An Evaluation of the Impact of Hiking Tourism on the Ecological Status of Alpine Lakes—A Case Study of the Valley of Dolina Pięciu Stawów Polskich in the Tatra Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Presentation of the Studied Area
2.2. Underwater Surveys and an Evaluation of the Area Surrounding the Analyzed Lakes
2.3. Determining the Degree of Anthropogenic Pressure into the Studied Area
- 1—corresponds to a situation when access to examined lakes was very difficult or even impossible,
- 2—corresponds to a situation when access to examined lakes was difficult, and
- 3—corresponds to a situation when access to examined lakes was with minor obstacles or easy.
- (a)
- Class I corresponds to a situation when access to examined lakes was with minor obstacles or easy access: (10–12),
- (b)
- Class II corresponds to a situation when access to examined lakes was difficult: (7–9),
- (c)
- Class III corresponds to a situation when access to examined lakes was very difficult or even impossible: (4–6).
3. Results
4. Discussion
Recommendations of the Hiking Trail Changes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, K.S.; Williams, G.D.; Samhouri, J.F.; Marshall, K.N.; Gertseva, V.; Levin, P.S. The legacy of a crowded ocean: Indicators, status, and trends of anthropogenic pressures in the California Current ecosystem. Environ. Conserv. 2014, 42, 139–151. [Google Scholar] [CrossRef]
- Kennish, M.J. Anthropogenic Impacts. In Encyclopedia of Estuaries; Encyclopedia of Earth Sciences Series; Kennish, M.J., Ed.; Springer: Dordrecht, The Nederlands, 2016; pp. 29–35. [Google Scholar]
- Dubois, N.; Saulnier-Talbot, E.; Mills, K.; Gell, P.; Battarbee, R.; Bennion, H.; Chawchai, S.; Dong, X.; Francus, P.; Flower, R.; et al. First human impacts and responses of aquatic systems: A review of palaeolimnological records from around the world. Anthr. Rev. 2018, 5, 28–68. [Google Scholar] [CrossRef]
- Bowler, D.E.; Bjorkman, A.D.; Dornelas, M.; Myers-Smith, I.H.; Navarro, L.M.; Niamir, A.; Supp, S.R.; Waldock, C.; Winter, M.; Vellend, M.; et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.; Alam, M.M.; Hafeez, M.H. Effects of tourism on environmental pollution: Further evidence from Malaysia, Singapore and Thailand. J. Clean. Prod. 2018, 190, 330–338. [Google Scholar] [CrossRef]
- Drius, M.; Bongiorni, L.; Depellegrin, D.; Menegon, S.; Pugnetti, A.; Stifter, S. Tackling challenges for Mediterranean sustainable coastal tourism: An ecosystem service perspective. Sci. Total Environ. 2019, 652, 1302–1317. [Google Scholar] [CrossRef] [PubMed]
- Brtnický, M.; Pecina, V.; Hladký, J.; Radziemska, M.; Koudelková, Z.; Klimánek, M.; Richtera, L.; Adamcová, D.; Elbl, J.; Vašinová Galiová, M.; et al. Assessment of phytotoxicity, environmental and health risks of historical urban park soils. Chemosphere 2019, 220, 678–686. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Adamowicz, W.; Naidoo, R.; Nelson, E.; Polasky, S.; Zhang, J. Nature-Based Tourism and Recreation. In Natural Capital: Theory and Practice of Mapping Ecosystem Services; Kareiva, P., Tallis, H., Ricketts, T.H., Daily, G.C., Polasky, S., Eds.; Oxford Univ. Press: Oxford, UK, 2011; pp. 188–205. [Google Scholar]
