Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions
Abstract
:1. Introduction
2. Literature Reviews
3. Analysis
3.1. Methodology
3.2. Result
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variables | Name | Definition |
---|---|---|
Dependent | LUNIV | University within the non-SMA (=1) |
LJOB | Job within the non-SMA (=1) | |
Individual background | GEND | Male (=1) |
FEDUk | Father received a middle-school education (reference) k = H if father received a high-school education (=1) k = U if father received a university education (=1) k = G if father received a graduate-school education (=1) | |
FINC | Father’s income when an individual entered university | |
KAT | Korean scholastic aptitude test level, high score (=1) | |
MJRm | m = 1 if humanities (=1) m = 2 if social science (=1) m = 3 if engineering (=1) m = 4 if natural science (=1) m = 5 if medicine (=1) m = 6 if art and physical education (=1) m = 7 if education (reference) | |
GRADE | College grade | |
GRDLATE | Graduation more than one year late (=1) | |
EXPRGW | Job experience of regular work condition (=1) | |
EXPSL | Job experience in Seoul (capital city of Korea) (=1) | |
Regional components | WAGE | Present monthly wage of the present job compared to reservation wage |
RGW | Regular worker (=1) | |
LCOST | The level of living cost of destination region compared to origin region | |
HIND | Heavy industry or resource-oriented industry of the present job (=1) | |
RTMA | When his/her domicile is a metropolitan area remote from the capital city, over 300 km (e.g. Gwangju, Ulsan and Pusan) | |
RINC | Regional income of destination region compared to origin region | |
POP | Population of destination region compared to origin region | |
RDU | Education R&D investment per research manpower | |
SOU | State-owned university existing within domicile region (with twenty thousand students) | |
DR | Consistency between domicile and job location (=1) | |
UR | Consistency between university and job location (=1) |
GEND | MJR1 | MJR2 | MJR3 | MJR4 | MJR5 | MJR6 | GRADE | GRDLATE | EXPRGW | |
---|---|---|---|---|---|---|---|---|---|---|
GEND | 1.000 | |||||||||
MJR1 | −0.067 | 1.000 | ||||||||
MJR2 | −0.025 | −0.182 | 1.000 | |||||||
MJR3 | 0.351 | −0.173 | −0.371 | 1.000 | ||||||
MJR4 | −0.034 | −0.107 | −0.229 | −0.218 | 1.000 | |||||
MJR5 | −0.148 | −0.094 | −0.202 | −0.192 | −0.119 | 1.000 | ||||
MJR6 | −0.079 | −0.089 | −0.191 | −0.182 | −0.112 | −0.099 | 1.000 | |||
GRADE | −0.205 | −0.018 | 0.070 | −0.109 | −0.066 | 0.026 | 0.043 | 1.000 | ||
GRDLATE | 0.064 | 0.064 | −0.040 | 0.074 | 0.023 | −0.033 | −0.060 | −0.187 | 1.000 | |
EXPRGW | −0.041 | 0.016 | −0.005 | −0.031 | 0.016 | 0.020 | 0.025 | −0.039 | −0.027 | 1.000 |
EXPSL | −0.061 | 0.022 | −0.010 | −0.038 | −0.007 | 0.022 | 0.046 | −0.028 | 0.008 | 0.426 |
RGW | −0.069 | 0.030 | −0.027 | −0.028 | 0.034 | 0.045 | 0.015 | −0.031 | −0.058 | 0.241 |
ln(WAGE) | 0.261 | −0.039 | −0.045 | 0.177 | −0.043 | 0.028 | −0.112 | −0.080 | 0.120 | −0.082 |
