Dynamic Study of the Concept of Sustainability in the Educational Field. Sustainability 2019, 11, 5613. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-García, A.M.; Moreno-Guerrero, A.J.; López-Belmonte, J. Nomophobia: An Individual’s Growing Fear of Being without a Smartphone—A Systematic Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, M.A.; Cobo, M.J.; Herrera, M.; Herrera, E. Analyzing the scientific evolution of social work using science mapping. Res. Soc. Work Pract. 2015, 25, 257–277. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. SciMAT: A new Science Mapping Analysis Software Tool. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1609–1630. [Google Scholar] [CrossRef]
- Montero-Díaz, J.; Cobo, M.J.; Gutiérrez-Salcedo, M.; Segado-Boj, F.; Herrera-Viedma, E. A science mapping analysis of ‘Communication’ WoS subject category (1980–2013). Comunicar 2018, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Grover, S.; Pea, R. Computational Thinking in K-12: A Review of the State of the Field. Educ. Res. 2013, 42, 38–43. [Google Scholar] [CrossRef]
- Henderson, C.; Beach, A.; Finkelstein, N. Facilitating Change in Undergraduate STEM Instructional Practices: An Analytic Review of the Literature. J. Res. Sci. Teach. 2011, 48, 952–984. [Google Scholar] [CrossRef]
- Maltese, A.V.; Tai, R.H. Pipeline Persistence: Examining the Association of Educational Experiences With Earned Degrees in STEM Among US Students. Sci. Educ. 2011, 95, 877–907. [Google Scholar] [CrossRef]
- Boyle, E.A.; Hainey, T.; Connolly, T.M.; Gray, G.; Earp, J.; Ott, M.; Lim, T.; Ninaus, M.; Ribeiro, C.; Pereira, J. An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Comput. Educ. 2016, 94, 178–192. [Google Scholar] [CrossRef]
- Jan, R.; Ahmad, R. H-Index and Its Variants: Which Variant Fairly Assess Author’s Achievements. J. Inf. Technol. Res. 2020, 13, 68–76. [Google Scholar] [CrossRef]
- Mendes, J.V.; Oliveira, G.R.; De Souza, L.M. The G-Index: A sustainability reporting assessment tool. Int. J. Sustain. Dev. World Ecol. 2019, 26, 428–438. [Google Scholar] [CrossRef]
- Alonso, S.; Cabrerizo, F.J.; Herrera-Viedma, E.; Herrera, F. Hg-index: A new index to characterize the scientific output of researchers based on the h- and g-indices. Scientometrics 2010, 82, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Tsallis Entropy Index q and the Complexity Measure of Seismicity in Natural Time under Time Reversal before the M9 Tohoku Earthquake in 2011. Entropy 2020, 20, 757. [Google Scholar] [CrossRef] [Green Version]
Indicators | Criteria |
---|---|
Year of publication | 2010-2019 |
Language | x ≥ 6 |
Type of documents | x ≥ 100 |
Organizations | x ≥ 100 |
Authors | x ≥ 12 |
Sources of origin | x ≥ 100 |
