Decision-Support System for LID Footprint Planning and Urban Runoff Mitigation in the Lower Rio Grande Valley of South Texas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Case
- City of Brownsville—Porous Concrete Pavement (PCP)
- South Texas College—Bioretention (BR)
- Cameron County Drainage District#1—Bioswale (BS)
2.2. DSS Framework for LID Footprint Planning and Evaluation
2.3. BMP Data Acquisition and Analysis
2.4. WinSLAMM Model Development
2.5. DSS Algorithm Development
3. Results
3.1. WinSLAMM-Calibrated BMP Model Development
3.2. Application of DSS
4. Discussion
5. Conclusions
- A wet detention pond (WP) alone can be promising to provide hydrologic benefits, but it is not optimal. WP can achieve the least peak discharge (0.034 m3/s) and maximum runoff reduction (94%) from a 4 ha development. However, WP can cause safety, aesthetic, and water quality issues in the long run.
- Bioswale (BS) showed the smallest footprint requirement among all BMPs analyzed. Only 0.7 ha of BS installation can be adequate to hold the runoff generated from a maximum of 4.5 ha of commercial development (84% bigger than the BS footprint itself). Therefore, the implementation of bioswale alone can considerably reduce the footprint and construction cost.
- Bioretention (BR) can also be promising with a preferable footprint of 0.93 ha, which might cover a commercial development as large as 5 ha with a 90–95% runoff reduction.
- Apart from providing good serviceability and enhancing property value, porous concrete pavement (PCP) might be capable of detaining 34–50% of runoff generated outside its footprint boundary. For example, 4 ha of PCP installation might serve a commercial development as large as 6.1 ha.
- Considering all hydrological benefits and costs for a single BMP case, BR alone might be the optimal option from any commercial development in the LRGV region.
- Considering all hydrological benefits, land use management, aesthetics, and costs, a combination of BR, BS, and WP may be the optimal option, with almost 100% runoff reduction from the site. However, when LIDs are coupled with a wet detention pond, it may require a larger footprint area than that expected from WP alone.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franczyk, J.; Chang, H. The effects of climate change and urbanization on the runoff of the Rock Creek basin in the Portland metropolitan area, Oregon, USA. Hydrol. Process. 2009, 23, 805–815. [Google Scholar] [CrossRef]
- Rose, S.; Peters, N.E. Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): A comparative hydrological approach. Hydrol. Process. 2001, 15, 1441–1457. [Google Scholar] [CrossRef]
- Hung, C.-L.J.; James, L.A.; Carbone, G.J. Impacts of urbanization on stormflow magnitudes in small catchments in the Sandhills of South Carolina, USA. Anthropocene 2018, 23, 17–28. [Google Scholar] [CrossRef]
- Alam, T.; Mahmoud, A.; Jones, D.K.; Bezares-Cruz, C.J.; Guerrero, J. WinSLAMM Simulation of Hydrologic Performance of Permeable Pavements—A Case Study in the Semi-Arid Lower Rio Grande Valley of South Texas, United States. Water 2019, 11, 1865. [Google Scholar] [CrossRef] [Green Version]
- Martin-Mikle, C.J.; de Beurs, K.M.; Julian, J.P.; Mayer, P.M. Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landsc. Urban Plan. 2015, 140, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Belt, K.T. The urban watershed continuum: Evolving spatial and temporal dimensions. Urban Ecosyst. 2012, 15, 409–435. [Google Scholar] [CrossRef]
- Alam, T.; Mahmoud, A.; Jones, D.K.; Bezares-Cruz, C.J.; Guerrero, J. A Comparison of Three Types of Permeable Pavements for Urban Runoff Mitigation in the Semi-Arid South Texas, USA. Water 2019, 11, 1992. [Google Scholar] [CrossRef] [Green Version]
- Taebi, A.; Droste, R.L. First flush pollution load of urban stormwater runoff. J. Environ. Eng. Sci. 2004, 3, 301–309. [Google Scholar] [CrossRef]
- Guerrero, J.; Mahmoud, A.; Alam, T.; Chowdhury, A.M.; Adetayo, A.; Ernest, A.; Jones, D.K. Water Quality Improvement and Pollutant Removal by Two Regional Detention Facilities with Constructed Wetlands in South Texas. Sustainability 2020, 12, 2844. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Urban Stormwater Management in the United States; The National Academies Press: Washington, DC, USA, 2009; pp. 18–196. [Google Scholar]
- USEPA. Handbook for Developing Watershed Plans to Restore and Protect Our Waters; Office of Water, Nonpoint Source Control Branch: Washington, DC, USA, 2008; p. 400.