- Monz, C.A.; Pickering, C.M.; Hadwen, W.L. Recent advances in recreation ecology and the implications of different relationships between recreation use ecological impacts. Front. Ecol. Environ. 2013, 11, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Sienkiewicz, E.; Gąsiorowski, M. Changes in the Trophic Status of Three Mountain Lakes—Natural or Anthropogenic Process? Pol. J. Environ. Stud. 2014, 3, 875–892. [Google Scholar]
- Hamerlík, L.; Dobríková, D.; Szarlowicz, K.; Reczynski, W.; Kubica, B.; Šporka, F.; Bitušík, P. Lake biota response to human impact and local climate during the last 200 years: A multi-proxy study of a subalpine lake (Tatra Mountains, W Carpathians). Sci. Total. Environ. 2016, 545–546, 320–328. [Google Scholar] [CrossRef]
- Czortek, P.; Delimat, A.; Dyderski, M.K.; Zięba, A.; Jagodziński, A.M.; Jaroszewicz, B. Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr—A rare arctic-alpine species in the Tatra Mts. Sci. Total. Environ. 2017, 618, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.M.; Ewertowski, M.W.; White, P.C.L.; Kasprzak, L. A new framework for prioritising decisions on recreational trail management. Landsc. Urban Plan. 2017, 167, 1–13. [Google Scholar] [CrossRef]
- Balmford, A.; Green, J.M.H.; Anderson, M.; Beresford, J.; Huang, C.; Naidoo, R.; Walpole, M.; Manica, A. Walk on the Wild Side: Estimating the Global Magnitude of Visits to Protected Areas. PLoS Biol. 2015, 13, e1002074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, P.; Gössling, S.; Klijs, J.; Milano, C.; Novelli, M.; Dijkmans, C.; Eijgelaar, E.; Hartman, S.; Heslinga, J.; Isaac, R.; et al. Research for TRAN Committee: Overtourism: Impact and Possible Policy Responses; European Parliament, Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2018. [Google Scholar]
- Szromek, A.R.; Hysa, B.; Karasek, A. The Perception of Overtourism from the Perspective of Different Generations. Sustainability 2019, 11, 7151. [Google Scholar] [CrossRef] [Green Version]
- Sunlu, U. Environmental Impacts of Tourism. In Local Resources and Global Trades: Environments and Agriculture in the Mediterranean Region; Options Méditerranéennes: Série A. Séminaires Méditerranéens; Camarda, D., Grassini, L., Eds.; Ciheam: Bari, Italy, 2003; pp. 263–270. [Google Scholar]
- Dokulil, M.T. Environmental Impacts of Tourism on Lakes. In Eutrophication: Cases, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Nederland, 2014; Volume 2, pp. 81–88. [Google Scholar]
- Poikane, S.; Ritterbusch, D.; Argillier, C.; Białokoz, W.; Blabolil, P.; Breine, J.; Jaarsma, N.G.; Krause, T.; Kubečka, J.; Lauridsenj, T.L.; et al. Response of fish communities to multiple pressures: Development of a total anthropogenic pressure intensity index. Sci. Total Environ. 2017, 586, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N.; Mohannad, F. Eutrophication: Challenges and Solutions. In Eutrophication: Cases, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Nederland, 2014; Volume 2, pp. 1–15. [Google Scholar]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32000L0060 (accessed on 7 April 2020).
