Sustainable Urban Air Mobility Supported with Participatory Noise Sensing
Abstract
:1. Introduction
2. UAM Traffic Concepts
3. UAM Acceptance
4. Noise Considerations
4.1. Noise Annoyance
- (1)
- The experience of repeated noise-related disturbance and the behavioral response to cope with it.
- (2)
- The emotional/attitudinal response to the sound and its disturbing impact.
- (3)
- The perceived lack of capacity to cope with the noise [29]. The coping style can either be problem-oriented or emotion-oriented, where problem-oriented coping is more proactive and the latter more reactive in nature.
4.2. Noise Measurement
5. Participatory Noise Sensing
6. Noise-Optimized UAM
7. Conclusions
- Using the application will increase the capacity to cope with noise in a problem-oriented, and thus proactive, way.
- The emotional/attitudinal response to the sound and its disturbing impact will thus be moderated.
- The experience of repeated noise-related disturbance will be limited due to the adjustment of traffic patterns.
Funding
Conflicts of Interest
References
- Eißfeldt, H. Supporting Urban Air Mobility with Citizen Participatory Noise Sensing: A Concept. In Proceedings of the 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; Available online: https://dl.acm.org/doi/10.1145/3308560.3317059 (accessed on 23 January 2020).
- EU Commission. Horizon 2020—Work Programme 2018–2020 Part 11: Smart, Green and Integrated Transport. Available online: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-transport_en.pdf (accessed on 23 January 2020).
- Planing, P.; Pinar, Y. Acceptance of air taxis—A field study during the first flight of an air taxi in a European city. IDEAS 2019. [Google Scholar] [CrossRef]
- International Civil Aviation Organization. Guidance on the Balanced Approach to Aircraft Noise Management. Doc 9829 AN/451. Available online: https://www.icao.int/environmental-protection/Documents/Publications/Guidance_BalancedApproach_Noise.pdf (accessed on 23 January 2020).
- European. Commission Implementing Regulation 2019/947 on the Rules and Procedures for the Operation of Unmanned Aircraft. OJ L 152. pp. 45–71. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2019:152:FULL&from=EN (accessed on 23 January 2020).
- European. Commission Delegated Regulation 2019/945 on Unmanned Aircraft Systems and on Third-Country Operators of Unmanned Aircraft Systems. OJ L 152. pp. 1–40. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2019:152:FULL&from=EN (accessed on 23 January 2020).
- Lufthansa Group LHG. Noise Contoures Compared. Infografik LHG. Available online: https://www.lufthansagroup.com/fileadmin/data/themen/a320neo/LHG_Infografik_Laermkontur_EN.pdf (accessed on 23 January 2020).
- Kellerman, R.; Biehle, T.; Fischer, L. Drones for parcel and passenger transportation: A literature review. Transp. Res. Interdiscip. Perspect. 2019. [Google Scholar] [CrossRef]
- Uber Elevate. Fast-Forwarding to a Future of on-Demand Urban Air Transportation. Available online: https://www.uber.com/elevate.pdf (accessed on 23 January 2020).
- Ministry of Civil Aviation of the Government of India. Drone Ecosystem Policy Roadmap. Available online: https://www.globalaviationsummit.in/documents/DRONE-ECOSYSTEM-POLICY-ROADMAP.pdf (accessed on 23 January 2020).
- Thippavong, D.P. Urban Air Mobility Airspace Integration Concepts and Considerations. NASA, Moffet Field. Available online: https://arc.aiaa.org/doi/abs/10.2514/6.2018-3676 (accessed on 23 January 2020).
- Balakrishnan, K.; Polastre, J.; Mooberry, J.; Golding, R.; Sachs, P. Blueprint for the Sky. The Roadmap for the Safe Integration of Autonomous Aircraft. Airbus A3. 2018. Available online: https://storage.googleapis.com/blueprint/Airbus_UTM_Blueprint.pdf (accessed on 23 January 2020).
- International Transport Forum (OECD). (Un)certain Skies? Drones in the World of Tomorrow. 2018. Available online: https://www.itf-oecd.org/uncertain-skies-drones (accessed on 29 August 2018).
- Civil Air Navigation Services Organisation. Managing the Impacts of Aviation Noise. A Guide for Airport operatoRs and Air Navigation Service Providers. CANSO: Amsterdam, The Netherland, 2015. Available online: https://www.canso.org/managing-impacts-aviation-noise (accessed on 23 January 2020).