- Houle, J.J.; Roseen, R.M.; Ballestero, T.P.; Puls, T.A.; Sherrard, J. Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional Stormwater Management. J. Environ. Eng. 2013, 139, 932–938. [Google Scholar] [CrossRef]
- Flores, J.; Benavides, J.A.; Cawthon, T. Update to the Arroyo Colorado Watershed Protection Plan; Texas Water Resources Institute Technical Report—504; Texas Water Resources Institute: College Station, TX, USA, 2017; pp. 3–152.
- USEPA. Stormater Technology Fact Sheet-Wet Detention Ponds; Office of Water, U.S. Environmental Protection Agency: Washington, DC, USA, 2018; p. 7. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/200044D0.PDF?Dockey=200044D0.PDF (accessed on 18 September 2018).
- Kramer, M.G. Enhancing Sustainable Communities with Green Infrastructure; Office of Sustainable Communities, US Environmental Protection Agency: Washington, DC, USA, 2014; p. 61.
- Bhatt, A.; Bradford, A.; Abbassi, B.E. Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario. J. Environ. Manag. 2019, 231, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Youngblood, S.; Vogel, J.; Brown, G.; Storm, D.; McLemore, A.; Kandel, S. Field Studies of Microbial Removal from Stormwater by Bioretention Cells with Fly-Ash Amendment. Water 2017, 9, 526. [Google Scholar] [CrossRef] [Green Version]
- Simić, I.; Stupar, A.; Djokić, V. Building the Green Infrastructure of Belgrade: The Importance of Community Greening. Sustainability 2017, 9, 1183. [Google Scholar] [CrossRef] [Green Version]
- Honeck, E.; Moilanen, A.; Guinaudeau, B.; Wyler, N.; Schlaepfer, M.A.; Martin, P.; Sanguet, A.; Urbina, L.; von Arx, B.; Massy, J.; et al. Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland. Sustainability 2020, 12, 1387. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.J.; Liu, Y.; Carroll, N.J.; Ahiablame, L.M.; Engel, B.A. Retrofitting LID Practices into Existing Neighborhoods: Is It Worth It? Environ. Manag. 2016, 57, 856–867. [Google Scholar] [CrossRef] [Green Version]
- Earles, A.; Rapp, D.; Clary, J.; Lopitz, J. Breaking Down the Barriers to Low Impact Development in Colorado. In Proceedings of the World Environmental and Water Resources Congress 2009, Kansas City, MI, USA, 17–21 May 2009; pp. 1–10. [Google Scholar]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef]
- Kazak, J.K.; Chruściński, J.; Szewrański, S. The Development of a Novel Decision Support System for the Location of Green Infrastructure for Stormwater Management. Sustainability 2018, 10, 4388. [Google Scholar] [CrossRef] [Green Version]
- Cano, O.; Barkdoll, B. Multiobjective, Socioeconomic, Boundary-Emanating, Nearest Distance Algorithm for Stormwater Low-Impact BMP Selection and Placement. J. Water Resour. Plan. Manag. 2016, 143, 05016013. [Google Scholar] [CrossRef]
- Cheng, M.-S.; Zhen, J.X.; Shoemaker, L. BMP decision support system for evaluating stormwater management alternatives. Front. Environ. Sci. Eng. China 2009, 3, 453. [Google Scholar] [CrossRef]
- Ahmad, S.; Simonovic, S.P. An Intelligent Decision Support System for Management of Floods. Water Resour. Manag. 2006, 20, 391–410. [Google Scholar] [CrossRef]
- Duan, H.-F.; Li, F.; Yan, H. Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis. Water Resour. Manag. 2016, 30, 4635–4648. [Google Scholar] [CrossRef]
- Ercolani, G.; Chiaradia, E.A.; Gandolfi, C.; Castelli, F.; Masseroni, D. Evaluating performances of green roofs for stormwater runoff mitigation in a high flood risk urban catchment. J. Hydrol. 2018, 566, 830–845. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Charoenkit, S.; Piyathamrongchai, K. A review of urban green spaces multifunctionality assessment: A way forward for a standardized assessment and comparability. Ecol. Indic. 2019, 107, 105592. [Google Scholar] [CrossRef]
