Retrofitting an Existing Office Building in the UAE Towards Achieving Low-Energy Building
Abstract
:1. Introduction
Building Retrofitting
2. Materials and Methods
2.1. Building Selection and Description
2.2. Weather Data Analysis
3. Energy Simulations
3.1. Real Case Simulation
Simulation Validation
3.2. Alternative Selection
Base Case Simulation (Modified Real Case)
3.3. Retrofitting Alternatives
3.3.1. Orientation
3.3.2. Roof
3.3.3. Walls
3.3.4. Glazing and Frame Types
3.3.5. Shading
3.3.6. HVAC System
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- EIA. Available online: https://www.eia.gov/environment/emissions/state/analysis/ (accessed on 27 February 2019).
- Yanga, L.; Yanab, H.; Joseph, C.L. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Xing, Y.; Hewitt, N.; Griffiths, P. Zero carbon buildings refurbishment—A hierarchical pathway. Renew. Sustain. Energy Rev. 2011, 15, 3229–3236. [Google Scholar] [CrossRef]
- IEA. Available online: https://www.iea.org/newsroom/news/2011/april/iea-releases-first-clean-energy-progress-report.html (accessed on 6 April 2011).
- EMS. Available online: http://ems-int.com/blog/80-energy-consumed-by-buildings-in-uae/ (accessed on 24 September 2015).
- Abdelrahman, M.A.; Ahmad, A. Cost effective use of thermal insulation in hot climates. Build. Environ. 1994, 26, 189–194. [Google Scholar] [CrossRef]
- UNEP. 2016. Available online: https://edgar.jrc.ec.europa.eu/news_docs/onegigatonreport_2016.pdf (accessed on 1 November 2019).
- Patterson, M.G. What is energy efficiency? Concepts, indicators and methodological issues. Energy Policy 1996, 24, 377–390. [Google Scholar] [CrossRef]
- IEA. Available online: https://www.iea.org/publications/freepuplecation/Building2013_free.pdf (accessed on 10 October 2019).
- Paradis, R. Retrofitting Existing Buildings to Improve Sustainability and Energy Performance. In Proceedings of the 32nd International Conference on Passive and Low Energy Architecture: Cities, Buildings, People: Towards Regenerative Environments, Los Angeles, CA, USA, 11–13 July 2016. [Google Scholar]
- Koester, R.J.; Eflin, J.; Vann, J. Greening of the campus: A whole-systems approach. J. Clean. Prod. 2006, 14, 769–779. [Google Scholar] [CrossRef]
- World Green Building Council. Available online: https://www.worldgbc.org/about-us (accessed on 2 November 2019).
- Aghdaei, N.A. Energy Retrofitting of Existing Residential Buildings: Developing a Decision Process for Energy Saving and Cost Effectiveness. Ph.D. Thesis, Sustainable Buildings Research Centre, University of Wollongong, Wollongong, Australia, 2018. [Google Scholar]
- Amstalden, R.W.; Kost, M.; Nathani, C.; Imboden, D.M. Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations. Energy Policy 2007, 35, 1819–1829. [Google Scholar] [CrossRef]
- Huang, B.; Yang, H.; Mauerhofer, V.; Guo, R. Sustainability assessment of low carbon technologies–case study of the building sector in China. J. Clean. Prod. 2012, 32, 244–250. [Google Scholar] [CrossRef]
- Hensen, J.L.M. Building Simulation 2003—Final Report 8th International IBPSA Conference; International Building Performance Simulation Association (IBPSA): Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2004. [Google Scholar]
- Senel Solmaz, A.; Halicioglu, F.H.; Gunhan, S. An approach for making optimal decisions in building energy efficiency retrofit projects. Indoor Built Environ. 2018, 27, 348–368. [Google Scholar] [CrossRef]
- El-Gohary, C.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy 2018, 81, 1192–1205. [Google Scholar]
- Esen, H.; Esen, M.; Ozsolak, O. Modelling and experimental performance analysis of solar-assisted ground source heat pump system. J. Exp. Theor. Artif. Intell. 2017, 29, 1–17. [Google Scholar]
- Abu Dhabi Planning Counsel. Public Realm Rating System: Design & Construction, Version 1.0. Available online: http://www.carboun.com/wp-content/uploads/2010/03/ThePearlsDesignSystem.pdf (accessed on 12 October 2019).