- Eißfeldt, H.; Vogelpohl, V.; Stolz, M.; Papenfuß, A.; Biella, M.; Belz, J.; Kügler, D. The Acceptance of Civil Drones in Germany. CEAS Aeronaut. J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Institut Für Angewandte Sozialwissenschaft. Tabellenband—Akzeptanz unbemannter Luftfahrzeuge. In Interner Bericht Für Deutsches Zentrum für Luft-Und Raumfahrt; Infas: Bonn, Germany, 2018. [Google Scholar]
- Verband Unbemannte Luftfahrt. Was Denken Die Deutschen Über unbemannte Luftfahrt? VUL: Berlin, Germany, 2019. Available online: https://www.verband-unbemannte-luftfahrt.de/wp-content/uploads/2019/11/Akzeptanzumfrage.pdf (accessed on 23 January 2020).
- Yedavalli, P.; Mooberry, J. An Assessment of Public Perception of Urban Air Mobility (UAM). Airbus UTM: Defining Future Skies. 2019. Available online: https://pdfs.semanticscholar.org/f464/1304ae7082a61d9cd82905917ce694a120c4.pdf?_ga=2.146171191.2046738072.1580045281-1681120550.1580045281 (accessed on 23 January 2020).
- Eißfeldt, H.; Vogelpohl, V. Drone Acceptance and Noise Concerns—Some Findings. In Proceedings of the 20th International Symposium on Aviation Psychology, Dayton, OH, USA, 7–10 May 2019; pp. 207–212. Available online: https://corescholar.libraries.wright.edu/isap_2019/34/ (accessed on 23 January 2020).
- Guski, R.; Schreckenberg, D.; Schuemer, R. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance. Int. J. Environ. Res. Public Health 2017, 14, 1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wothge, J.; Belke, C.; Möhler, U.; Guski, R.; Schreckenberg, D. The combined Effects of Aircraft and Road Traffic Noise and Aircraft and Railway Noise on Noise Annoyance—An Analysis in the Context of the Joint Research Initiative NORAH. Int. J. Environ. Res. Public Health 2017, 14, 871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, A.; Cabell, R. Initial Investigation into the Psychoacoustic Properties of Small Unmanned Aerial System Noise. AIAA-2017-4051. In Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference; 2017. Available online: https://arc.aiaa.org/doi/10.2514/6.2017-4051 (accessed on 23 January 2020).
- Torija, A.T.; Li, Z.; Self, R. Effects of a hovering unmanned aerial vehicle on urban soundscapes perception. Transp. Res. Part D Transp. Environ. 2020, 78. [Google Scholar] [CrossRef]
- Boelens, J.-H. Pioneering the Urban Air Taxi Revolution 1.0. Volocopter: Bruchsal, Germany, 2019. Available online: https://press.volocopter.com/images/pdf/Volocopter-WhitePaper-1-0.pdf (accessed on 23 January 2020).
- Basner, M.; Clark, C.; Hansell, A.; Hileman, J.I.; Janssen, S.; Shepherd, K.; Sparrow, V. Aviation Noise Impacts: State of the Science. Noise Health 2017, 19, 41–50. [Google Scholar]
- World Health Organization. Environmental Noise Guidelines for the European Region. WHO Regional Office for Europe: Copenhagen, Denmark, 2018. Available online: http://www.euro.who.int/en/health-topics/environment-and-health/noise/environmental-noise-guidelines-for-the-european-region (accessed on 23 January 2020).
- Stallen, P.M. A theoretical framework for environmental noise annoyance. Noise Health 1999, 1, 69–79. [Google Scholar]
- Guski, R.; Felscher-Suhr, U.; Schuemer, R. The concept of noise annoyance: How international experts see it. J. Sound Vib. 1999, 223, 513–527. [Google Scholar] [CrossRef]
- Schreckenberg, D.; Belke, C.; Spilski, J. The Development of a Multiple-Item Annoyance Scale (MIAS) for transportation noise annoyance. Int. J. Environ. Res. Public Health 2018, 15, 971. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.; Job, R.S.; Hede, A.J. Human response to environmental noise: The role of perceived control. Int. J. Behav. Med. 2002, 9, 341–359. [Google Scholar] [CrossRef] [PubMed]
- Gelderblom, F.B.; Gjestland, T.; Fidell, S.; Berry, B. On the stability of community tolerance for aircraft noise. AAA 2017, 103, 17–27. [Google Scholar] [CrossRef]
- Gjestland, T.; Gelderblom, F.B.; Granoien, I. Noise Surveys at five Norwegian Airports. Available online: https://www.researchgate.net/publication/307570031_Noise_surveys_at_five_Norwegian_airports (accessed on 23 January 2020).