- Pavlidou, A.; Simboura, N.; Rousselaki, E.; Tsapakis, M.; Pagou, K.; Drakopoulou, P.; Assimakopoulou, G.; Kontoyiannis, H.; Panayotidis, P. Methods of eutrophication assessment in the context of the water framework directive: Examples from the Eastern Mediterranean coastal areas. Cont. Shelf. Res. 2015, 108, 156–168. [Google Scholar] [CrossRef]
- Poikane, S.; Birk, S.; Böhmer, J.; Carvalho, L.; de Hoyos, C.; Gassner, H.; Hellsten, S.; Kelly, M.; Lyche Solheim, A.; Olin, M.; et al. A hitchhiker’s guide to European lake ecological assessment and intercalibration. Ecol. Indic. 2015, 52, 533–544. [Google Scholar] [CrossRef]
- Wu, D.; Yan, H.; Shang, M.; Shan, K.; Wang, G. Water eutrophication evaluation based on semi-supervised classification: A case study in Three Gorges Reservoir. Ecol. Indic. 2017, 81, 362–372. [Google Scholar] [CrossRef]
- Pang, M.; Song, W.; Zhang, P.; Shao, Y.; Li, L.; Pang, Y.; Wang, J.; Xu, Q. Research into the eutrophication of an artificial playground lake near the Yangtze River. Sustainability 2018, 10, 867. [Google Scholar] [CrossRef] [Green Version]
- Smol, J.P. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective, 2nd ed.; Blackwell Publishing Ltd.: Oxford, UK, 2008; pp. 1–383. [Google Scholar]
- Callisto, M.; Molozzi, J.; Barbosa, J.L.E. Eutrophication of Lakes. In Eutrophication: Cases, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Nederland, 2014; Volume 2, pp. 55–71. [Google Scholar]
- Dorgham, M.M. Effects of Eutrophication. In Eutrophication: Cases, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Nederland, 2014; Volume 2, pp. 29–43. [Google Scholar]
- Sagehashi, M.; Sakoda, A.; Suzuki, M. A mathematical model of a shallow and Eutrophic Lake (The Keszthely Basin, Lake Balaton) and simulation of restorative manipulations. Water Res. 2001, 35, 1675–1686. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, Z.Y.; Xiong, M.; Qi, J. Key uncertainty sources analysis of water quality model using the first order error method. Int. J. Environ. Sci. Technol. 2011, 8, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Quan, W.; Yan, L.; Yu, Z.; Jiao, L. Advance in study of lake eutrophication models. Chin. Biodivers. 2001, 9, 168–175. [Google Scholar]
- Lu, X.; Xu, F.; Zhan, W.; Zhao, Z.Y.; Tao, S. Current situation and development trends in lake eutrophication models. Adv. Water Sci. 2003, 14, 792–798. [Google Scholar]
- Han, F.; Chen, Y.; Liu, Z. Advance in the eutrophication models for lakes and reservoirs. Adv. Water Sci. 2003, 14, 785–791. [Google Scholar]
- Lyche-Solheim, A.; Feld, C.K.; Birk, S.; Phillips, G.; Carvalho, L.; Morabito, G.; Mischke, U.; Willby, N.; Søndergaard, M.; Hellsten, S.; et al. Ecological status assessment of European lakes: A comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 2013, 704, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Kolada, A. The effect of lake morphology on aquatic vegetation development and changes under the influence of eutrophication. Ecol. Indic. 2014, 38, 282–293. [Google Scholar] [CrossRef]
- Catalan, J.; Grazia Barbieri, M.; Bartumeus, F.; Bitusik, P.; Botev, I.; Brancelj, A.; Cogalniceanu, D.; Manca, M.; Marchetto, A.; Ognjanova-Rumenova, N.; et al. Ecological thresholds in European alpine lakes. Freshw. Biol. 2009, 54, 2494–2517. [Google Scholar] [CrossRef]
- Pall, K.; Moser, V. Austrian Index Macrophytes (AIM-Module 1) for lakes: A Water Framework Directive compliant assessment system for lakes using aquatic macrophytes. Hydrobiologia 2009, 633, 83–104. [Google Scholar] [CrossRef]
- Goździejewska, A.; Glińska-Lewczuk, K.; Obolewski, K.; Grzybowski, M.; Kujawa, R.; Lew, S.; Grabowska, M. Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 2016, 774, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Chappuis, E.; Gacia, E.; Ballesteros, E. Changes in aquatic macrophyte flora over the last century in Catalan water bodies (NE Spain). Aquat. Bot. 2011, 95, 268–277. [Google Scholar] [CrossRef]
- Dynowski, P.; Senetra, A.; Źróbek-Sokolnik, A.; Kozłowski, J. The Impact of Recreational Activities on Aquatic Vegetation in Alpine Lakes. Water 2019, 11, 173. [Google Scholar] [CrossRef] [Green Version]