- Al Salmi, H.; Al Kadi, H.; Leao, S. Environmental Assessment Methods in Abu Dhabi. Int. J. Humanit. Soc. Sci. 2013, 7, 1573–1581. [Google Scholar]
- Ruppert, K.C.; Porter, W.A.; Cantrell, R.A.; Lee, H.-J. Energy Efficient Homes: Windows and Skylights, IFAS extension university of Florida. Available online: https://edis.ifas.ufl.edu (accessed on 25 October 2019).
- Ficco, G.; Iannetta, F.; Ianniello, E.; Romanad’Ambrosio Alfano, F.; Dell’Isola, M. U-value in situ measurement for energy diagnosis of existing buildings. Energy Build. 2015, 104, 108–121. [Google Scholar] [CrossRef]
- Geekiyanage, D.; Ramachandra, T. A model for estimating cooling energy demand at early design stage of condominiums. J. Build. Eng. 2018, 17, 43–51. [Google Scholar] [CrossRef]
- Ashrae Handbook. Available online: https://shop.iccsafe.org/media/wysiwyg/material/8950P204-toc.pdf (accessed on 25 October 2019).
- Bande, L.; Cabrera, A.G.; Kim, Y.K.; Ashura, A.; Ragusini, M.F.; Cooke, M.G. A Building Retrofit and Sensitivity Analysis in an Automatically Calibrated Model Considering the Urban Heat Island Effect in Abu Dhabi, UAE. Sustainability 2019, 11, 6905. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, H.K.; Alibaba, H.Z. Retrofits for Energy Efficient Office Buildings: Integration of Optimized Photovoltaics in the Form of Responsive Shading Devices. Sustainability 2017, 9, 2096. [Google Scholar] [CrossRef] [Green Version]
- Aranda, J.; Zabalza, I.; Conserva, A.; Millán, G. Analysis of Energy Efficiency Measures and Retrofitting Solutions for Social Housing Buildings in Spain as a Way to Mitigate Energy Poverty. Sustainability 2017, 9, 1869. [Google Scholar] [CrossRef]
- Evangelisti, L.; Guattari, C.; Gori, P. Energy Retrofit Strategies for Residential Building Envelopes: An Italian Case Study of an Early-50s Building. Sustainability 2015, 7, 10445–10460. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M.; Dascalaki, E. Passive retrotting of o”ce buildings to improve their energy performance and indoor environment: The OFFICE project. Build. Environ. 2002, 37, 575–578. [Google Scholar] [CrossRef]
- Available online: https://sites.google.com/site/hvacsystemvarietyae390/vav---major-system/numeric-parameters (accessed on 12 October 2019).
- Available online: https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20and%20Guidelines/Standards%20Addenda/90_1_2007_Supplement.pdf (accessed on 13 October 2019).
