Ecological Suitability of Island Development Based on Ecosystem Services Value, Biocapacity and Ecological Footprint: A Case Study of Pingtan Island, Fujian, China
Abstract
:Highlights:
- A new measurement framework for the ecological suitability of island development based on ecosystem services value, ecological footprint and biocapacity was proposed.
- Marine ecosystems were considered in calculations of ecosystem services value and biocapacity.
- The key ecological factors restricting the scale of island development are topography, vegetation with special functions and freshwater.
- Island development improves the biocapacity through changes from lower-yield land types to higher-yield construction land types and by external investment.
1. Introduction
2. Study Area
3. Methods and Data
3.1. Data and Processing of LUCC
3.2. Calculation of ESV
3.3. Calculation of EF and BC
4. Results
4.1. LUCC on Pingtan Island
4.2. Changes in ESV
4.3. Changes in EF and BC
5. Discussion
5.1. The ESV Revealed the Restraining Factors in Pingtan Island Development
5.2. Ecological State of the Island after Development, Based on EF and BC
5.3. A New Measurement Framework of Ecological Suitability
6. Conclusion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LUCC | land use and land cover change |
ESV | ecosystem services value |
EF | ecological footprint |
BC | biocapacity |
References
- Zhang, Y. Latest Evolvement and development pattern of the industrial structure in China’s island counties. Mar. Econ. 2011, 1, 1–7. [Google Scholar]
- Jupiter, S.; Mangubhai, S.; Kingsford, R.T. Conservation of biodiversity in the Pacific islands of Oceania: Challenges and opportunities Pacific. Pac. Conserv. Biol. 2014, 20, 206–220. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Guo, Z.; Ding, D. Connotation, features and causes of island ecological vulnerability. Acta Oceanol. Sin. 2015, 37, 93–105. [Google Scholar]
- Povilanskas, R.; Armaitienė, A.; Dyack, B.; Jurkus, E. Islands of prescription and islands of negotiation. J. Destin. Mark. Manag. 2016, 5, 260–274. [Google Scholar] [CrossRef]
- Wood, J. Proceedings of the Workshop on Biosphere Reserves and other Protected Areas for Sustainable Development of Small Caribeane Island; US National Park Service: Atlanta, GA, USA, 1983. [Google Scholar]
- Hill, J.; Hostest, P.; Tsiourlis, G.; Kasapidis, P.; Udelhoven, T.H.; Diemer, C. Monitoring 20 years of increased grazing impact on the Greek island of Crete with earth observation satellites. J. Arid Environ. 1998, 39, 165–178. [Google Scholar] [CrossRef]
- Kenneth, R. Introduction to the special issue on a modern role for traditional coastal-marine resource management systems in the Pacific Islands. Ocean Coast. Manag. 1998, 40, 99–103. [Google Scholar]
- Pakhomov, E.A.; Froneman, P.W.; Ansorge, I.J.; Lutjeharms, J.R.E. Temporal variability in the physico-biological environment of the Prince Edward Islands (Southern Ocean). J. Mar. Syst. 2000, 26, 75–95. [Google Scholar] [CrossRef]
- McDonald, G.W.; Patterson, M.G. Ecological footprints and interdependencies of New Zealand regions. Ecol. Econ. 2004, 50, 49–67. [Google Scholar] [CrossRef]
- Kerr, S.A. What is small island sustainable development about? Ocean Coast. Manag. 2005, 48, 503–524. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Sun, J.; Guo, Z.; Ma, D. Evaluation on island resources and environment carrying capacity under the background of urbanization. J. Nat. Resour. 2017, 32, 1374–1384. [Google Scholar]
- Cao, W.; Li, R.; Chi, X.; Chen, N.; Chen, J.; Zhang, H.; Zhang, F. Island urbanization and its ecological consequences: A case study in the Zhoushan Island, East China. Ecol. Indic. 2017, 76, 1–14. [Google Scholar] [CrossRef]
- Aburto, J.A.; Gaymerab, C.F. Struggling with social-ecological mismatches in marine management and conservation at Easter Island. Mar. Policy 2018, 92, 21–29. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, Z.; Gao, J.; Xie, Z.; Zhao, M.; Wang, E. Evaluating landscape ecological sensitivity of an estuarine island based on landscape pattern across temporal and spatial scales. Ecol. Indic. 2019, 101, 221–237. [Google Scholar] [CrossRef]
- Chen, Q. Research on Non-Resident Islands’ Exploitation Suitability based on Ecology and Economy; Xiamen University: Xiamen, China, 2009. [Google Scholar]