- Labib, S.M. Investigation of the likelihood of green infrastructure (GI) enhancement along linear waterways or on derelict sites (DS) using machine learning. Environ. Model. Softw. 2019, 118, 146–165. [Google Scholar] [CrossRef] [Green Version]
- Epps, T.H.; Hathaway, J.M. Using spatially-identified effective impervious area to target green infrastructure retrofits: A modeling study in Knoxville, TN. J. Hydrol. 2019, 575, 442–453. [Google Scholar] [CrossRef]
- Mahmoud, A.; Alam, T.; Yeasir A. Rahman, M.; Sanchez, A.; Guerrero, J.; Jones, K.D. Evaluation of field-scale stormwater bioretention structure flow and pollutant load reductions in a semi-arid coastal climate. Ecol. Eng. X 2019, 1, 100007. [Google Scholar] [CrossRef]
- Sepulveda, P.; Hinojosa, E. Cameron Country Storm Water Management Plan (CCSWMP). Developed with the Requirements of the Texas Pollutant Discharge Elimination Systems. General Permit No. TXR04000; TEDSI Infrastructure Group, Inc.: Brownsville, TX, USA, 2008; p. 8. [Google Scholar]
- Wilker, J.; Rusche, K. Economic valuation as a tool to support decision-making in strategic green infrastructure planning. Local Environ. 2014, 19, 702–713. [Google Scholar] [CrossRef]
- Son, H.C.; Hyun, H.K.; Kim, D.; Baek, I.J.; Ban, U.Y. Development and Application of a Low Impact Development (LID)-Based District Unit Planning Model. Sustainability 2017, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cibin, R.; Bralts, V.F.; Chaubey, I.; Bowling, L.C.; Engel, B.A. Optimal selection and placement of BMPs and LID practices with a rainfall-runoff model. Environ. Model. Softw. 2016, 80, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, R.A. Application of WinSLAMM to Evaluate the Effect of Green Infrastructure Implementation in Northern Utah. Ph.D. Thesis, Utah State University, Logan, UT, USA, 2018. [Google Scholar]
- Shilling, F.; Sommarstrom, S.; Kattelmann, R.; Washburn, B.; Florsheim, J.; Henly, R. The California Watershed Assessment Guide; Department of Environmental Science and Policy, University of California-Davis: Davis, CA, USA, 2005; p. 34. [Google Scholar]
- PV & Associates WinSLAMM (Version 10.0). Available online: http://www.winslamm.com/docs/01%20WinSLAMM%20v%2010.0%20User’s%20Guide%20-%20Introduction.pdf (accessed on 30 September 2018).
- Hurley, S.E.; Forman, R.T.T. Stormwater ponds and biofilters for large urban sites: Modeled arrangements that achieve the phosphorus reduction target for Boston’s Charles River, USA. Ecol. Eng. 2011, 37, 850–863. [Google Scholar] [CrossRef]
- Mahmoud, A.; Alam, T.; Sanchez, A.; Guerrero, J.; Oraby, T.; Ibrahim, E.; Jones, K.D. Stormwater Runoff Quality and Quantity from Permeable and Traditional Pavements in Semiarid South Texas. J. Environ. Eng. 2020, 146, 05020001. [Google Scholar] [CrossRef]
- Pitt, R.; Voorhees, J. WinSLAMM and low impact development. In Proceedings of the Putting the LID on Stormwater Management LID Conference, College Park, MD, USA, 21–23 September 2004; Civil Engineering, University of Alabama: College Park, MD, USA, 2004; p. 13. [Google Scholar]
- Pitt, R. Module 4: Stormwater Controls and WinSLAMM. Available online: http://unix.eng.ua.edu/~rpitt/Class/International%20urban%20water%20systems/WinSLAMM%20and%20stormwater%20controls%20Feb%2018%202006.htm (accessed on 19 September 2018).
- Jayasooriya, V.M.; Ng, A.W.M. Tools for Modeling of Stormwater Management and Economics of Green Infrastructure Practices: A Review. Water Air Soil Pollut. 2014, 225, 2055. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, E.A.; Uddameri, V. An assessment of optimal waste load allocation and assimilation characteristics in the Arroyo Colorado River watershed, TX along the US–Mexico border. Clean Technol. Environ. Policy 2013, 15, 617–631. [Google Scholar] [CrossRef]
- Raines, T.H.; Miranda, R.M. Simulation of Flow and Water Quality of the Arroyo Colorado, Texas; USGS: Ausin, TX, USA, 2002.