Building Type | Office Building |
---|---|
Total area | 2000 m2 |
Floor number | 1 floor |
Windows | 91% of the windows in three directions and 0% in the west direction |
Walls | exterior finish on 8” concrete blocks with no insulation; interior finish of fish plaster U-value = 2.49 W/m2 K |
Roof construction | U-value = 1.0 W/m2 K |
Floor construction | slab on grade, unheated, exposed, or tiled |
Natural ventilation | None |
Heating source | None |
Cooling: air conditioning | packaged DX series fan powered VAV no reheat |
Operable shading | overhangs East 7 m/South 4 m/North 4 m |
Real Case | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Space Cool | 0.59 | 0.75 | 1.42 | 4.2 | 5.29 | 5.63 | 6.26 | 6.23 | 5.6 | 4.98 | 1.46 | 0.91 | 43.32 |
Heat Reject | 0.06 | 0.06 | 0.08 | 0.2 | 0.2 | 0.19 | 0.2 | 0.2 | 0.19 | 0.2 | 0.08 | 0.08 | 1.76 |
Vent. Fans | 0.72 | 0.76 | 1.23 | 3.42 | 3.61 | 3.47 | 3.61 | 3.61 | 3.47 | 3.6 | 1.17 | 0.87 | 29.55 |
Misc. Equip | 4.52 | 4.13 | 4.63 | 4.57 | 4.63 | 4.46 | 4.63 | 4.63 | 4.46 | 4.63 | 4.24 | 4.63 | 46.7 |
Area Lights | 3.59 | 3.3 | 3.72 | 3.02 | 3.03 | 2.91 | 3.03 | 3.03 | 2.91 | 3.03 | 3.32 | 3.72 | 38.62 |
Total | 9.48 | 8.99 | 11.08 | 15.4 | 16.76 | 16.67 | 17.72 | 17.7 | 16.64 | 16.44 | 10.28 | 10.21 | 167.38 |
Elevation | Glazing Area (m2) | Elevation (m2) | WWR (%) |
---|---|---|---|
North | 424 | 464 | 91.3 |
East | 132.5 | 145 | 91.3 |
South | 424 | 464 | 91.3 |
West | 0 | 145 | 0 |
Ideal WWR is 24% by Ashrae [33] | |||
---|---|---|---|
Elevation | Glazing area (m2) | Elevation (m2) | WWR (%) |
North | 111.36 | 464 | 24 |
East | 34.8 | 145 | 24 |
South | 111.36 | 464 | 24 |
West | 34.8 | 145 | 24 |
Base Case | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Space Cool | 0.47 | 0.55 | 1.08 | 3.46 | 4.37 | 4.68 | 5.22 | 5.2 | 4.67 | 4.13 | 1.67 | 0.63 | 36.14 |
Heat Reject. | 0.06 | 0.05 | 0.08 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.16 | 0.08 | 1.68 |
Vent. Fans | 0.6 | 0.6 | 0.99 | 2.92 | 3.05 | 2.94 | 3.05 | 3.05 | 2.94 | 3.05 | 1.56 | 0.67 | 25.44 |
Misc. Equip. | 3.01 | 2.74 | 3.06 | 4.57 | 4.63 | 4.46 | 4.63 | 4.63 | 4.46 | 4.63 | 2.85 | 3.06 | 46.7 |
Area Lights | 1.99 | 1.83 | 2.06 | 3.02 | 3.03 | 2.91 | 3.03 | 3.03 | 2.91 | 3.03 | 1.85 | 2.06 | 30.75 |
Total | 6.13 | 5.77 | 7.26 | 14.15 | 15.27 | 15.17 | 16.11 | 16.1 | 15.15 | 15.03 | 8.09 | 6.49 | 140.71 |
Orientation | Total Energy Consumption kWh × 1000 |
---|---|
Base case NNW | 140.71 |
East-South-East | 145.59 |
South-South-West | 143.99 |
West-North-West | 145.33 |
Roof Type | Construction | U-Value (W/m2 K) | Total Energy Consumption (kWh × 1000) | Decrease Energy (%) |
---|---|---|---|---|
1 | 1 inch cement mortar, 0.164 ft, HW concrete, ½ inch expanded polystyrene, 4 inch HW ConcBlk | 1 | 140.71 | - |
2 | 1 inch cement mortar, 0.164 ft HW concrete, 4 inch expanded polystyrene, 4 inch HW ConcBlk | 0.27 | 130.19 | 7.47 |
3 | 1 inch cement mortar, 0.164 ft HW concrete, 4 inch polystyrene, 4 inch HW ConcBlk | 0.23 | 129.64 | 7.86 |
4 | 1 inch cement mortar, 0.164 ft HW concrete, 6 inch polystyrene, 4 inch HW ConcBlk | 0.15 | 128.84 | 8.43 |
5 | 1 inch cement mortar, 0.164 ft HW concrete, 4 inch expanded polyurethane, 4 inch HW ConcBlk | 0.19 | 129.24 | 8.15 |
6 | 1 inch cement mortar, 0.164 ft HW concrete, 1 inch preformed roof insulator, 4 inch HW ConcBlk | 0.9 | 136.53 | 2.97 |
