Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea
Abstract
:1. Introduction
2. Study Area and Observation Devices
3. Materials and Methods
3.1. Rainfall Infiltration Analysis
3.1.1. Unsaturated Flow
3.1.2. Balance of Momentum
3.1.3. Coupled Hydro-Mechanical Analysis
3.2. Slope Stability Analysis
3.3. Material Properties
3.4. Slope Geometry and Boundary and Initial Conditions
4. Results and Discussion
4.1. Site-Specific Rainfall Infiltration Analysis
4.2. Slope Stability Assessment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haque, U.; da Silva, P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Wilopo, W.; Andersen, P.; Lu, P.; Lee, J.; et al. The human cost of global warming: Deadly landslides and their triggers (1995–2014). Sci. Total Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Lee, S.-R.; Vasu, N.N.; Park, J.-Y.; Lee, D.-H. Development of an initiation criterion for debris flows based on local topographic properties and applicability assessment at a regional scale. Eng. Geol. 2017, 230, 64–76. [Google Scholar] [CrossRef]
- Lee, K.T.; Ho, J.-Y. Prediction of landslide occurrence based on slope-instability analysis and hydrological model simulation. J. Hydrol. 2009, 375, 489–497. [Google Scholar] [CrossRef]
- Cho, S.E. Study on the characteristics of infinite slope failures by probabilistic seepage analysis. J. Korean Geotech. Soc. 2014, 30, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H.F.; Lee, C.H.; Lee, C.C. A rainfall–infiltration model for unsaturated soil slope stability. Sustain. Environ. Res. 2008, 18, 271–278. [Google Scholar]
- Bordoni, M.; Meisina, C.; Valentino, R.; Bittelli, M.; Chersich, S. Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS. Nat. Hazards Earth Syst. Sci. 2015, 15, 1025–1050. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Kim, Y.K.; Kim, J.-W. A Modified van Genuchten-Mualem Model of Hydraulic Conductivity in Korean Residual Soils. Water 2015, 7, 5487–5502. [Google Scholar] [CrossRef]
- Zhang, G.R.; Qian, Y.J.; Wang, Z.C.; Zhao, B. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope. Sci. World J. 2014, 2014, 567250. [Google Scholar] [CrossRef]
- Campbell, J.D. Pore Pressures and Volume Changes in Unsaturated Soils. Ph.D. Thesis, University of Illinois at Urbana–Champaign, Urbana, IL, USA, 1973. [Google Scholar]
- Fredlund, D.G.; Xing, A.; Huang, S. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 533–546. [Google Scholar] [CrossRef]
- Kunze, R.J.; Uehara, G.; Graham, K. Factors Important in the Calculation of Hydraulic Conductivity1. Soil Sci. Soc. Am. J. 1968, 32, 760–765. [Google Scholar] [CrossRef]
- Mao, W.; Yang, J.; Zhu, Y.; Ye, M.; Liu, Z.; Wu, J. An efficient soil water balance model based on hybrid numerical and statistical methods. J. Hydrol. 2018, 559, 721–735. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Chen, Y.-F.; Liu, H.-H.; Zhou, C.-B. A coupled two-phase fluid flow and elastoplastic deformation model for unsaturated soils: Theory, implementation, and application. Int. J. Numer. Anal. Methods Geomech. 2016, 40, 1023–1058. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Shi, Q. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Comput. Geotech. 1998, 22, 1–28. [Google Scholar] [CrossRef]
- Borja, R.I.; White, J.A. Continuum deformation and stability analyses of a steep hillside slope under rainfall infiltration. Acta Geotech. 2010, 5, 1–14. [Google Scholar] [CrossRef]
- Borja, R.I.; White, J.A.; Liu, X.; Wu, W. Factor of safety in a partially saturated slope inferred from hydro–mechanical continuum modeling. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.E.; Lee, S.R. Instability of unsaturated soil slopes due to infiltration. Comput. Geotech. 2001, 28, 185–208. [Google Scholar] [CrossRef]
- Sun, D.M.; Zang, Y.G.; Semprich, S. Effects of airflow induced by rainfall infiltration on unsaturated soil slope stability. Transp. Porous Media 2015, 107, 821–841. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhu, Y.M.; Fang, C.H. The role for air flow in soil slope stability analysis. J. Hydrodyn. 2009, 21, 640–646. [Google Scholar] [CrossRef]