- Lambert, J.; Champelovier, P.; Blanchet, R.; Lavandier, C.; Terroir, J.; Marki, F.; Griefhahn, B.; Iemma, U.; Kanssens, K.; Bisping, R. Human response to simulated airport noise scenarios in home-like environments. Appl. Acoust. 2015, 90, 116–125. [Google Scholar] [CrossRef]
- Sparrow, V.; Gjestland, T.; Guski, R.; Richard, I.; Basner, M. Aviation Noise Impacts White Paper. In ICAO 2019 Environment Report Chapter 2 Aircraft Noise 2019. Available online: https://www.icao.int/environmental-protection/Documents/EnvironmentalReports/2019/ENVReport2019_pg44-61.pdf (accessed on 23 January 2020).
- McDonald, R. Designing Quieter eVTOL. 2019 Uber Elevate Summit Day 2 at 5:20:00. Available online: https://www.youtube.com/watch?v=E0Ub9Z8ifiQ (accessed on 4 March 2020).
- Torija, A.J.; Self, R.H.; Lawrence, J. Psychoacoustic Characterisation of a Small Fixed-Pitch Quadcopter. InterNoise. Available online: https://usir.salford.ac.uk/id/eprint/53243/1/Torija_et_al_Internoise2019.pdf (accessed on 23 January 2020).
- Kloet, N.; Watkins, S.; Wang, X.; Prudden, S.; Clothier, R.; Palmer, J. Drone on: A preliminary investigation of the acoustic impact of unmanned aircraft systems (UAS). In Proceedings of the ICSV24 Proceedings, London, UK, 23–27 July 2017. [Google Scholar]
- Alexander, W.N.; Whelchel, J.; Intaratep, N.; Trani, A. Predicting Community Noise of sUAS. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019. [Google Scholar]
- Bajde, D.; Woerman, N.; Bruun, M.H.; Gahrn-Andersen, R.; Sommer, J.K.; Nøjgaard, M.; Bucher, J.H. Public Reactions to Drone Use in Residential and Public Areas. Syddansk Universitet og AalborgUniversitet, 2017. Available online: https://pure.au.dk/portal/files/142682693/Report_Public_reactionsto_drone_use_in_residential_and_public_areas_1_.pdf (accessed on 23 January 2020).
- Senzig, D.A.; Marsan, M.; Downs, R.S.; Hastings, A.L.; Cutler, C.J.; Samiljan, R.W. UAS Noise Measurement and Certification Status Report. 2017. Available online: https://rosap.ntl.bts.gov/view/dot/32569 (accessed on 4 March 2020).
- Alias, F.; Alsina-Pages, R. Review of Wireless Acoustic Sensor Networks for Environmental Noise Monitoring in Smart Cities. J. Sens. 2019. [Google Scholar] [CrossRef] [Green Version]
- World Economic Forum. Advanced Drone Operations Toolkit: Accelerating the Drone Revolution. WEF: Geneva, Switzerland, 2019. Available online: http://www3.weforum.org/docs/WEF_Advanced_Drone_Operations_Toolkit.pdf (accessed on 23 January 2020).
