Compounded Heat and Fire Risk for Future U.S. Populations
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Will United States Residents Move from Areas with Heat Risk into Areas with Fire Risk and are Some Residential Densities More at Risk?
4.2. Adaptation
4.3. Compound Risk
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oppenheimer, M.; Campos, M.; Warren, R.; Birkmann, J.; Luber, G.; O’Neill, B.; Takahashi, K. Emergent risks and key vulnerabilities. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: New York, NY, USA, 2014; pp. 1039–1099. [Google Scholar]
- NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters. Available online: https://www.ncdc.noaa.gov/billions/ (accessed on 25 February 2020).
- Congressional Research Service (CRS). Wildfire Management Funding: Background, Issues, and FY2018 Appropriations. Available online: https://fas.org/sgp/crs/misc/R45005.pdf (accessed on 25 February 2020).
- Hauer, M.E.; Evans, J.M.; Mishra, D.R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Chang. 2016, 6, 691–695. [Google Scholar] [CrossRef]
- Partridge, M.D.; Feng, B.; Rembert, M. Improving climate-change modeling of US migration. Am. Econ. Rev. 2017, 107, 451–455. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency (EPA). Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) Version 2; EPA/600/R-16/366F; National Center for Environmental Assessment: Washington, DC, USA, 2017. Available online: https://edg.epa.gov/metadata/catalog/main/home.page (accessed on 25 February 2020).
- NRDC. How States Stack up on Flood Disclosure. 2020. Available online: https://www.nrdc.org/flood-disclosure-map (accessed on 25 February 2020).
- U.S. Government Accountability Office (GAO). FEMA Flood Maps: Some Standards and Processes in Place to Promote Map Accuracy and Outreach, But Opportunities Exist to Address Implementation Challenges. Available online: https://www.gao.gov/products/gao-11-17 (accessed on 25 February 2020).
- Hsiang, S.; Kopp, R.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Rasmussen, D.J.; Muir-Wood, R.; Wilson, P.; Oppenheimer, M.; et al. Estimating economic damage from climate change in the United States. Science 2017, 356, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.; Tebaldi, C.; O’Neill, B.C.; Oleson, K.; Gao, J. Avoiding population exposure to heat-related extremes: Demographic change vs. climate change. Clim. Chang. 2018, 146, 423–437. [Google Scholar] [CrossRef]
- Dahl, K.; Licker, R.; Abatzoglou, J.T.; Declet-Barreto, J. Increased frequency of and population exposure to extreme heat index days in the United States during the 21st century. Environ. Res. Commun. 2019, 1, 075002. [Google Scholar] [CrossRef]
- Sanderson, M.; Arbuthnott, K.; Kovats, S.; Hajat, S.; Falloon, P. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review. PLoS ONE 2017, 12, e0180369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morefield, P.E.; Fann, N.; Grambsch, A.; Raich, W.; Weaver, C.P. Heat-related health impacts under scenarios of climate and population change. Int. J. Environ. Res. Public Health 2018, 15, 2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachelet, D.; Sheehan, T.; Ferschweiler, K.; Abatzoglou, J. Simulating vegetation change, carbon cycling, and fire over the western United States using CMIP5 climate projections. Nat. Hazard Uncertain. Assess. 2017, 257–275. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.L.; Stanturf, J.A. Future US wildfire potential trends projected using a dynamically downscaled climate change scenario. For. Ecol. Manag. 2013, 294, 120–135. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [Green Version]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Brown, T.J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 2012, 32, 772–778. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) Version 2.1.1; EPA/600/R-16/366F; National Center for Environmental Assessment: Washington, DC, USA, 2018. Available online: https://edg.epa.gov/metadata/catalog/main/home.page (accessed on 25 February 2020).
- Ecomap. National Hierarchical Framework of Ecological Units; USDA Forest Service: Washington, DC, USA, 2007.