Countries | x ≥ 100 |
Citation | The four most cited documents |
Configuration | Values |
---|---|
Analysis unit | Keywords authors, keywords WoS |
Frequency threshold | Keywords: I1 = (2), I2 = (2), I3 = (3), I4 = (3), I5 = (4), I6 = (4), I7 = (5), I8 = (6), I9 = (5), I10 = (5) |
Authors: PX = (2) | |
Network type | Co-occurrence |
Co-occurrence union value threshold | Keywords: I1 = (1), I2 = (1), I3 = (1), I4 = (1), I5 = (1), I6 = (1), I7 = (2), I8 = (2), I9 = (2), I10 = (2) |
Authors: PX = (2) | |
Normalization measure | Equivalence index |
Clustering algorithm | Maximum size: 9; Minimum size: 3 |
Evolutionary measure | Jaccard index |
Overlapping measure | Inclusion Rate |
Language | n |
---|---|
English | 4317 |
Spanish | 32 |
Turkish | 11 |
Portuguese | 6 |
Document Types | n |
---|---|
Article | 2736 |
Proceedings paper | 1395 |
Book Chapter | 448 |
Editorial Material | 147 |
Early Access | 103 |
Institution | n |
---|---|
Purdue University | 144 |
University of North Carolina | 127 |
State University System of Florida | 104 |
University of California System | 104 |
University of Texas System | 103 |
Authors | n |
---|---|
Moore, T.J. | 25 |
Johnson, C.C. | 22 |
Grandgenett, N. | 19 |
Nugent, G. | 16 |
Barlex, D. | 15 |
Henderson, C. | 15 |
Osman, K. | 14 |
Banks, F. | 14 |
Capraro, R.M. | 14 |
Osman, K. | 13 |
Guzey, S.S. | 13 |
Roehrig, G.H. | 13 |
Source titles | n |
---|---|
ASEE Annual Conference Exposition | 606 |
2014 ASEE Annual Conference | 168 |
2011 ASEE Annual Conference Exposition | 151 |
2012 ASEE Annual Conference | 136 |
INTED Proceedings | 122 |
Edulearn Proceedings | 117 |
Journal of Science Education and Technology | 117 |
International Journal of STEM Education | 106 |
Country | n |
---|---|
United States | 247 |
England | 226 |
Australia | 195 |
Spain | 128 |
Canada | 124 |
Germany | 103 |
Interval 2010 | ||||||
---|---|---|---|---|---|---|
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Stem-Cell-Research | 3 | 3 | 3 | 3 | 4.58 | 27 |
Knowledge | 5 | 5 | 5 | 5 | 10.49 | 99 |
Women | 4 | 4 | 4 | 4 | 20.3 | 329 |
Beliefs | 5 | 3 | 4 | 3.46 | 10.25 | 158 |
Persistence | 5 | 3 | 3 | 3 | 7.35 | 60 |
STEM | 9 | 2 | 2 | 2 | 11.58 | 79 |
Students | 5 | 2 | 4 | 2.83 | 7.75 | 36 |
Completion-rate | 2 | 2 | 2 | 2 | 3.46 | 12 |
Interval 2011 | ||||||
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Faculty | 4 | 3 | 3 | 3 | 11.49 | 155 |
Career-Development | 3 | 1 | 1 | 1 | 8.37 | 70 |
Teacher-change | 3 | 1 | 1 | 1 | 15.36 | 236 |
Academic-success | 5 | 3 | 5 | 3.87 | 11.49 | 248 |
Students | 14 | 7 | 8 | 7.48 | 17.35 | 464 |
Gender-Differences | 5 | 4 | 4 | 4 | 16.73 | 175 |
Women | 8 | 7 | 7 | 7 | 14.49 | 417 |
Stem | 8 | 3 | 5 | 3.87 | 12 | 133 |