- Melzer, A. Aquatic Macrophytes as Tools for Lake Management. In The Ecological Bases for Lake and Reservoir Management. Developments in Hydrobiology; Harper, D.M., Brierley, B., Ferguson, A.J.D., Phillips, G., Eds.; Springer: Dordrecht, Germany, 1999; Volume 136, pp. 181–190. [Google Scholar]
- Cantonati, M. Flora. In High-Altitude Lakes: Pearls in the Mountain Landscape; Stoch, F., Ed.; Museo Friulano di Storia Naturale: Udine, Italy, 2006; pp. 45–66. [Google Scholar]
- Raut, R.; Sharma, S.; Bajracharya, R.M. Biotic response to acidification of lakes—A review. Kathmandu Univ. J. Sci. Eng. Technol. 2012, 1, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Pall, K.; Bertrin, V.; Buzzi, F.; Boutry, S.; Dutartre, A.; Germ, M.; Oggioni, A.; Schaumburg, J.; Urbanič, G. Water Framework Directive Intercalibration Technical Report. Alpine Lake Macrophyte Ecological Assessment Methods; Poikane, S., Ed.; Publications Office of the European Union, EU: Luxembourg, 2014; pp. 1–128. [Google Scholar]
- Rey-Boissezon, A.; Auderset Joye, D. Habitat requirements of charophytes—Evidence of species discrimination through distribution analysis. Aquat. Bot. 2015, 120, 84–91. [Google Scholar] [CrossRef]
- Kawecka, B. Glony osiadłe na Potamogeton sp. w Morskim Oku (Algal colonization of Potamogeton sp. in Lake Morskie Oko). Acta Hydrobiol. 1966, 8, 321–328. (In Polish) [Google Scholar]
- Kawecka, B. Algae on the artificial substratum in the Wielki Staw in the Valley of the Five Polish Lakes (High Tatra Mountains). Acta Hydrobiol. 1970, 12, 423–430. [Google Scholar]
- Galas, J. Glony i Fauna Bezkręgowców (Algae and the Invertebrate Fauna). In Morskie Oko—Przyroda i Człowiek (Lake Morskie Oko—Nature and Man); Choiński, A., Pociask-Karteczka, J., Eds.; WTPN: Zakopane, Poland, 2014; pp. 111–125. (In Polish) [Google Scholar]
- Zwijacz-Kozica, T.; Żywiec, M. Stanowisko Batrachium trichophyllum (Ranunculaceae) w Tatrach (A locality of Batrachium trichophyllum (Ranunculaceae) in the Tatra Mountains). Fragm. Flor. Geobot. Polonica 2004, 11, 393–396. (In Polish) [Google Scholar]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W.; Pauliβen, D. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18, 2nd ed.; Erich Goltze KG: Göttingen, Germany, 1992; pp. 3–258. [Google Scholar]
- Sculthorpe, C.D. The Biology of Aquatic Vascular Plants, 1st ed.; Hodder & Stoughton Educational: London, UK, 1967; pp. 1–623. [Google Scholar]
- Englmaier, P. Ranunculus sect. Batrachium (Ranunculaceae): Contribution to an excursion flora of Austria and the Eastern Alps. Neilreichia 2016, 8, 97–125. [Google Scholar]
- Les, D.H. Aquatic Dicotyledons of North America: Ecology, Life History, and Systematics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–1350. [Google Scholar]
- Źróbek, R.; Źróbek-Sokolnik, A.; Dynowski, P. Application of GIS in Natural Sciences. Current Problems with Registering Submerged Plants Assemblages for the Needs of Natura 2000 Network. In The Future with GIS. Scientific Monograph; Kereković, D., Ed.; Hrvatski Informatički Zbor—GIS Forum: Zagreb, Croatia, 2011; pp. 97–103. [Google Scholar]
- Dynowski, P.; Źróbek-Sokolnik, A.; Ciecierska, H.; Dziedzic, J.; Piotrowicz, R. The Use of GIS Tools in the Generation of Maps Illustrating the Distribution of Protected Submerged Species—The Case of Isoetes lacustris. In GIS for Geoscientists. Scientific Monograph; Kereković, D., Ed.; Hrvatski Informatički Zbor—GIS Forum: Zagreb, Croatia, 2012; pp. 123–129. [Google Scholar]
- Dynowski, P.; Źróbek-Sokolnik, A.; Ciecierska, H.; Dziedzic, J.; Piotrowicz, R.; Hołdyński, C. Application of GIS and GPS tools in qualification and classification of a lake’s ecological status. Pol. J. Environ. Stud. 2014, 2, 639–645. [Google Scholar]
- Gliwicz, M. Eutrofizacja jezior tatrzańskich—Użyźnienie czy zarybienie? (Euthrophication of Tatra lakes—Fertilization or fish introduction?). Wiadomości Ekologiczne 1985, 31, 351–390. (In Polish) [Google Scholar]
- Nyka, J. Tatry Polskie. Przewodnik. (Polish Tatras. Guide), 12th ed.; Trawers: Warszawa, Poland, 2015; p. 320. (In Polish) [Google Scholar]
- Skrzydłowski, T. Przewodnik Przyrodniczy po Tatrach Polskich (Nature Guide of the Polish Tatras); Wydawnictwa Tatrzańskiego Parku Narodowego: Zakopane, Poland, 2013; p. 424. (In Polish) [Google Scholar]
- Król, M. The High Tatras. Monitoring of tourist traffic in the Tatra National Park. Unpublished, manuscript in preparation.