- Hanberry, B.B.; Fraser, J.S. Visualizing current and future climate boundaries of the conterminous United States: Implications for forests. Forests 2019, 10, 280. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Barrett, A.; Colle, B.; Fernando, D.N. North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J. Clim. 2013, 26, 9209–9245. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, S. Crucial factors influencing public acceptance of fuels treatments. Fire Manag. Today 2009, 69, 9–12. [Google Scholar]
- Barreca, A.; Clay, K.; Deschenes, O.; Greenstone, M.; Shapiro, J.S. Adapting to climate change: The remarkable decline in the US temperature-mortality relationship over the twentieth century. J. Political Econ. 2016, 124, 105–159. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.V.; Vaidyanathan, A.; Flanders, W.D.; Murphy, M.; Spencer, M.; Noe, R.S. Differences in heat-related mortality by citizenship status: United States, 2005–2014. Am. J. Public Health 2018, 108, S131–S136. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Sinoway, L.I. Cardiovascular responses to heat stress in chronic heart failure. Curr. Heart Fail. Rep. 2014, 11, 139–145. [Google Scholar] [CrossRef]
- Brenkert-Smith, H.B.; Champ, P.A.; Flores, N. Insights into wildfire mitigation decisions among wildland-urban interface residents. Soc. Nat. Resour. 2006, 19, 759–768. [Google Scholar] [CrossRef]
- Cohen, J.D. Preventing disaster: Home ignitability in the wildland-urban interface. J. For. 2000, 98, 15–21. [Google Scholar]
- Ayres, A.; Degolia, A.; Fienup, M.; Kim, Y.; Sainz, J.; Urbisci, L.; Viana, D.; Wesolowski, G.; Plantinga, A.J.; Tague, C. Social science/natural science perspectives on wildfire and climate change. Geogr. Compass 2016, 10, 67–86. [Google Scholar] [CrossRef]
- U.S. Office of Inspector General (OIG). Audit Report: Forest Service Large Fire Suppression Costs. Rep. 08601-44-SF. Available online: http://www.usda.gov/oig/webdocs/08601-44-SF.pdf (accessed on 25 February 2020).
- Donovan, G.H.; Champ, P.A.; Butry, D.T. Wildfire risk and housing prices: A case study from Colorado Springs. Land Econ. 2007, 83, 217–233. [Google Scholar] [CrossRef]
- Leonard, M.; Westra, S.; Phatak, A.; Lambert, M.; van den Hurk, B.; McInnes, K.; Risbey, J.; Schuster, S.; Jakob, D.; Stafford-Smith, M. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 113–128. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Chang. 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
Region | GCM | Had | MIR | GCM | Had | MIR |