ln(LCOST) | 0.008 | −0.011 | −0.036 | 0.039 | −0.018 | 0.056 | 0.002 | 0.020 | 0.025 | 0.009 |
HIND | 0.124 | −0.016 | −0.024 | 0.169 | −0.024 | −0.068 | −0.050 | −0.023 | 0.004 | −0.049 |
ln(RINC) | 0.021 | −0.011 | −0.011 | 0.022 | −0.001 | 0.013 | 0.016 | 0.025 | 0.011 | −0.009 |
ln(POP) | 0.014 | −0.016 | −0.041 | 0.051 | −0.016 | 0.054 | −0.005 | 0.015 | 0.029 | 0.005 |
DR | −0.101 | 0.005 | 0.055 | −0.103 | 0.013 | −0.009 | 0.022 | 0.044 | −0.164 | 0.044 |
UR | −0.038 | 0.011 | 0.085 | −0.082 | −0.001 | −0.038 | −0.005 | 0.014 | −0.019 | −0.001 |
EXPSL | RGW | ln(WAGE) | ln(LCOST) | HIND | ln(RINC) | ln(POP) | DR | UR | - | |
EXPSL | 1.000 | - | ||||||||
RGW | 0.135 | 1.000 | - | |||||||
ln(WAGE) | −0.020 | −0.075 | 1.000 | - | ||||||
ln(LCOST) | 0.058 | 0.044 | 0.024 | 1.000 | - | |||||
HIND | −0.031 | −0.155 | 0.121 | −0.061 | 1.000 | - | ||||
ln(RINC) | 0.057 | 0.035 | 0.029 | 0.539+ | −0.016 | 1.000 | - | |||
ln(POP) | 0.052 | 0.035 | 0.030 | 0.983+ | −0.055 | 0.451+ | 1.000 | - | ||
DR | −0.071 | 0.023 | −0.187 | −0.371 | −0.016 | −0.253 | −0.363 | 1.000 | - | |
UR | −0.047 | −0.054 | −0.070 | −0.268 | −0.009 | −0.216 | −0.250 | 0.340 | 1.000 | - |
References
- Kaplan, D.; Venezky, R.L. Literacy and Voting Behavior: A Bivariate Probit Model with Sample Selection. Soc. Sci. Res. 1994, 23, 350–367. [Google Scholar] [CrossRef]
- Kazakis, P.; Faggian, A. Mobility Education and Labor Market Outcomes for U.S. Graduates: Is Selectivity Important? Ann. Reg. Sci. 2017, 59, 731–758. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shen, J.; Xu, W. From School to University to Work: Migration of Highly Educated Youth in China. Ann. Reg. Sci. 2017, 59, 651–676. [Google Scholar] [CrossRef]
- Woo, Y.; Kim, E.; Lim, J. The Impact of the Education and R&D Investment on Regional Economic Growth. Sustainability 2017, 9, 676. [Google Scholar]
- Haapanen, M.; Tervo, H. Migration of the Highly Educated: Evidence from Residence Spells of University Graduates. J. Reg. Sci. 2012, 52, 587–605. [Google Scholar] [CrossRef] [Green Version]
- Krabel, S.; Flöther, C. There Today, Gone Tomorrow? Regional Labour Mobility of German University Graduates. Reg. Stud. 2014, 48, 1609–1627. [Google Scholar] [CrossRef]
- Clark, W.; Coulter, R. Who Wants to Move? The Role of Neighborhood Change. Environ. Plan. A 2015, 47, 2683–2709. [Google Scholar] [CrossRef] [Green Version]
- Florida, R. The Economic Geography of Talent. Ann. Assoc. Am. Geogr. 2002, 92, 743–755. [Google Scholar] [CrossRef]
- Hu, R. Migrant Knowledge Workers: An Empirical Study of Global Sydney as a Knowledge City. Expert Syst. Appl. 2014, 41, 5605–5613. [Google Scholar] [CrossRef] [Green Version]
- Kotavaara, N.; Kotavaara, O.; Rusanen, J.; Muilu, T. University Graduate Migration in Finland. Geoforum 2018, 96, 97–107. [Google Scholar] [CrossRef]
- Démurger, S.; Xu, H. Return migrants: The rise of new entrepreneurs in rural China. World Dev. 2011, 39, 1847–1861. [Google Scholar] [CrossRef]