Science | 9 | 5 | 8 | 6.32 | 12.65 | 299 |
STEM-Education | 4 | 1 | 1 | 1 | 1.73 | 3 |
Achievement | 5 | 3 | 3 | 3 | 4.24 | 38 |
Interval 2012 | ||||||
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Science | 22 | 9 | 17 | 12.37 | 19.44 | 632 |
Perspective | 6 | 4 | 4 | 4 | 6.63 | 59 |
African-American | 6 | 5 | 5 | 5 | 5.48 | 90 |
Performance | 17 | 8 | 12 | 9.8 | 17.66 | 404 |
Knowledge | 6 | 4 | 5 | 4.47 | 10.2 | 101 |
Curriculum | 3 | 2 | 2 | 2 | 16.97 | 160 |
Interval 2013 | ||||||
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Choice | 17 | 9 | 16 | 12 | 13.75 | 459 |
Gender-Differences | 8 | 4 | 6 | 4.9 | 10.2 | 93 |
Professional-Development | 7 | 4 | 4 | 4 | 8.94 | 72 |
Beliefs | 19 | 8 | 13 | 10.2 | 12 | 197 |
Attitudes | 11 | 6 | 9 | 7.35 | 8.49 | 99 |
Diversity | 9 | 6 | 7 | 6.48 | 10.39 | 184 |
Knowledge | 11 | 5 | 10 | 7.07 | 9.22 | 109 |
STEM | 8 | 5 | 7 | 5.92 | 9.49 | 230 |
Persistence | 8 | 4 | 4 | 4 | 4.47 | 22 |
Educational-Choice | 3 | 3 | 3 | 3 | 5.74 | 39 |
Interval 2014 | ||||||
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Women | 31 | 12 | 18 | 14.7 | 17.32 | 349 |
Mathematics | 27 | 13 | 21 | 16.52 | 21.02 | 480 |
Motivation | 12 | 9 | 10 | 9.49 | 11.62 | 177 |
Perceptions | 17 | 9 | 15 | 11.62 | 12.73 | 231 |
Race | 8 | 4 | 5 | 4.47 | 12.49 | 125 |
Teachers | 13 | 6 | 8 | 6.93 | 10.95 | 135 |
Socialization | 5 | 4 | 4 | 4 | 7.48 | 77 |
Assessment | 2 | 1 | 1 | 1 | 3.61 | 13 |
Interval 2015 | ||||||
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Achievement | 26 | 9 | 15 | 11.62 | 12.73 | 245 |
Gender | 24 | 10 | 14 | 11.83 | 12.25 | 220 |
Instruction | 28 | 12 | 18 | 14.7 | 16.25 | 341 |
Outcomes | 5 | 3 | 3 | 3 | 6.71 | 41 |
Framework | 9 | 6 | 9 | 7.35 | 10.39 | 109 |
Perceptions | 10 | 6 | 9 | 7.35 | 8.83 | 85 |
Higher-Education | 8 | 5 | 7 | 5.92 | 7.07 | 54 |
Project-Based-Learning | 3 | 2 | 2 | 2 | 10.39 | 57 |
Diversity | 3 | 1 | 1 | 1 | 4.24 | 18 |
Environment | 2 | 1 | 1 | 1 | 1 | 1 |
Classroom | 2 | 1 | 1 | 1 | 1.73 | 3 |
Interval 2016 | ||||||
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Achievement | 28 | 9 | 13 | 10.82 | 11.22 | 213 |
Women | 50 | 9 | 12 | 10.39 | 11.62 | 238 |
Students | 24 | 8 | 13 | 10.2 | 11.66 | 191 |
Teachers | 11 | 5 | 9 | 6.71 | 5.48 | 92 |
STEM | 51 | 7 | 10 | 8.37 | 9.17 | 151 |
STEM-Education | 18 | 7 | 14 | 9.9 | 9.9 | 211 |
Experience | 12 | 4 | 9 | 6 | 6.63 | 235 |
Robotics | 5 | 3 | 3 | 3 | 7.14 | 69 |
Interval 2017 | ||||||
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Science | 183 | 11 | 14 | 12.41 | 13.27 | 633 |
Race | 17 | 5 | 8 | 6.32 | 7.75 | 79 |
Gender-differences | 22 | 7 | 11 | 8.77 | 10.58 | 137 |
Engagement | 15 | 5 | 7 | 5.92 | 6.71 | 67 |
Inquiry | 9 | 2 | 4 | 2.83 | 4.69 | 21 |