- Tatrzański Park Narodowy. Available online: http://tpn.pl/zwiedzaj/turystyka/statystyka (accessed on 27 January 2020).
- Nature Conservation Act of 16 April 2004. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20040920880 (accessed on 7 April 2020).
- Braun-Blanquet, J. Pflanzensoziologie. Grundzüge der Vegetationskunde, 3rd ed.; Springer: Wienna, Austria, 1964; p. 865. [Google Scholar]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Furgała-Selezniow, G.; Jankun-Woźnicka, M.; Mika, M. Lake regions under human pressure in the context of socio-economic transition in Central-Eastern Europe: The case study of Olsztyn Lakeland, Poland. Land Use Policy 2020, 90, 104350. [Google Scholar] [CrossRef]
- Kurzyca, I.; Choiński, A.; Kaniecki, A.; Siepak, J. Water ecosystems affected by human impact within the protected area of the Tatra National Park (Poland). Oceanol. Hydrobiol. Stud. 2009, 38, 77–86. [Google Scholar] [CrossRef]
- Gąsiorowski, M.; Sienkiewicz, E. The Sources of Carbon and Nitrogen in Mountain Lakes and the Role of Human Activity in Their Modification Determined by Tracking Stable Isotope Composition. Water Air Soil Poll. 2013, 224, 1498–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombówna, M.; Wojtan, K. Long-term changes in the chemical composition of water in some Tatra lakes. Acta Hydrobiol. 1999, 41, 1–16. [Google Scholar]
- Żelazny, M.; Wolanin, A.; Pęksa, Ł. Fizyko-Chemiczne właściwości wód (Physico-Chemical Properties of Waters). In Morskie Oko—Przyroda i Człowiek (Morskie Oko—Nature and Man); Choiński, A., Pociask-Karteczka, J., Eds.; Wydawnictwa Tatrzańskiego Parku Narodowego: Zakopane, Poland, 2014; pp. 244–257. [Google Scholar]
- Balon, J.; Jodłowski, M.; Pociask-Karteczka, J. Sposoby Zapobiegania Degradacji wód Morskiego Oka (Preventing Water Degradation in Lake Morskie Oko). In Wody na Obszarach Chronionych (Water Bodies in Nature Conservation Areas); Partyka, J., Pociask-Karteczka, J., Eds.; IGiGP UJ, OPN, KH PTG: Kraków, Poland, 2008; pp. 317–320. (In Polish) [Google Scholar]
- Toro, M.; Granados, I. Restoration of a small high mountain lake after recent tourist impact: The importance of limnological monitoring and palaeolimnology. Water Air Soil Poll. 2002, 2, 295–310. [Google Scholar] [CrossRef]
- Toro, M.; Granados, I.; Robles, S.; Montes, C. High mountain lakes of the Central Range (Iberian Peninsula): Regional limnology & environmental changes. Limnetica 2006, 25, 217–252. [Google Scholar]