- Xu, L.; Huang, Q.; Ding, D.; Mei, M.; Qin, H. Modelling urban expansion guided by land ecological suitability: A case study of Changzhou City, China. Habitat Int. 2018, 75, 12–24. [Google Scholar] [CrossRef]
- Xie, Z.; Li, X.; Jiang, D.; Lin, S.; Yang, B.; Chen, S. Threshold of island anthropogenic disturbance based on ecological vulnerability assessment-A case study of Zhujiajian Island. Ocean Coast. Manag. 2019, 167, 127–136. [Google Scholar] [CrossRef]
- Chen, B.; Yu, W. Studies on comprehensive ecosystem assessment methods of islands. J. Oceanogr. Taiwan Strait 2006, 25, 566–571. [Google Scholar]
- MA (Millennium Ecosystem Assessment). Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Yue, D.; Xu, X.; Hui, C.; Xiong, Y.; Han, X.; Ma, J. Biocapacity supply and demand in Northwestern China: A spatial appraisal of sustainability. Ecol. Econ. 2011, 70, 988–994. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; Zhang, Q. Spatial and temporal dynamics of land use and its influence on ecosystem services value in Yangtze River Delta. Acta Ecol. Sin. 2014, 34, 3311–3319. [Google Scholar]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Li, B.; Wang, W. Trade-offs and synergies in ecosystem services for the Yinchuan Basin in China. Ecol. Indic. 2018, 84, 837–846. [Google Scholar] [CrossRef]
- Niccolucci, V.; Tiezzi, E.; Pulselli, F.M.; Capineri, C. Biocapacity vs ecological footprint of world regions: A geopolitical interpretation. Ecol. Indic. 2012, 16, 23–30. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Weng-Wai, C.; Sheau-Ting, L.; Mohammed, A.H. Investigating the Environmental Kuznets Curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecol. Indic. 2015, 48, 315–323. [Google Scholar] [CrossRef]
- Wackernagel, M.; Rees, W.E. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Cabriola Island, BC, Canada, 1996. [Google Scholar]
- Lewan, L.; Craig, S. The Use of Ecological Footprint and Biocapacity Analyses as Sustainability Indicators for Subnational Geographical Areas: A Recommended Way Forward; Ambiente Italia: Milan, Italy, 2001. [Google Scholar]
- Li, L.; Li, J. Evaluation of island ecological resource utilization based on ecological footprint model-A case study of Changdao. Mar. dev. Manag. 2011, 9, 93–99. [Google Scholar]
- Sun, Y.; Zhu, J.; Huang, H. Ecological footprint analysis on tourism sustainability of Meizhou Island. Ecol. Sci. 2015, 34, 124–129. [Google Scholar]
- Zhang, H.; Chen, J.; Zhou, P. A modified ecological footprint model to evaluate the land carring capacity of island cities: Take Zhoushan City as example. Econ. Geogr. 2016, 36, 155–160. [Google Scholar]
- Liquete, C.; Piroddi, C.; Drakou, E.G.; Gurney, L.; Katsanevakis, S.; Charef, A.; Egoh, B. Current status and future prospects for the assessment of marine and coastal ecosystem services: A systematic review. PLoS ONE 2013, 8, e67737. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Huang, J.; Wang, C.; Lin, H.; Zhang, Z.; Jiang, J.; Wang, B. Land development suitability evaluation of Pingtan Island base on scenario analysis and landscape ecological quality evaluation. Sustainability. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Lan, H.; Lu, J.; Cao, Y.; Lin, T. A brief analysis of the main marine disasters and strategies of Pingtan Island. Mar. Dev. Manag. 2014, 2, 55–58. [Google Scholar]
- Pingtan Comprehensive Experimental Area Administration Committee. Overall Planning of Pingtan Comprehensive Experimental Area (2010–2030); Pingtan: Fujian, China, 2010. [Google Scholar]
- Wu, L. All-round development, diversified investment, accelerate the coastal construction of Ganyu, Jiangsu. Mar. Dev. Manag. 2001, 6, 77–78. [Google Scholar]
- Liu, M. Implement of comprehensive marine management and acceleration of maritime construction in Dongying. Mar. Dev. Manag. 2002, 4, 58–60. [Google Scholar]
- Zhang, Y.; Ding, Y.; Guo, Y.; Li, T.; Xue, B.; Bao, J. Investigation on marine fishery resources and production status near Feiyun and Aojiang River Estuary, Reian, Wenzhou. Hebei Fish. 2012, 7, 41–46. [Google Scholar]
- Geospatial Data Cloud Site, Computer Network Information Center, Chinese Academy of Sciences. 2018. Available online: http://www.gscloud.cn (accessed on 22 December 2018).