---|---|---|---|---|---|---|
1971–2000 | ||||||
East | 28.6 | 28.6 | 28.5 | 2.3 | 3.4 | 2.2 |
Northeast | 24.8 | 25.0 | 24.7 | 1.9 | 1.9 | 1.6 |
Plains | 30.7 | 30.6 | 30.8 | 5.3 | 5.6 | 6.0 |
Prairie | 30.8 | 30.8 | 30.9 | 3.8 | 4.7 | 4.4 |
Intermountain | 26.3 | 26.2 | 26.2 | 9.4 | 9.3 | 9.6 |
Southeast | 32.5 | 32.5 | 32.5 | 1.6 | 2.7 | 2.2 |
Southwest | 33.7 | 33.6 | 33.6 | 7.0 | 6.8 | 6.8 |
West | 26.7 | 26.5 | 26.6 | 7.2 | 7.1 | 7.4 |
2010–2039 RCP8.5 | ||||||
East | 30.3 | 31.4 | 30.5 | 4.8 | 11.3 | 3.8 |
Northeast | 26.5 | 27.0 | 26.6 | 3.2 | 3.3 | 2.4 |
Plains | 32.5 | 33.0 | 32.8 | 7.5 | 7.8 | 5.9 |
Prairie | 32.6 | 33.4 | 32.9 | 6.5 | 9.5 | 6.5 |
Intermountain | 28.2 | 28.7 | 28.6 | 13.0 | 12.4 | 11.5 |
Southeast | 34.0 | 34.9 | 34.4 | 3.8 | 11.7 | 4.8 |
Southwest | 35.4 | 36.1 | 35.9 | 9.2 | 11.8 | 12.7 |
West | 28.4 | 28.7 | 28.7 | 9.5 | 8.6 | 7.8 |
2040–2069 RCP8.5 | ||||||
East | 32.4 | 35.1 | 33.2 | 7.5 | 26.6 | 7.0 |
Northeast | 28.5 | 29.6 | 29.2 | 4.5 | 9.9 | 2.3 |
Plains | 34.5 | 35.7 | 35.6 | 11.0 | 17.0 | 11.4 |
Prairie | 34.6 | 36.4 | 36.0 | 9.4 | 20.6 | 11.1 |
Intermountain | 30.3 | 31.7 | 31.5 | 18.7 | 25.4 | 23.6 |
Southeast | 35.7 | 38.4 | 37.1 | 6.9 | 30.1 | 14.6 |
Southwest | 37.1 | 37.8 | 38.2 | 11.8 | 15.2 | 18.6 |
West | 30.1 | 30.8 | 30.9 | 12.4 | 14.6 | 12.7 |
2040–2069 RCP4.5 | ||||||
East | 31.3 | 33.1 | 32.0 | 4.8 | 13.3 | 5.9 |
Northeast | 27.5 | 28.6 | 28.0 | 3.4 | 7.7 | 2.3 |
Plains | 33.5 | 34.3 | 34.6 | 9.8 | 13.3 | 13.1 |
Prairie | 33.7 | 34.8 | 35.4 | 7.8 | 11.6 | 13.4 |
Intermountain | 29.2 | 30.4 | 29.9 | 16.0 | 19.7 | 16.8 |
Southeast | 34.9 | 36.4 | 35.5 | 4.3 | 13.3 | 8.1 |
Southwest | 36.3 | 36.7 | 37.6 | 10.7 | 9.9 | 17.4 |
West | 29.3 | 30.0 | 30.0 | 11.1 | 11.6 | 11.4 |
Land Use | Area | GCM | Had | MIR | GCM | Had | MIR | Land Use | GCM | Had | MIR | GCM | Had | MIR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 1971–2000 | 2060 no cc | 1971–2000 | |||||||||||
Exurban, low-density | 362,732 | 29.1 | 29.2 | 29.1 | 2.3 | 3.2 | 2.4 | 29.9 | 29.9 | 29.8 | 2.6 | 3.5 | 2.7 | |
Exurban, high-density | 179,933 | 29.6 | 29.6 | 29.6 | 2.7 | 3.5 | 2.9 | 30.1 | 30.1 | 30.0 | 2.8 | 3.6 | 3.0 | |
Suburban | 61,137 | 30.1 | 30.1 | 30.0 | 2.9 | 3.6 | 3.0 | 30.5 | 30.5 | 30.4 | 2.8 | 3.6 | 3.0 | |
Urban, low-density | 52,935 | 30.2 | 30.2 | 30.1 | 3.4 | 4.1 | 3.4 | 30.7 | 30.6 | 30.6 | 3.4 | 4.1 | 3.5 | |
Urban, high-density | 2986 | 29.4 | 29.4 | 29.3 | 2.7 | 3.4 | 2.7 | 29.9 | 29.9 | 29.8 | 2.8 | 3.4 | 2.9 | |