7 | 1 inch cement mortar, 0.164 ft HW concrete, 2 inch preformed roof insulator, 4 inch HW ConcBlk | 0.6 | 133.89 | 4.84 |
8 | 1 inch cement mortar, 0.164 ft HW concrete, 3 inch preformed roof insulator, 4 inch HW ConcBlk | 0.45 | 132.38 | 5.91 |
Wall Type | Construction | U-Value (W/m2 K) | Total Energy Consumption (kWh × 1000) | Decrease in Energy (%) |
---|---|---|---|---|
1 | Plaster board, 4 inch HW ConcBlk, no insulation, 4 inch HW ConcBlk, plaster board | 2.49 | 140.71 | - |
2 | Plaster board, 6 inch HW ConcBlk, no insulation, 6 inch HW ConcBlk, plaster board | 2.1 | 139.32 | 0.98 |
3 | Plaster board, 8 inch HW ConcBlk, no insulation, 8 inch HW ConcBlk, plaster board | 1.82 | 138.68 | 1.44 |
4 | Plaster board, 12 inch HW ConcBlk, no insulation, 12 inch HW ConcBlk, plaster board | 1.5 | 138.4 | 1.64 |
5 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, polystyrene 4 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.245 | 134.83 | 4.17 |
6 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, polystyrene 6 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.198 | 134.59 | 4.35 |
7 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, polystyrene 6 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.169 | 134.46 | 4.44 |
8 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, expanded polystyrene 1 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.88 | 136.99 | 2.64 |
9 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, expanded polystyrene 2 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.536 | 135.82 | 3.47 |
10 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, expanded polystyrene 4 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.295 | 134.9 | 4.12 |
11 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, polyurethane 3 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.26 | 134.85 | 4.16 |
12 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, polyurethane 5 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.164 | 134.46 | 4.44 |
13 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, polyurethane 6 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.141 | 134.36 | 4.51 |
14 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, expanded polyurethane 1 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.66 | 136.27 | 3.15 |
15 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, expanded polyurethane 2 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.38 | 135.28 | 3.86 |
16 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, expanded polyurethane 4 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.2 | 134.62 | 4.33 |
17 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, mineral wood, fiber 3-1/2 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.43 | 135.47 | 3.72 |
18 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, mineral wood, fiber 5-1/2 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.29 | 135.96 | 3.37 |
19 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, cellulose 3-1/2 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.36 | 135.2 | 3.91 |
20 | 0.04 ft plaster board, 0.299 ft HW ConcBlk, cellulose 5-1/2 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 0.24 | 134.74 | 4.24 |
Window Alternative | Construction | Total Energy Consumption (kWh × 1000) | Decrease Energy (%) |
---|---|---|---|
1 | Double reflective clear ¼ inch, ¼ air gap | 140.71 | Base case |