- MA (Millenium Ecosystem Assessment). Ecosystems and Human Well-Being: Desertification Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Xie, G.; Zhen, L.; Lu, C.; Yu, X.; Cao, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the evaluation method forecosystem service value method based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Faber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xu, L.; Xu, X.; Luo, T.; Zhu, G.; Ma, Z. Services based on land use: A case study of Bohai Rim. Geogr. Res. 2012, 31, 1775–1784. [Google Scholar]
- Boithias, L.; Terrado, M.; Corominas, L.; Ziv, G.; Kumar, V.; Marqués, M.; Schuhmacher, M.; Acuña, V. Analysis of the uncertainty in the monetary valuation of ecosystem services - A case study at the river basin scale. Sci. Total Environ. 2016, 543, 683–690. [Google Scholar] [CrossRef]
- Toderoiu, F. Ecological footprint and biocapacity–Methodology and regional and national dimensions. Agric. Econ. Rural Dev. 2010, 2, 213–238. [Google Scholar]
- Fujian Statistics Bureau. Fujian Statistical Yearbook. 2019. Available online: http://tjj.fujian.gov.cn/tongjinianjian/dz2017/index-cn.htm (accessed on 17 March 2019).
- Fuzhou Statistics Bureau. Fuzhou Statistical Yearbook. 2019. Available online: http://tjj.fuzhou.gov.cn/zz/fztjnj/2017fztjnj/indexch.htm (accessed on 17 March 2019).
- Pingtan Statistics Bureau. Pingtan Statistical Yearbook; Pingtan Statistics Bureau: Fujian, China, 2017. [Google Scholar]
- Borucke, M.; Moore, D.; Cranston, G.; Gracey, K.; Iha, K.; Larson, J.; Lazarus, E.; Morales, J.C.; Wackernagel, M.; Galli, A. Accounting for demand and supply of the biosphere’s regenerative capacity: The national footprint accounts’ underlying methodology and framework. Ecol. Indic. 2013, 24, 518–533. [Google Scholar] [CrossRef]
- Global Footprint Network. Available online: https://www.footprintnetwork.org (accessed on 10 March 2019).
- Qiu, S. Ecological footprint and ecological bearing capacity of fujian province in 2008. Dev. Res. 2009, 12, 80–83. [Google Scholar]
- Liu, M.; Li, W.H.; Xie, G.D. Estimation of China ecological footprint production coefficient based on net primary productivity. China J. Ecol. 2010, 29, 592–597. [Google Scholar]
- Chen, Z. Study on ecological carrying capacity of new island city based on ecological footprint model -A case study of Pingtan Comprehensive experimental zone. Environ. Dev. 2017, 27, 214–215. [Google Scholar]
- Wackernagel, M.; Lewan, L.; Hansson, C.B. Evaluating the use of natural captical with the ecological footprint: Application in Sweden and Sub regions. Ambio 1999, 28, 604–612. [Google Scholar]
- WCED. Report of the World Commission on Environment and Development: Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Liu, Y. Research on Comprehensive Carrying Capacity in Arid Area of Central Ningxia; Ningxia University: Ningxia, China, 2016. [Google Scholar]
- Jeswani, H.K.; Azapagic, A. Water footprint: Methodologies and a case study for assessing the impacts of water use. J. Clean. Prod. 2011, 19, 1288–1299. [Google Scholar] [CrossRef]
- Jiao, W.; Min, Q.; Chen, S.; Li, W. The waste absorption footprint (WAF): A methodological note on footprint calculations. Ecol. Indic. 2013, 34, 356–360. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Huijbregts, M.A.J.; Hendriks, A.J. The influence of nutrients and non-CO2 greenhouse gas emissions on the ecological footprint of products. Sustainability 2010, 2, 963–979. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Ding, D.; Shen, W. Discussion on shortcoming and improvement of ecological footprint theory in energy consumption assessment. J. Nat. Resour. 2010, 25, 1013–1021. [Google Scholar]