- Chen, H.-E.; Tsai, T.-L.; Yang, J.-C. Threshold of Slope Instability Induced by Rainfall and Lateral Flow. Water 2017, 9, 722. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.E. Stability analysis of unsaturated soil slopes considering water–air flow caused by rainfall infiltration. Eng. Geol. 2016, 211, 184–197. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, K.; Kim, J.; Kim, Y. Analysis of Rainfall-Induced Landslide on Unsaturated Soil Slopes. Sustainability 2017, 9, 1280. [Google Scholar] [CrossRef] [Green Version]
- Touma, J.; Vauclin, M. Experimental and Numerical Analysis of Two Phase Infiltration in a Partially Saturated Soil. Transp. Porous Media 1986, 1, 27–55. [Google Scholar] [CrossRef]
- Wu, L.Z.; Selvadurai, A.P.S. Rainfall infiltration-induced groundwater table rise in an unsaturated porous medium. Environ. Earth Sci. 2016, 75, 135. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W.J. Suction Stress Characteristic Curve for Unsaturated Soil. J. Geotech. Geoenviron. Eng. 2006, 132, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Chen, Y.; Zhou, C. Modeling of coupled deformation, water flow and gas transport in soil slopes subjected to rain infiltration. Sci. China Technol. Sci. 2011, 54, 2561. [Google Scholar] [CrossRef]
- Ebel, B.A.; Loague, K.; Borja, R.I. The impacts of hysteresis on variably saturated hydrologic response and slope failure. Environ. Earth Sci. 2010, 61, 1215–1225. [Google Scholar] [CrossRef]
- Tsai, T.-L. Influences of soil water characteristic curve on rainfall-induced shallow landslides. Environ. Earth Sci. 2011, 64, 449–459. [Google Scholar] [CrossRef]
- Yang, K.-H.; Uzuoka, R.; Lin, G.-L.; Nakai, Y. Coupled hydro-mechanical analysis of two unstable unsaturated slopes subject to rainfall infiltration. Eng. Geol. 2017, 216, 13–30. [Google Scholar] [CrossRef]
- Ma, K.-C.; Tan, Y.-C.; Chen, C.-H. The influence of water retention curve hysteresis on the stability of unsaturated soil slopes. Hydrol. Process. 2011, 25, 3563–3574. [Google Scholar] [CrossRef]
- Ministry of Science ICT and Future Planning. Core Technology Development of Real-Time Prediction and Counterplan for Extreme Rainfall-Induced Landslide Disaster; Ministry of Science ICT and Future Planning: Sejong, Korea, 2016; p. 179.
- Itasca. User’s Manual: Fluid–Mechanical Interaction, FLAC 7.0; Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2011. [Google Scholar]
- Davies, O. Numerical Analysis of the Effects of Climate Change on Slope Stability. Ph.D. Thesis, Newcastle University, Newcastle, UK, 2011. [Google Scholar]
- Lenhard, R.J.; Parker, J.C. A model for hysteretic constitutive relations governing multiphase flow: 2. Permeability-saturation relations. Water Resour. Res. 1987, 23, 2197–2206. [Google Scholar] [CrossRef]
- Hu, R.; Hong, J.-M.; Chen, Y.-F.; Zhou, C.-B. Hydraulic hysteresis effects on the coupled flow–deformation processes in unsaturated soils: Numerical formulation and slope stability analysis. Appl. Math. Model. 2018, 54, 221–245. [Google Scholar] [CrossRef]
- Vogel, T.; van Genuchten, M.T.; Cislerova, M. Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Adv. Water Resour. 2000, 24, 133–144. [Google Scholar] [CrossRef]
- Ippisch, O.; Vogel, H.J.; Bastian, P. Validity limits for the van Genuchten–Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour. 2006, 29, 1780–1789. [Google Scholar] [CrossRef]
- Schaap, M.G.; van Genuchten, M.T. A Modified Mualem–van Genuchten Formulation for Improved Description of the Hydraulic Conductivity Near Saturation. Vadose Zone J. 2006, 5, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Bishop, A.W. The principle of effective stress. Tek. Ukebl. 1959, 106, 859–863. [Google Scholar]
- Chateau, X.; Dormieux, L. Micromechanics of Unsaturated Porous Media. In IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials. Solid Mechanics and Its Applications; Ehlers, W., Ed.; Springer: Dordrecht, The Netherlands, 2001; Volume 87, pp. 125–130. [Google Scholar]
- Chateau, X.; Dormieux, L. Micromechanics of saturated and unsaturated porous media. Int. J. Numer. Anal. Methods Geomech. 2002, 26, 831–844. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, F.; Zheng, Y.; Chen, L.; Zhang, J.; Li, X. Probabilistic calibration of a coupled hydro-mechanical slope stability model with integration of multiple observations. Georisk Assess. Manag. Eng. Syst. Geohazards 2018, 12, 169–182. [Google Scholar] [CrossRef]