- Pickering, C.M.; Harrington, J.; Worboys, G. Environmental impacts of tourism on the Australian Alps protected areas. Judgments of protected area managers. Mt. Res. Dev. 2003, 23, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Pop, A.J.; Mihăiescu, R.; Ozunu, A.; Mihăiescu, T.; Oprea, M.-G.; Ardelean, I.-V.; Lehaci, I. The impact of tourism in mountain lakes ecosystems. Case study: Lake Avring, Fagaras Mountain. ProEnvironment 2011, 4, 319–323. [Google Scholar]
- Kangas, K.; Vuori, K.-M.; Määttä-Juntunen, H.; Siikamäki, P. Impacts of ski resorts on water quality of boreal lakes: A case study in northern Finland. Boreal Environ. Res. 2012, 17, 313–325. [Google Scholar]
Lake | Area (ha) | Maximum Depth (m) | Surface Elevation (m a.s.l.) |
---|---|---|---|
Przedni Staw Polski | 7.7 | 34.6 | 1668 |
Mały Staw Polski | 0.2 | 2.1 | 1668 |
Wielki Staw Polski | 34.4 | 79.3 | 1665 |
Czarny Staw Polski | 12.7 | 50.4 | 1722 |
Zadni Staw Polski | 6.5 | 31.6 | 1889 |
Wole Oko | - | - | 1862 |
Entrance in Palenica Białczańska (years) | Number of Entrances (persons/day) | All Entrances to the Tatra National Park (%) |
---|---|---|
2013 | 5609 | 30.9 |
2014 | 6140 | 36.4 |
2015 | 6675 | 34.3 |
2016 | 7183 | 34.3 |
2017 | 7445 | 35.6 |
Parameter | X1: Distance from the Lake Shore (m) | X2: Average Trail Height above the Lake Surface (m) | X3: Presence of Trees and Shrubs Obstructing Lake Access (%) | X4: Presence of Boulders and Steep Rock Surfaces Obstructing Lake Access (%) | |
---|---|---|---|---|---|
Weight | |||||
1 | above 6 | above 1 | above 50 | above 50 | |
2 | (3–6) | (0.5–1) | (25–50) | (25–50) | |
3 | up to 3 | below 0.5 | below 25 | below 25 |
Lake Przedni Staw Polski | Lake Mały Staw Polski |
---|---|
Class I of plant cover: (1998–3331 m2) | Class I of plant cover: (890–1129 m2) |
Class II of plant cover: (256–1997 m2) | Class II of plant cover: (725–889 m2) |
Class III of plant cover: (0–255 m2) | Class III of plant cover: (0–724 m2) |
Segment of Trail | Parameters and Weights for Segments | Sum of Weights; Class of Accessibility (KD) | Plant Cover (m2); Class of Plant Cover (KP) | Correspondence between KD and KP | |||
---|---|---|---|---|---|---|---|
Przedni Staw Polski | |||||||
X1 | X2 | X3 | X4 | ||||
1 | 3 | 3 | 2 | 3 | 11—(I) | 3 33—(I) | + |
2 | 2 | 3 | 2 | 3 | 10—(I) | 3 185—(I) | + |
3 | 2 | 3 | 3 | 2 | 10—(I) | 1 997—(II) | +/− |
4 | 2 | 2 | 1 | 2 | 7—(II) | 1 032—(II) | + |
5 | 3 | 2 | 3 | 3 | 11—(I) | 1 314—(II) | +/− |
6 | 2 | 3 | 3 | 3 | 11—(I) | 2 270—(I) | + |
7 | 2 | 2 | 2 | 3 | 9—(II) | 2 948—(I) | +/− |
8 | 2 | 1 | 2 | 3 | 8—(II) | 2 836—(I) | +/− |
9 | 1 | 1 | 1 | 2 | 5—(III) | 19—(III) | + |
10 | 2 | 1 | 2 | 1 | 6—(III) | 255—(III) | + |
11 | 1 | 2 | 2 | 3 | 8—(II) | 1 432—(II) | + |
Mały Staw Polski | |||||||
11 | 1 | 3 | 2 | 3 | 9—(II) | 871—(II) | + |
12 | 2 | 3 | 2 | 3 | 10—(I) | 1 129—(I) | + |