2 | Single clear | 159.35 | −13.24 |
3 | Single reflective | 143.43 | −1.93 |
4 | Single low-E | 155.19 | −10.29 |
5 | Double clear | 151.7 | −7.81 |
6 | Double reflective | 139.51 | 0.85 |
7 | Double low-E | 152.57 | −8.42 |
8 | Triple clear | 150.19 | −6.73 |
9 | Triple clear | 147.8 | 5.04 |
Overhang Type | Orientation | Depth (m) | Total Energy Consumption (kWh × 1000) | Decrease Energy (%) |
---|---|---|---|---|
1 | SW, NE, NW, SE | 0, 7, 4, 4 | 140.71 | Real case |
2 | SW, NE, NW, SE | 0, 0, 0, 0 | 143.59 | −2.05% |
3 | SW, NE, NW, SE | 0, 7, 7, 7 | 140.52 | 0.13% |
HVAC | Cooling Source | System | Total Energy Consumption (kWh × 1000) | Decrease Energy (%) |
---|---|---|---|---|
1 | DX Coils | DX series fan-powered VAV | 140.71 | Base case |
2 | DX Coils | Packaged VAV | 129.05 | 8.28 |
3 | Chilled water coils | Standard VAV | 196.22 | −39.44 |
4 | Chilled water coils | Series fan-powered VAV | 193.51 | −37.52 |
5 | Chilled water coils | Single-zone air handler | 217.37 | −54.48 |
Element | Description | Total Energy Consumption (kWh × 1000) | Decrease Energy (%) |
---|---|---|---|
Base case | 140.71 | - | |
Wall | 0.04 ft plaster board, 0.299 ft HW ConcBlk, polystyrene 6 inch, 0.333 ft HW ConcBlk, 0.042 plaster board | 134.36 | 4.51 |
Roof | 1 inch cement mortar, 0.166 ft HW concrete, 6 inch polystyrene, 4 inch HW ConcBlk | 128.84 | 8.43 |
Glazing and frame | Double reflective ½ inch air gap with fixed aluminum with break | 139.51 | 0.85 |
HVAC | DX coils, packaged VAV | 129.05 | 8.28 |
Shading device | Overhang, SW = 0, NE = 7, NW = 7, SE = 7 | 140.52 | 0.13 |
Best Case | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total kWh × 1000 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Space Cool | 0.25 | 0.35 | 0.66 | 1.92 | 2.41 | 2.73 | 3.17 | 3.18 | 2.81 | 2.41 | 1.1 | 0.6 | 21.6 |
Heat Reject. | 0.03 | 0.03 | 0.05 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.09 | 0.05 | 1.03 |
Vent. Fans | 0.05 | 0.1 | 0.26 | 0.71 | 0.71 | 0.69 | 0.71 | 0.71 | 0.69 | 0.71 | 0.32 | 0.26 | 5.93 |
Misc. Equip. | 3.01 | 2.74 | 3.06 | 4.57 | 4.63 | 4.46 | 4.63 | 4.63 | 4.46 | 4.63 | 2.85 | 3.06 | 46.7 |
Area Lights | 1.45 | 1.33 | 1.49 | 2.19 | 2.2 | 2.12 | 2.2 | 2.2 | 2.12 | 2.2 | 1.35 | 1.49 | 22.32 |
Total | 4.79 | 4.54 | 5.52 | 9.5 | 10.06 | 10.1 | 10.82 | 10.84 | 10.18 | 10.06 | 5.71 | 5.46 | 97.57 |
Annual Energy Consumption (kWh × 1000) | Decrease Ratio (%) | |
---|---|---|
Real Case | 167.38 | - |
Base Case (modified) | 140.71 | 30.60 |
Best Case | 97.57 | 41.70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoukhi, M.; Darsaleh, A.F.; Ali, S. Retrofitting an Existing Office Building in the UAE Towards Achieving Low-Energy Building. Sustainability 2020, 12, 2573. https://doi.org/10.3390/su12062573
Khoukhi M, Darsaleh AF, Ali S. Retrofitting an Existing Office Building in the UAE Towards Achieving Low-Energy Building. Sustainability. 2020; 12(6):2573. https://doi.org/10.3390/su12062573
Chicago/Turabian StyleKhoukhi, Maatouk, Abeer Fuad Darsaleh, and Sara Ali. 2020. "Retrofitting an Existing Office Building in the UAE Towards Achieving Low-Energy Building" Sustainability 12, no. 6: 2573. https://doi.org/10.3390/su12062573
APA StyleKhoukhi, M., Darsaleh, A. F., & Ali, S. (2020). Retrofitting an Existing Office Building in the UAE Towards Achieving Low-Energy Building. Sustainability, 12(6), 2573. https://doi.org/10.3390/su12062573