- Mózner, Z.; Tabi, A.; Csutora, M. Modifying the yield factor based on more efficient use of fertilizer - the environmental impacts of intensive and extensive agricultural practices. Ecol. Indic. 2012, 16, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Wang, Y.; Gong, J.; Wang, F. Ecological footprint model modification and method improvement. Acta Ecol. Sin. 2015, 5, 4592–4603. [Google Scholar]
- Zhang, X.; Cai, H. Regional Ecological Environmental Water Demand and Rational Allocation of Water Resources; Northwest Agricultural and Forestry University Press: Yangling, China, 2008. [Google Scholar]
- Sajedipour, S.; Zarei, H.; Oryan, S. Estimation of environmental water requirements via an ecological approach: A case study of Bakhtegan Lake, Iran. Ecol. Eng. 2017, 100, 246–255. [Google Scholar] [CrossRef]
- Shojaei, P.; Gheysari, M.; Nouri, H.; Myers, B.; Esmaeili, H. Water requirements of urban landscape plants in an arid environment: The example of a botanic garden and a forest park. Ecol. Eng. 2018, 123, 43–53. [Google Scholar] [CrossRef]
- Taboroši, D.; Jenson, J.W.; Sánchez Collazo, M.; Zega, M. Availability, usage, and threats to freshwater resources on low carbonate islands in Micronesia. In Proceedings of the Egu General Assembly Conference, Vienna, Austria, 2–7 May 2010. [Google Scholar]
- Mycoo, M.A. Achieving SDG 6: Water resources sustainability in Caribbean Small Island Developing States through improved water governance. Nat. Resour. Forum 2018, 42, 54–68. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Jiang, X.; Liao, W. Quantitative evaluation on the ecological benefit of public park green space. J. Plant Resour. Environ. 2005, 14, 42–45. [Google Scholar]
- Kennish, M.J. Coastal salt marsh systems in the US: A review of anthropogenic impacts. J. Coast. Res. 2001, 17, 731–748. [Google Scholar]
- Ma, Z.; Melville, D.S.; Liu, J.; Chen, Y.; Yang, H.; Ren, W.; Zhang, Z.; Piersma, T.; Li, B. Rethinking China’s new great wall. Science 2014, 346, 912–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeksema, R.J. Three stages in the history of land reclamation in the Netherlands. J. Irrig. Drain. Eng. 2007, 56, 113–126. [Google Scholar] [CrossRef]
- Tian, B.; Wu, W.; Yang, Z.; Zhou, Y. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuar. Coast. Shelf Sci. 2016, 170, 83–90. [Google Scholar] [CrossRef]
- Li, Y.; Wen, R.; Chen, K. A review on the progress in marine ecosystem services valuation. Ecol. Econ. 2017, 33, 120–126. [Google Scholar]
- Turner, R.K.; Paavola, J.; Cooper, P.; Farber, S.; Jessamy, V.; Georgiou, S. Valuing nature: Lessons learned and future research direction. Ecol. Econ. 2003, 46, 493–510. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Bateman, I.J.; Mace, G.M.; Fezzi, C.; Atkinson, G.; Turner, K. Economic analysis for ecosystem service assessments. Environ. Resour. Econ. 2011, 48, 177–218. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M.; Martindill, J.; Medouar, F.Z.; Huang, S.; et al. Ecological footprint accounting for countries: Updates and results of the national footprint accounts, 2012–2018. Resources 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zha, X.; Huang, S.; Chen, S. Research of the sustainable development in Fujian province based on the ecological footprint model. J. Shenyang Norm. Univ. (Nat. Sci. Ed). 2016, 2, 178–182. [Google Scholar]
- Xie, G.; Zhou, H.; Lu, C.; Zhen, L. Carrying capacity of natural resources in China. China Popul. Resour. Environ. 2005, 15, 93–98. [Google Scholar]
- Kissinger, M.; Rees, W.E. Importing terrestrial biocapacity: The U.S. case and global implications. Land Use Policy 2010, 27, 589–599. [Google Scholar] [CrossRef]