- Chapuis, R.P.; Aubertin, M. On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils. Can. Geotech. J. 2003, 40, 616–628. [Google Scholar] [CrossRef]
- Cho, S.E. Stability analysis of unsaturated soil slope by coupled hydro-mechanical model considering air flow. J. Korean Geotech. Soc. 2016, 32, 19–33, (In Korean with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Jeong, S.; Kim, J. Coupled infiltration model of unsaturated porous media for steady rainfall. Soils Found. 2016, 56, 1071–1081. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, W.; Kim, Y. Effects of hysteresis on hydro-mechanical behavior of unsaturated soil. Eng. Geol. 2018, 245, 1–9. [Google Scholar] [CrossRef]
- Kang, S.; Cho, S.E.; Kim, B.; Go, G.H. Effects of Two-Phase Flow of Water and Air on Shallow Slope Failures Induced by Rainfall: Insights from Slope Stability Assessment at a Regional Scale. Water 2020, 12, 812. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S.; Lee, M.S.; Cho, Y.C.; Chae, B.G.; Lee, C.O. Engineering Characteristics of Soil Slopes Dependent on Geology: Hwangryeong Mt. District, Busan. J. Eng. Geol. 2004, 14, 487–498. [Google Scholar]
- Fredlund, D.G.; Rahardjo, H. Soil Mechanics for Unsaturated Soils; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- La, W.J.; Choi, J.C.; Kim, K.S.; Cho, Y.C. Study on Analysis for the Slope Monitoring Performance at the Whangryeong Mountain Site. J. Eng. Geol. 2004, 14, 429–442. [Google Scholar]
- Bordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis. Eng. Geol. 2015, 193, 19–37. [Google Scholar] [CrossRef]
- Shao, W.; Bogaard, T.; Bakker, M.; Berti, M. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide. J. Hydrol. 2016, 543, 360–372. [Google Scholar] [CrossRef]
- Smethurst, J.A.; Briggs, K.M.; Powrie, W.; Ridley, A.; Butcher, D.J.E. Mechanical and hydrological impacts of tree removal on a clay fill railway embankment. Géotechnique 2015, 65, 869–882. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Choi, J.C. Study on Landslide Hazard Possibility for Mt. Hwangryeong in Busan Metropolitan City Using the Infinite Slope Model. J. Eng. Geol. 2016, 26, 413–422. [Google Scholar]
Parameter | Value | |
---|---|---|
Dry density of soil, | 1250 kg/m3 | |
Initial porosity, no | 0.46 | |
Soil classification (USCS) | SP–SM | |
Cohesion, | 0.1 × 103 Pa | |
Friction angle, | 33° | |
Dilation angle, | 0° | |
Bulk modulus, K | 33.3 × 106 Pa | |
Shear modulus, G | 11.1 × 106 Pa | |
Hydraulic conductivity, ks | 1.97 × 10−6 m/s | |
Soil-water characteristics (wetting) | Residual saturation, Sr | 0 |
P0 | 3000 Pa | |
van Genuchten parameter, a | 0.52 | |
Constant in relative permeability for water, b | 0.5 | |
Constant in relative permeability for air, c | 0.5 | |
Viscosity ratio, | 56 | |
Water density, | 1000 kg/m3 | |
Air density, | 1.25 kg/m3 | |
Bulk modulus of water, Kw | 2 × 109 Pa | |
Bulk modulus of air, Ka | 1 × 105 Pa |
Fluid Flow Model | Relative Permeability Model | Mean | Standard Deviation | ||
---|---|---|---|---|---|
Depth = 0.5 m | Depth = 1.0 m | Depth = 0.5 m | Depth = 1.0 m | ||
sp-flow | vG–M | −0.224 | −0.164 | 0.409 | 0.115 |
mvG–M | 0.037 | −0.071 | 0.057 | 0.027 | |
Kr–sp–FLAC | 0.041 | −0.055 | 0.065 | 0.11 | |
CHM | vG–M | −0.223 | −0.164 | 0.41 | 0.114 |
mvG–M | 0.03 | −0.068 | 0.055 | 0.026 | |
Kr–sp–FLAC | 0.036 | −0.063 | 0.061 | 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Lee, S.-R.; Cho, S.-E. Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea. Sustainability 2020, 12, 2839. https://doi.org/10.3390/su12072839
Kang S, Lee S-R, Cho S-E. Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea. Sustainability. 2020; 12(7):2839. https://doi.org/10.3390/su12072839
Chicago/Turabian StyleKang, Sinhang, Seung-Rae Lee, and Sung-Eun Cho. 2020. "Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea" Sustainability 12, no. 7: 2839. https://doi.org/10.3390/su12072839
APA StyleKang, S., Lee, S.-R., & Cho, S.-E. (2020). Slope Stability Analysis of Unsaturated Soil Slopes Based on the Site-Specific Characteristics: A Case Study of Hwangryeong Mountain, Busan, Korea. Sustainability, 12(7), 2839. https://doi.org/10.3390/su12072839