13 | 2 | 3 | 3 | 3 | 11—(I) | 889—(II) | +/− |
14 | 1 | 3 | 3 | 3 | 10—(I) | 724—(III) | − |
Wielki Staw Polski | |||||||
14 | 1 | 1 | 1 | 2 | 5—(III) | 0—(III) | + |
15 | 1 | 1 | 2 | 3 | 7—(II) | 0—(III) | +/– |
16 | 1 | 1 | 1 | 2 | 5—(III) | 0—(III) | + |
17 | 2 | 1 | 2 | 1 | 6—(III) | 0—(III) | + |
18 | 1 | 1 | 1 | 2 | 5—(III) | 0—(III) | + |
19 | 1 | 1 | 1 | 1 | 4—(III) | 0—(III) | + |
20 | 1 | 1 | 1 | 2 | 5—(III) | 0—(III) | + |
21 | 1 | 1 | 1 | 3 | 6—(III) | 0—(III) | + |
22 | 1 | 1 | 1 | 2 | 5—(III) | 0—(III) | + |
Czarny Staw Polski | |||||||
23 | 1 | 1 | 1 | 1 | 4—(III) | 0—(III) | + |
24 | 1 | 1 | 1 | 1 | 4—(III) | 0—(III) | + |
25 | 2 | 1 | 3 | 2 | 8—(II) | 0—(III) | +/– |
26 | 1 | 1 | 2 | 2 | 6—(III) | 0—(III) | + |
27 | 1 | 1 | 1 | 1 | 4—(III) | 0—(III) | + |
Wole Oko | |||||||
28 | 1 | 1 | 3 | 1 | 6—(III) | 0—(III) | + |
29 | 2 | 1 | 3 | 1 | 7—(II) | 0—(III) | +/– |
Zadni Staw Polski | |||||||
30 | 1 | 1 | 3 | 2 | 7—(II) | 0—(III) | +/– |
31 | 2 | 1 | 3 | 1 | 7—(II) | 0—(III) | +/– |
Lake | Full Correspondence | Absence of Correspondence Difference by 1 Class | Absence of Correspondence Difference by 2 Classes |
---|---|---|---|
Przedni Staw Polski | 7 | 4 | 0 |
Mały Staw Polski | 2 | 1 | 1 |
Wielki Staw Polski | 8 | 1 | 0 |
Czarny Staw Polski | 4 | 1 | 0 |
Wole Oko | 1 | 1 | 0 |
Zadni Staw Polski | 0 | 2 | 0 |
Total | 22 | 10 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senetra, A.; Dynowski, P.; Cieślak, I.; Źróbek-Sokolnik, A. An Evaluation of the Impact of Hiking Tourism on the Ecological Status of Alpine Lakes—A Case Study of the Valley of Dolina Pięciu Stawów Polskich in the Tatra Mountains. Sustainability 2020, 12, 2963. https://doi.org/10.3390/su12072963
Senetra A, Dynowski P, Cieślak I, Źróbek-Sokolnik A. An Evaluation of the Impact of Hiking Tourism on the Ecological Status of Alpine Lakes—A Case Study of the Valley of Dolina Pięciu Stawów Polskich in the Tatra Mountains. Sustainability. 2020; 12(7):2963. https://doi.org/10.3390/su12072963
Chicago/Turabian StyleSenetra, Adam, Piotr Dynowski, Iwona Cieślak, and Anna Źróbek-Sokolnik. 2020. "An Evaluation of the Impact of Hiking Tourism on the Ecological Status of Alpine Lakes—A Case Study of the Valley of Dolina Pięciu Stawów Polskich in the Tatra Mountains" Sustainability 12, no. 7: 2963. https://doi.org/10.3390/su12072963
APA StyleSenetra, A., Dynowski, P., Cieślak, I., & Źróbek-Sokolnik, A. (2020). An Evaluation of the Impact of Hiking Tourism on the Ecological Status of Alpine Lakes—A Case Study of the Valley of Dolina Pięciu Stawów Polskich in the Tatra Mountains. Sustainability, 12(7), 2963. https://doi.org/10.3390/su12072963