- Coscieme, L.; Pulselli, F.M.; Niccolucci, V.; Patrizi, N.; Sutton, P.C. Accounting for ‘land-grabbing’ from a biocapacity viewpoint. Sci. Total Environ. 2016, 530, 551–559. [Google Scholar] [CrossRef]
- Liu, D.; Feng, Z.; Yang, Y. Ecological balance between supply and demand in China using ecological footprint method. J. Nat. Resour. 2012, 27, 614–624. [Google Scholar]
- Beyer, R.M.; Manica, A.; Rademacher, T.T. Relocating agriculture could drastically reduce humanity’s ecological footprint. BioRxiv 2008, 488841. [Google Scholar] [CrossRef] [Green Version]
- Jin, M. Review of evaluation methods and research advance on ecological water requirement. J. Agric. Resour. Environ. 2013, 30, 53–57. [Google Scholar]
- Li, C.; Cai, Y.; Qian, J. A multi-stage fuzzy stochastic programming method for water resources management with the consideration of ecological water demand. Ecol. Indic. 2018, 95, 930–938. [Google Scholar] [CrossRef]
- Clara, I.; Dyack, B.; Rolfe, J.; Newton, A.; Borg, D.; Povilanskas, R.; Brito, A.C. The Value of Coastal Lagoons: Case Study of Recreation at the Ria de Aveiro, Portugal in comparison to the Coorong, Australia. J. Nat. Conserv. 2018, 43, 190–200. [Google Scholar] [CrossRef]
- Zong, Y.; Wang, R.; Wang, C.; Wang, H.; Zhang, L. Ecological suitability assessment on land use based on potential-constrain approach: The case of urbanized areas in Dalian city, China. Geogr. Res. 2007, 26, 1117–1126. [Google Scholar]
Land Ecosystem Services | Marine Ecosystem Services | |
---|---|---|
Supporting Services | Maintain the functions of the ecosystem itself | Include orders of magnitude more of primary production, material recycling, and biodiversity |
Provisioning Services | Provide products, including agriculture, forestry, animal husbandry, fishery products, freshwater, wood and medicinal materials | Include vastly larger food supplies, raw material supplies and genetic resources |
Regulating Services | Include climate regulation, water conservation, soil conservation, pollutant degradation, wind protection, sand fixation, disaster prevention and reduction etc. | Extend in scale to climate regulation, air quality regulation, water quality purification etc. |
Cultural Services | Include landscape aesthetic appreciation, leisure opportunities and support for tourism and entertainment | Include many more spiritual and cultural elements, knowledge extension services and tourism and entertainment services |
Land Type | 2009 (hm2) | 2014 (hm2) | 2017 (hm2) | Change Trend |
---|---|---|---|---|
Forestland | 5505.93 | 6493.86 | 6397.11 | + - |
Grassland | 4226.58 | 3541.32 | 3512.07 | - - |
Cultivated land | 11,246.85 | 8635.05 | 9163.71 | - + |
Construction land | 2729.43 | 3707.01 | 4804.38 | + + |
Bareland | 751.59 | 4767.84 | 3561.93 | + - |
Wetland | 2617.83 | 1123.29 | 944.01 | - - |
Water area | 572.40 | 593.10 | 624.15 | + + |
Sea area | 17,113.41 | 15,902.55 | 15,756.66 | - - |
Total | 44,764.02 | 44,764.02 | 44,764.02 |
Type of Ecological Land | Provisioning Services | Regulating Services | Supporting Services | Cultural Services | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Food Supply | Raw Material Supply | Water Supply | Air Regulation | Climate Regulation | Environment Purification | Hydrological Regulation | Soil Conservation | Nutrient Cycle | Biodiversity | Aesthetic Landscape | |
Forestland | 0.31 | 0.71 | 0.37 | 2.35 | 7.03 | 1.99 | 3.51 | 2.85 | 0.22 | 2.60 | 1.14 |
Grassland | 0.38 | 0.56 | 0.31 | 1.97 | 5.21 | 1.72 | 3.82 | 2.40 | 0.18 | 2.18 | 0.96 |