- Longo, A.; Zappatore, M.; Bochicchio, M.; Navathe, S. Crowd Sourced Data Collection for Urban Monitoring via Mobile Sensors. ACM Trans. Internet Technol. 2017. [Google Scholar] [CrossRef]
- Bello, J.P.; Silva, C.; Nov, O.; Dubois, R.L.; Arora, A.; Salamon, J.; Mydlarz, C.; Doraiswamy, H. SONYC: A System for Monitoring, Analyzing, and Mitigating Urban Noise Pollution. Commun. ACM 2019, 62, 68–77. [Google Scholar] [CrossRef]
- Maisonneuve, N.; Stevens, M.; Ochab, B. Participatory noise pollution monitoring using mobile phones. Inf. Polity 2010, 15, 51–71. [Google Scholar] [CrossRef] [Green Version]
- D’Hondt, E.; Stevens, M.; Jacobs, A. Participatory noise mapping works! An evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mob. Comput. 2013, 9, 681–694. [Google Scholar] [CrossRef]
- Guillaume, G.; Can, A.; Petit, G.; Fortin, N.; Palominos, S.; Gauvreau, B.; Bocher, E.; Picaut, J. Noise mapping based on participative measurements. Noise Mapp. 2016, 3, 140–156. [Google Scholar] [CrossRef] [Green Version]
- Picaut, J.; Fortin, N.; Bocher, E.; Petit, G.; Aumaond, P.; Guillaume, G. An open-science crowdsourcing approach for producing community noise maps using smartphones. Build. Environ. 2019, 148, 20–33. [Google Scholar] [CrossRef]
- Marki, F.; Lavandier, C.; Schreckenberg, D.; Grossarth, S. Using Mobile Application to Assess Quality of Acoustic and Visual Environment in Relationship with Aircraft noise. In Proceedings of the 23rd ICA Aachen-International Congress on Acoustics 2019, Aachen, Germany, 9–13 September 2019; pp. 382–389. Available online: http://pub.dega-akustik.de/ICA2019/data/articles/000612.pdf (accessed on 23 January 2020).
- Murphy, E.; King, E. Testing the accuracy of smartphones and sound level meter applications for measuring environmental noise. Appl. Acoust. 2019, 106, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Eidgenössische Materialprüfungs- und Forschungsanstalt. Schallpegelmess-Apps. Untersuchungsbericht 5214.018547, Dübendorf, CH 2018. Available online: http://www.laerm.ch/de/dokumente/apps_tools/BerichtEmpaSmartPhones.pdf (accessed on 23 January 2020).
- Becker, M.; Caminiti, S.; Fiorella, D.; Francis, L.; Gravino, P. Awareness and learning in participatory noise sensing. PLoS ONE 2013, 8, e81638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, J.; Pramanick, P.; Roy, S. NoiseSense: Crowdsourced Context Aware Sensing for Real Time Noise Pollution Monitoring of the City. In Proceedings of the 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Bhubaneswar, India, 17–20 December 2017; pp. 1–6. Available online: https://ieeexplore.ieee.org/document/8384103 (accessed on 4 March 2020).
- Grubeša, S.; Petošić, A.; Suhanek, M.; Durek, I. Mobile crowdsensing accuracy for noise mapping in smart cities. Automatika 2018, 59, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Blair, B.D.; Brindley, S.; Hughes, J.; Dinkeloo, E.; McKenzie, L.M.; Adgate, J.L. Measuring environmental noise from airports, oil and gas operations, and traffic with smartphone applications: Laboratory and field trials. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 548–558. [Google Scholar] [CrossRef]
- Lee, H.P.; Garg, S.; Lim, K.M. Crowdsourcing of environmental noise map using calibrated smartphones. Appl. Acoust. 2020, 160, 107130. [Google Scholar] [CrossRef]
- Budde, M.; Schankin, A.; Hoffmann, J.; Danz, M.; Riedel, T.; Beigl, M. Participatory Sensing or Participatory Nonsense? Mitigating the Effect of Human Error on Data Quality in Citizen Science. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 3. [Google Scholar] [CrossRef]
- Scozzaro, G.; Delahaye, D.; Vela, A.E. Noise Abatement Trajectories for a UAV Delivery Fleet, 9th SESAR Innovation Days, Athens. 2019. Available online: https://hal-enac.archives-ouvertes.fr/hal-02388280 (accessed on 23 January 2020).
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eißfeldt, H. Sustainable Urban Air Mobility Supported with Participatory Noise Sensing. Sustainability 2020, 12, 3320. https://doi.org/10.3390/su12083320
Eißfeldt H. Sustainable Urban Air Mobility Supported with Participatory Noise Sensing. Sustainability. 2020; 12(8):3320. https://doi.org/10.3390/su12083320
Chicago/Turabian StyleEißfeldt, Hinnerk. 2020. "Sustainable Urban Air Mobility Supported with Participatory Noise Sensing" Sustainability 12, no. 8: 3320. https://doi.org/10.3390/su12083320