2030 | 2010–2039 RCP8.5 | 2060 | 2040–2069 RCP4.5 | |||||||||||
Exurban, low-density | 515,820 | 31.5 | 32.3 | 31.6 | 4.7 | 9.9 | 3.9 | 32.5 | 34.0 | 33.1 | 5.2 | 12.3 | 6.7 | |
Exurban, high-density | 261,415 | 31.6 | 32.4 | 31.8 | 4.8 | 8.8 | 4.2 | 32.6 | 34.0 | 33.3 | 5.4 | 11.6 | 7.1 | |
Suburban | 95,177 | 31.9 | 32.6 | 32.1 | 4.7 | 8.1 | 4.1 | 32.9 | 34.3 | 33.6 | 5.3 | 10.8 | 7.2 | |
Urban, low-density | 83,283 | 32.1 | 32.7 | 32.3 | 5.3 | 8.3 | 5.0 | 33.1 | 34.3 | 34.0 | 6.0 | 11.0 | 8.2 | |
Urban, high-density | 7200 | 31.2 | 31.7 | 31.5 | 4.4 | 6.1 | 4.1 | 32.3 | 33.2 | 33.1 | 4.8 | 8.4 | 6.6 | |
2060 | 2040–2069 RCP8.5 | 2060 no cc | 2040–2069 RCP8.5 | |||||||||||
Exurban, low-density | 565,298 | 33.4 | 35.8 | 34.2 | 7.5 | 24.8 | 8.8 | 33.3 | 35.7 | 34.1 | 7.3 | 24.5 | 8.4 | |
Exurban, high-density | 300,486 | 33.5 | 35.7 | 34.3 | 7.4 | 22.2 | 8.7 | 33.4 | 35.5 | 34.2 | 7.3 | 21.8 | 8.4 | |
Suburban | 120,101 | 33.8 | 35.8 | 34.6 | 7.1 | 20.2 | 8.4 | 33.6 | 35.6 | 34.5 | 7.0 | 20.0 | 8.3 | |
Urban, low-density | 116,687 | 33.9 | 35.6 | 34.7 | 7.7 | 18.8 | 9.0 | 33.7 | 35.4 | 34.6 | 7.7 | 18.8 | 8.9 | |
Urban, high-density | 14,022 | 32.9 | 34.2 | 33.7 | 6.2 | 13.7 | 7.1 | 32.7 | 34.1 | 33.6 | 6.4 | 14.2 | 7.1 | |
2000 | 2040–2069 RCP8.5 | 2060 | 1971–2000 | |||||||||||
Exurban, low-density | 362,732 | 32.7 | 35.1 | 33.4 | 6.8 | 23.1 | 7.2 | 479,043 | 29.9 | 29.9 | 29.9 | 2.7 | 3.6 | 2.9 |
Exurban, high-density | 179,933 | 33.1 | 35.2 | 33.9 | 7.2 | 21.0 | 8.2 | 236,722 | 30.1 | 30.1 | 30.1 | 2.8 | 3.6 | 3.0 |
Suburban | 61,137 | 33.5 | 35.4 | 34.4 | 7.2 | 19.8 | 8.4 | 81,926 | 30.5 | 30.5 | 30.4 | 2.8 | 3.6 | 3.0 |
Urban, low-density | 52,935 | 33.6 | 35.3 | 34.5 | 7.8 | 18.7 | 8.9 | 66,789 | 30.7 | 30.7 | 30.6 | 3.4 | 4.1 | 3.6 |
Urban, high-density | 2986 | 32.7 | 34.0 | 33.5 | 6.2 | 13.8 | 6.9 | 4620 | 29.9 | 29.9 | 29.8 | 2.7 | 3.3 | 2.8 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanberry, B.B. Compounded Heat and Fire Risk for Future U.S. Populations. Sustainability 2020, 12, 3277. https://doi.org/10.3390/su12083277
Hanberry BB. Compounded Heat and Fire Risk for Future U.S. Populations. Sustainability. 2020; 12(8):3277. https://doi.org/10.3390/su12083277
Chicago/Turabian StyleHanberry, Brice B. 2020. "Compounded Heat and Fire Risk for Future U.S. Populations" Sustainability 12, no. 8: 3277. https://doi.org/10.3390/su12083277
APA StyleHanberry, B. B. (2020). Compounded Heat and Fire Risk for Future U.S. Populations. Sustainability, 12(8), 3277. https://doi.org/10.3390/su12083277