Cultivated land | 0.85 | 0.40 | 0.02 | 0.67 | 0.36 | 0.10 | 0.27 | 1.03 | 0.12 | 0.13 | 0.06 |
Construction land | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.10 | 0.03 | 0.02 | 0.00 | 0.02 | 0.01 |
Wetland | 0.51 | 0.50 | 2.59 | 1.90 | 3.60 | 3.60 | 24.23 | 2.31 | 0.18 | 7.87 | 4.73 |
Water area | 0.80 | 0.23 | 8.29 | 0.77 | 2.29 | 5.55 | 102.24 | 0.93 | 0.07 | 2.55 | 1.89 |
Sea area | 0.80 | 0.23 | 0.00 | 0.77 | 2.29 | 5.55 | 0.00 | 0.00 | 0.07 | 2.55 | 1.89 |
Bareland | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.10 | 0.03 | 0.02 | 0.00 | 0.02 | 0.01 |
Year | Provisioning Services | Regulating Services | Supporting Services | Cultural Services | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Food Supply | Raw Material Supply | Water Supply | Air Regulation | Climate Regulation | Environment Purification | Hydrological Regulation | Soil Conservation | Nutrient Cycle | Biodiversity | Aesthetic Landscape | |
2009 | 28,356.50 | 16,151.49 | 15,097.75 | 47,462.26 | 114,700.73 | 127,279.74 | 160,564.63 | 44,069.09 | 5030.93 | 90,762.21 | 56,852.42 |
2014 | 24,467.99 | 14,403.44 | 11,499.36 | 43,027.85 | 109,029.61 | 116,319.54 | 126,762.86 | 39,216.65 | 4459.18 | 76,800.37 | 47,895.46 |
2017 | 24,692.94 | 14,413.78 | 11,258.14 | 42,665.84 | 107,479.00 | 114,835.90 | 125,281.60 | 39,027.80 | 4455.76 | 74,847.83 | 46,722.68 |
Change | - + | - + | - - | - - | - - | - - | - - | - - | - - | - - | - - |
Ecological Type | Equivalence Factor [50] | Yield Factors | BC in 2009 | BC in 2014 | BC in 2017 | ||
---|---|---|---|---|---|---|---|
Liu [52] | Qiu [51] | Average Data | |||||
Forestland | 1.28 | 0.86 | 0.785 | 0.8225 | 5796.64 | 6836.74 | 6734.88 |
Grassland | 0.46 | 0.51 | 2.9079 | 1.70895 | 3322.59 | 2783.89 | 2760.90 |
Cultivated land | 2.5 | 1.74 | 1.5175 | 1.62875 | 45,795.77 | 35,160.84 | 37,313.48 |
Construction land | 2.5 | 1.74 | 1.5175 | 1.62875 | 11,113.90 | 15,094.48 | 19,562.83 |
Wetland | 0.37 | 0.74 | 1 | 0.87 | 842.68 | 361.59 | 303.88 |
Water area | 0.37 | 0.74 | 1 | 0.87 | 184.26 | 190.92 | 200.91 |
Sea area | 0.37 | 0.74 | 1 | 0.87 | 5508.81 | 5119.03 | 5072.07 |
Bareland | 2.5 | 1.74 | 1.5175 | 1.62875 | 3060.38 | 19,414.05 | 14,503.73 |
Total BC (gha): | 75,625.02 | 84,961.54 | 86,452.69 | ||||
The population of Pingtan Island (×104): | 38.97 | 42.79 | 44.32 | ||||
Per capita BC (gha): | 0.171 | 0.175 | 0.172 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Cai, F.; Chen, S.; Zhu, J.; Qi, H.; Zhao, S.; Liu, J. Ecological Suitability of Island Development Based on Ecosystem Services Value, Biocapacity and Ecological Footprint: A Case Study of Pingtan Island, Fujian, China. Sustainability 2020, 12, 2553. https://doi.org/10.3390/su12062553
Zheng W, Cai F, Chen S, Zhu J, Qi H, Zhao S, Liu J. Ecological Suitability of Island Development Based on Ecosystem Services Value, Biocapacity and Ecological Footprint: A Case Study of Pingtan Island, Fujian, China. Sustainability. 2020; 12(6):2553. https://doi.org/10.3390/su12062553
Chicago/Turabian StyleZheng, Weiheng, Feng Cai, Shenliang Chen, Jun Zhu, Hongshuai Qi, Shaohua Zhao, and Jianhui Liu. 2020. "Ecological Suitability of Island Development Based on Ecosystem Services Value, Biocapacity and Ecological Footprint: A Case Study of Pingtan Island, Fujian, China" Sustainability 12, no. 6: 2553. https://doi.org/10.3390/su12062553
APA StyleZheng, W., Cai, F., Chen, S., Zhu, J., Qi, H., Zhao, S., & Liu, J. (2020). Ecological Suitability of Island Development Based on Ecosystem Services Value, Biocapacity and Ecological Footprint: A Case Study of Pingtan Island, Fujian, China. Sustainability, 12(6), 2553. https://doi.org/10.3390/su12062553