- Robertson, S. Friendship Networks and Encounters in Student-migrants’ Negotiations of Translocal Subjectivity. Urban Stud. 2018, 55, 538–553. [Google Scholar] [CrossRef]
- Wozniak, A. Are College Graduates More Responsive to Distant Labor Market Opportunities? J. Hum. Resour. 2010, 45, 944–970. [Google Scholar]
- Guijarro, F. Economic Recovery and Effectiveness of Active Labour Market Initiatives for the Unemployed in Spain: A Gender Perspective of the Valencian Region. Sustainability 2018, 10, 3623. [Google Scholar] [CrossRef] [Green Version]
- Neal, Z.; Neal, J. The Public School as Public Good: Direct and Indirect pathways to Community Satisfaction. J. Urban Aff. 2016, 34, 469–485. [Google Scholar] [CrossRef]
- Haussen, T.; Uebelmesser, S. No Place like Home? Graduate Migration in Germany. Growth Chance 2018, 49, 442–472. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, A.; Kopper, J. Third Mission Potential in Higher Education: Measuring the Regional Focus on Different Types of HEIs. Rev. Reg. Res. 2014, 34, 95–118. [Google Scholar] [CrossRef]
- Mellander, C.; Florida, R.; Stolarick, K. Here to Stay—The Effects of Community Satisfaction on the Decision to Stay. Spat. Econ. Anal. 2011, 6, 5–24. [Google Scholar] [CrossRef]
- Busch, O.; Weigert, B. Where Have All the Graduates Gone? Internal Cross-state Migration of Graduates in Germany 1987–2004. Ann. Reg. Sci. 2010, 44, 559–572. [Google Scholar] [CrossRef]
- Clemente, J.; Larramona, G.; Olmos, L. Interregional Migration and Thresholds: Evidence from Spain. Spat. Econ. Anal. 2016, 11, 276–293. [Google Scholar] [CrossRef] [Green Version]
- Crescenzi, R.; Holman, N.; Orru’, E. Why Do They Return? Beyond the Economic Drivers of Graduate Return Migration. Ann. Reg. Sci. 2017, 59, 603–627. [Google Scholar] [CrossRef] [Green Version]
- Findlay, A.M.; Stewart, E. Skilled Labor Migration from Developing Countries: Annotated Bibliography; ILO: Geneva, Switzerland, 2002; p. 39. [Google Scholar]
- Michielin, F.; Mulder, C.; Zorlu, A. Distance to parents and geographical mobility. Popul. Space Place 2008, 14, 327–345. [Google Scholar] [CrossRef]
- Bijker, R.A.; Haartsen, T. More than Counter-Urbanisation: Migration to Popular and Less-popular Rural Areas in the Netherlands. Popul. Space Place 2012, 18, 643–657. [Google Scholar] [CrossRef]
- Lundholm, E. Returning home? Migration to birthplace among migrants after age 55. Popul. Space Place 2012, 18, 74–84. [Google Scholar] [CrossRef]
- Winship, C.; Mare, R. Models for Sample Selection Bias. Annu. Rev. Sociol. 1992, 18, 327–350. [Google Scholar] [CrossRef]
- Wakasugi, R.; Koyata, F. R&D, Firm Size and Innovation Outputs: Are Japanese Firms Efficient in Product Development? J. Prod. Innov. Manag. 2003, 14, 383–392. [Google Scholar]
Variables | Mean | S.D. | Min | Max |
---|---|---|---|---|
GEND | 0.583 | 0.493 | - | - |
FEDUh | 0.435 | 0.496 | - | - |
FEDUu | 0.216 | 0.412 | - | - |
FEDUg | 0.062 | 0.241 | - | - |
ln(FINC) | 1.302 | 0.491 | 0.000 | 2.303 |