Performance | 21 | 5 | 7 | 5.92 | 6.71 | 79 |
STEM-Education | 19 | 6 | 9 | 7.35 | 7.75 | 105 |
Physics | 9 | 3 | 5 | 3.87 | 4.24 | 26 |
Knowledge | 13 | 4 | 5 | 4.47 | 5.29 | 36 |
Experience | 6 | 3 | 3 | 3 | 4.24 | 16 |
Interval 2018 | ||||||
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Science | 147 | 7 | 9 | 7.94 | 7.94 | 301 |
Persistence | 27 | 5 | 7 | 5.92 | 6.32 | 74 |
Race | 25 | 4 | 7 | 5.29 | 6.93 | 63 |
Instruction | 11 | 4 | 6 | 4.9 | 4.47 | 36 |
Choice | 27 | 4 | 6 | 4.9 | 4.9 | 64 |
Impact | 29 | 3 | 4 | 3.46 | 4.24 | 37 |
Mathematics | 46 | 5 | 6 | 5.48 | 5.94 | 90 |
Classroom | 10 | 2 | 3 | 2.45 | 3.74 | 15 |
Sex-differences | 9 | 3 | 4 | 3.46 | 3.46 | 20 |
Design | 8 | 3 | 4 | 3.46 | 3.87 | 20 |
Community | 5 | 1 | 1 | 1 | 1.41 | 4 |
Policy | 4 | 2 | 2 | 2 | 2.83 | 9 |
Interval 2019 | ||||||
Denomination | Works | Index-h | Index-g | Index-hg | Index-q2 | Citations |
Women | 73 | 3 | 3 | 3 | 3 | 50 |
Gender-Differences | 34 | 3 | 4 | 3.46 | 3.46 | 32 |
Persistence | 20 | 2 | 2 | 2 | 2.45 | 15 |
Mathematics | 96 | 3 | 4 | 3.46 | 3.46 | 60 |
Professional-development | 17 | 1 | 2 | 1.41 | 1.73 | 5 |
STEM-Education | 39 | 3 | 3 | 3 | 3 | 26 |
Motivation | 32 | 3 | 3 | 3 | 3 | 21 |
Higher-Education | 19 | 2 | 2 | 2 | 2 | 7 |
Computational-Thinking | 9 | 2 | 2 | 2 | 2.83 | 6 |
Model | 7 | 1 | 1 | 1 | 1.41 | 4 |
Design | 5 | 2 | 2 | 2 | 2.83 | 6 |
Intervention | 5 | 2 | 2 | 2 | 2 | 4 |
Equity | 5 | 2 | 2 | 2 | 2.45 | 5 |
High-School | 6 | 1 | 1 | 1 | 1.41 | 4 |
Outcomes | 4 | 1 | 1 | 1 | 1 | 1 |
Skills | 6 | 1 | 1 | 1 | 1.41 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinojo-Lucena, F.-J.; Dúo-Terrón, P.; Ramos Navas-Parejo, M.; Rodríguez-Jiménez, C.; Moreno-Guerrero, A.-J. Scientific Performance and Mapping of the Term STEM in Education on the Web of Science. Sustainability 2020, 12, 2279. https://doi.org/10.3390/su12062279
Hinojo-Lucena F-J, Dúo-Terrón P, Ramos Navas-Parejo M, Rodríguez-Jiménez C, Moreno-Guerrero A-J. Scientific Performance and Mapping of the Term STEM in Education on the Web of Science. Sustainability. 2020; 12(6):2279. https://doi.org/10.3390/su12062279
Chicago/Turabian StyleHinojo-Lucena, Francisco-Javier, Pablo Dúo-Terrón, Magdalena Ramos Navas-Parejo, Carmen Rodríguez-Jiménez, and Antonio-José Moreno-Guerrero. 2020. "Scientific Performance and Mapping of the Term STEM in Education on the Web of Science" Sustainability 12, no. 6: 2279. https://doi.org/10.3390/su12062279
APA StyleHinojo-Lucena, F.-J., Dúo-Terrón, P., Ramos Navas-Parejo, M., Rodríguez-Jiménez, C., & Moreno-Guerrero, A.-J. (2020). Scientific Performance and Mapping of the Term STEM in Education on the Web of Science. Sustainability, 12(6), 2279. https://doi.org/10.3390/su12062279