- Jones, D.K.; Sanchez, A.; Mahmoud, A.; Alam, T.; Fasae, O. Lower Rio Grande Valley Low Impact Development Implementation and Education Final Report; Institute for Sustainable Energy and the Environment, Environmental Engineering Department, Texas A&M University-Kingsville: Kingsville, TX, USA, 2017. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Mourad, M.; Bertrand-Krajewski, J.-L.; Chebbo, G. Calibration and validation of multiple regression models for stormwater quality prediction: Data partitioning, effect of dataset size and characteristics. Water Sci. Technol. 2005, 52, 45–52. [Google Scholar] [CrossRef]
- Dotto, C.B.S.; Mannina, G.; Kleidorfer, M.; Vezzaro, L.; Henrichs, M.; McCarthy, D.T.; Freni, G.; Rauch, W.; Deletic, A. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Res. 2012, 46, 2545–2558. [Google Scholar] [CrossRef]
- Haddad, K.; Egodawatta, P.; Rahman, A.; Goonetilleke, A. Uncertainty analysis of pollutant build-up modelling based on a Bayesian weighted least squares approach. Sci. Total Environ. 2013, 449, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Dotto, C.B.S.; Kleidorfer, M.; Deletic, A.; Rauch, W.; McCarthy, D.T. Impacts of measured data uncertainty on urban stormwater models. J. Hydrol. 2014, 508, 28–42. [Google Scholar] [CrossRef]
- Pazwash, H. Urban Storm Water Managemen, 1st ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 1-4398-1035-4. [Google Scholar]
- Blick, S.A.; Kelly, F.; Skupien, J.J. New Jersey Stormwater Best Management Practices Manual; Technical Document; New Jersey Department of Environmental Protection Division of Watershed Management: Trenton, NJ, USA, 2004; p. 363.
- USEPA. Stormwater Wet Pond and Wetland Management Guidebook; United States Environmental Protection Agency: Washington, DC, USA, 2009; p. 57.
- USEPA Storm Water Technology Fact Sheet: Porous Pavement. 1999. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/91018M1N.PDF?Dockey=91018M1N.PDF (accessed on 27 November 2019).
- Tennis, P.D.; Leming, M.L.; Akers, D.J. Pervious Concrete Pavements; Portland Cement Association, Skokie, Illinois, and National Ready Mixed Concrete Association: Silver Spring, ML, USA, 2004; ISBN 0-89312-242-4. [Google Scholar]
- Collins, K.A.; Hunt, W.F.; Hathaway, J.M. Hydrologic Comparison of Four Types of Permeable Pavement and Standard Asphalt in Eastern North Carolina. J. Hydrol. Eng. 2008, 13, 1146–1157. [Google Scholar] [CrossRef]
- Purvis, A.R.; Winston, J.R.; Hunt, F.W.; Lipscomb, B.; Narayanaswamy, K.; McDaniel, A.; Lauffer, S.M.; Libes, S. Evaluating the Hydrologic Benefits of a Bioswale in Brunswick County, North Carolina (NC), USA. Water 2019, 11, 1291. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; McPherson, E.G. Performance of engineered soil and trees in a parking lot bioswale. Urban Water J. 2011, 8, 241–253. [Google Scholar] [CrossRef]
- Purvis, A.R.; Winston, J.R.; Hunt, F.W.; Lipscomb, B.; Narayanaswamy, K.; McDaniel, A.; Lauffer, S.M.; Libes, S. Evaluating the Water Quality Benefits of a Bioswale in Brunswick County, North Carolina (NC), USA. Water 2018, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Kocman, S.M.; Guo, J.C.Y.; Ramaswami, A. Waste-Incorporated Subbase for Porous Landscape Detention Basin Design. J. Environ. Eng. 2011, 137, 928–936. [Google Scholar] [CrossRef]