KAT | 0.159 | 0.366 | - | - |
ln(RINC) + | 0.302 | 0.742 | −2.190 | 3.512 |
ln(POP) + | 0.246 | 0.626 | −1.913 | 2.954 |
ln(RDU) | 12.834 | 1.859 | 7.659 | 15.993 |
SOU | 0.722 | 0.448 | - | - |
RTMA | 0.237 | 0.425 | - | - |
MJR1 | 0.078 | 0.268 | - | - |
MJR2 | 0.280 | 0.449 | - | - |
MJR3 | 0.259 | 0.438 | - | - |
MJR4 | 0.118 | 0.322 | - | - |
MJR5 | 0.096 | 0.295 | - | - |
MJR6 | 0.087 | 0.282 | - | - |
GRADE | 3.738 | 0.412 | 1.000 | 4.500 |
GRDLATE | 0.114 | 0.317 | - | - |
EXPRGW | 0.042 | 0.202 | - | - |
EXPSL | 0.017 | 0.130 | - | - |
RGW | 0.303 | 0.460 | - | - |
ln(WAGE) | 5.374 | 0.593 | 0.000 | 7.419 |
ln(LCOST) | 0.275 | 0.875 | −2.384 | 3.512 |
HIND | 0.052 | 0.222 | - | - |
ln(RINC) ++ | 0.144 | 0.614 | −2.415 | 2.331 |
ln(POP) ++ | 0.219 | 0.735 | −2.286 | 2.919 |
DR | 0.474 | 0.499 | - | - |
UR | 0.486 | 0.500 | - | - |
Study in the Lagged Regions | Stay for Job in the Lagged Regions | ||||||
---|---|---|---|---|---|---|---|
Variables | Coefficient | Standard Error | Variables | Coefficient | Standard Error | ||
Intercept | 94.755 | *** | 12.289 | Intercept | 1.233 | ** | 0.505 |
GEND | 0.545 | *** | 0.113 | GEND | −0.018 | 0.077 | |
FEDUh | −0.350 | *** | 0.098 | MJR1 | −0.254 | 0.166 | |
FEDUu | −0.605 | *** | 0.118 | MJR2 | −0.026 | 0.133 | |
FEDUg | −0.636 | *** | 0.190 | MJR3 | −0.255 | * | 0.136 |
ln(FINC) | −0.134 | 0.086 | MJR4 | −0.111 | 0.149 | ||
KAT | 0.372 | 0.307 | MJR5 | −0.111 | 0.151 | ||
ln(RINC) | −9.027 | *** | 0.571 | MJR6 | −0.188 | 0.160 | |
ln(POP) | 5.828 | *** | 0.601 | GRADE | −0.033 | 0.085 | |
ln(RDU) | −15.060 | *** | 1.878 | GRDLATE | −0.174 | 0.108 | |
(lnRDU)2 | 0.600 | *** | 0.072 | EXPRGW | 0.586 | *** | 0.191 |
SOU | 3.329 | *** | 0.534 | EXPSL | −1.240 | *** | 0.262 |
ln(RDU)×SOU | −0.291 | *** | 0.103 | RGW | −0.206 | *** | 0.072 |
RTMA | −2.045 | *** | 0.296 | ln(WAGE) | −0.050 | 0.068 | |
ln(RINC)×RTMA | −6.773 | *** | 2.029 | ln(LCOST) | −0.860 | *** | 0.226 |
ln(POP)×RTMA | 7.241 | *** | 1.776 | HIND | 0.258 | 0.255 | |
Rho(ρ) | −0.359 | *** | 0.117 | HIND×MJR3 | 0.671 | * | 0.352 |
ln(RINC) | −0.021 | 0.057 | |||||
ln(POP) | −0.041 | 0.256 | |||||
DR | 0.462 | *** | 0.082 | ||||
UR | 2.017 | *** | 0.137 | ||||
Number of observations | 5232 | 1294 | |||||
Log likelihood | −1551.044 | ||||||
Wald chi2 (20) | 1045.57 | ||||||
Prob > chi2 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, Y.; Kim, E. Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions. Sustainability 2020, 12, 3094. https://doi.org/10.3390/su12083094
Woo Y, Kim E. Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions. Sustainability. 2020; 12(8):3094. https://doi.org/10.3390/su12083094
Chicago/Turabian StyleWoo, Youngjin, and Euijune Kim. 2020. "Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions" Sustainability 12, no. 8: 3094. https://doi.org/10.3390/su12083094
APA StyleWoo, Y., & Kim, E. (2020). Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions. Sustainability, 12(8), 3094. https://doi.org/10.3390/su12083094