- Houdeshel, C.D.; Pomeroy, C.A.; Hultine, K.R. Bioretention Design for Xeric Climates Based on Ecological Principles1. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 1178–1190. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- DeBusk, K.M.; Wynn, T.M. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J. Environ. Eng. 2011, 137, 800–808. [Google Scholar] [CrossRef]
- Masseroni, D.; Cislaghi, A. Green roof benefits for reducing flood risk at the catchment scale. Environ. Earth Sci. 2016, 75, 579. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, M. Effectiveness of Rainwater Harvesting in Runoff Volume Reduction in a Planned Industrial Park, China. Water Resour. Manag. 2014, 28, 671–682. [Google Scholar] [CrossRef]
BMP | Monitoring Period | No. of Rainfall Events | Max. Rainfall Depth (mm) | Normalized Volume Reduction (m3/m2) | Calibration Parameters | ||
---|---|---|---|---|---|---|---|
KGE | RMSE (m3/m2) | p-Value | |||||
PCP | 09/2014–11/2014 | 14 | 67 | 0.054 ± 0.047 | 0.833 | 0.012 | < 0.05 |
BR | 03/2016–03/2017 | 43 | 38 | 0.250 ± 0.210 | 0.866 | 0.054 | < 0.05 |
BS | 08/2014–02/2015 | 11 | 67 | 0.130 ± 0.140 | 0.893 | 0.033 | < 0.05 |
BMPs | Development (ha) | Footprint Required (ha) | Peak Discharge (m3/s) | Total Runoff (m3) | % Runoff Reduction | Runoff Coefficient |
---|---|---|---|---|---|---|
WP | 0.5 | 0.32 | 0.000 | 0 | 100 | 0.00 |
1 | 0.32 | 0.023 | 1998 | 78 | 0.22 | |
2 | 0.81 | 0.017 | 1452 | 94 | 0.06 | |
4 | 1.22 | 0.034 | 2941 | 94 | 0.06 | |
6 | 1.62 | 0.097 | 8392 | 88 | 0.12 | |
PP | 0.5 | 0.41 | 0.012 | 1028 | 78 | 0.22 |
1 | 0.81 | 0.022 | 1857 | 80 | 0.20 | |
2 | 1.22 | 0.038 | 3247 | 86 | 0.14 | |
4 | 2.03 | 0.112 | 9719 | 79 | 0.21 | |
6 | 4.05 | 0.065 | 5604 | 92 | 0.08 | |
BR | 0.5 | 0.19 | 0.009 | 797 | 83 | 0.17 |
1 | 0.47 | 0.000 | 0 | 100 | 0.00 | |
2 | 0.47 | 0.050 | 4337 | 81 | 0.19 | |
4 | 0.93 | 0.046 | 3966 | 91 | 0.09 | |
6 | 1.86 | 0.040 | 3426 | 95 | 0.05 | |
BS | 0.5 | 0.07 | 0.011 | 980 | 79 | 0.21 |
1 | 0.14 | 0.023 | 1966 | 79 | 0.21 | |
2 | 0.36 | 0.057 | 4935 | 79 | 0.21 | |
4 | 0.72 | 0.113 | 9783 | 79 | 0.21 | |
6 | 1.44 | 0.139 | 12,040 | 83 | 0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, J.; Alam, T.; Mahmoud, A.; Jones, K.D.; Ernest, A. Decision-Support System for LID Footprint Planning and Urban Runoff Mitigation in the Lower Rio Grande Valley of South Texas. Sustainability 2020, 12, 3152. https://doi.org/10.3390/su12083152
Guerrero J, Alam T, Mahmoud A, Jones KD, Ernest A. Decision-Support System for LID Footprint Planning and Urban Runoff Mitigation in the Lower Rio Grande Valley of South Texas. Sustainability. 2020; 12(8):3152. https://doi.org/10.3390/su12083152
Chicago/Turabian StyleGuerrero, Javier, Taufiqul Alam, Ahmed Mahmoud, Kim D. Jones, and Andrew Ernest. 2020. "Decision-Support System for LID Footprint Planning and Urban Runoff Mitigation in the Lower Rio Grande Valley of South Texas" Sustainability 12, no. 8: 3152. https://doi.org/10.3390/su12083152
APA StyleGuerrero, J., Alam, T., Mahmoud, A., Jones, K. D., & Ernest, A. (2020). Decision-Support System for LID Footprint Planning and Urban Runoff Mitigation in the Lower Rio Grande Valley of South Texas. Sustainability, 12(8), 3152. https://doi.org/10.3390/su12083152